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Recently, MiepAL (1'?) has proposed a very interesting technique to deal with the
large-momenta limit of strong-interaction field theories, namely, by the use of con-
formal invariance (*) in conjunction with Wilson’s anomalous dimensions (4). Since it
appears that the Gell-Mann-Low limit (*) of renormalizable theories indeed is conformal
invariant (®7) and Migdal’s bootstrap cquations () have been shown (8) to be ultra-
violet- and infra.red-divergence free, it is challenging to analyse Migdal’s algebraic
vertex bootstrap condition (2) and similar algebraic conditions derivable from analogous
propagator bootstraps (%?). Equivalent algebraic bootstrap equations for critical expo-
nents have been proposed by Parisi and PELITI (19).

We show herc how to obtain the general term in these bootstrap relations by way
of a simple manifestly conformal invariant calculus, based on a generalization of a
formula of D’EraM0, PELITI and Parist (1) from three to n points. We use Euclidean
metric and comment on the relation to Minkovski metric only at the end. Consider
the integral over D dimensions (*)

(1) I(mlalr ""xnan) = T*Dfdpuﬁ((u_xi)z)_o'r’(éi) ’ Eaz: D
=1

(') A. A. MiGDAL: Phys. Leit., 37 B, 98 (1971).

(") A. A. MIGDAL: Phys. Letl., 37 B, 386 (1971).

(" A. M. PoLYAROV: Zurn. Eksp. Teor. Fiz. Pis. Red., 12, 538 (1970) (English translation: Sov. Phys.
JETP Lett., 12, 381 (1970)).

() K. G. WILSON: Phys. Rev., 179, 1499 (1969).

(*) K. G. WiLsoN: Phys. Rev. D, 3, 1818 (1971).

(®) B. SCHROER: Lelf. Nuovo Cimenfo, 2, 867 (1971). .

(") M. Hortacsu, R. SEILER and B. SCHROER: NYOQ-3829-80, University of Pittsburgh, Sept. 1971.
(") G. Mack and I. T. Toporov: 1C/71/139, Tricste, Oct. 1971.

(*) G. Mack and K. SYMANZIK: in preparation.

(*°) G. PaRmsi and L. PELITI: Leil. Nuovo Cimenio, 2, 627 (1971).

(*') M. D’Eramo, L. PELITI and G. PaRrisi: Letf. Nuovo Cimenlo, 2, 878 (1971).

(*) All formulae are interpretable, and valid, also if D is not an integer, provided the points z, ... Tn
lie in a subspace of integer dimension. Also in the present contoxt, the use of noninteger dimension
is occasionally a convenient technical device, cf. ref. (11).

(*) K. G. WiLsox and M. E. FisEER: CLNS-173, Cornel University, Oct. 1971.
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with Red,; > 0, Vi. Familiar procedures give

2) I= J'f]‘[ (Aot o2 (e ;) 12 exp [—~ (i) 1Y ety — ;) ]

A i<f
with »;= 1, Vi, however, the independence of (2) of the x;, provided x»;>0, > «; > 0,
follows from the casily proved equality of (2) with

£ i<J

w @ "*D
3) I=T(D) f f TT @oadt ™) 8(1— 3 4,00.) ( > aiaj<wi-wj)2) ,
) 0

independently of the 4;, 4,0, > 4;>0. In formulac (2) and (3), conformal cova-
riance in accord with (1) cxpresses itself in the arbitrariness of the x; and the 4,, respec-
tively. Choosing in (2) », = §;, and using for the 2(n—3) 4- § (n— 3)(n — 4) = }n(n — 3)
terms in the exponential with 4j = 2k, 3k (4<k<n) and 4<i< j<n, the rep-
resentation (%)

e+io
(4) exp[—z] = (2ni)‘1fdsF(— 8)2* (¢<0, |argz| < in),

e—{®

one can perform the o-integrations with the result (for typographical simplicity, we
set (x;—x,;)? = r;; and restrict in (5) and (6) the values of 4,7 to 4...m)

3y I= oy ,—6,+1}D,-—6 —-8;+1p r6.~§n H 770 2mi)” in(n-3).

f J.H (dsz, — 8y + zsl,) ds,, I (— 8+ s,,) I'(0; + 85 + 83,)) 1T (ds; I(— s:))

i>¢ i<i £<i
(w—al + Dot Ta— T ) T8+ & — 4D —ay.)-
i<j
Hfo 10 Z ) T T

i<j
where we have introduced the (squares of the) independent (°) harmonic ratios
(6) hyi = 7;:'17';;7'21'7'13 ’ hai = T3 T3375:T1a > hy; = 7';;'1";;17':':'723 <9,
in terms of which all others can be expressed, and where, to validate the interchanges
of integrations that lead to (5), the paths of the s-integrations have to be choosen paral-

lel to the imaginary axis with real parts such that the real parts of the arguments of
all I'functions are positive. The necessary and sufficient condition (**) for this to be

(**) Higher Transcendental Functions, Vol. 1, odited by A. ERDELYI (New York, 1955).

(*) We disregard the relations, for large », between the harmonic ratios stemming from the vanishing
of the Gram determinants, see the later remark.

(**) This can be proven by giving an explicit construction, but is made plausible simplest by consid-
ering a mechanical analogy. The condition also implies all propagators to possess ordinary Fourier
transforms, and is ejuivalent to the UV convergence of (1).
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possible is that 0 < Red; < } D, Vi. (5) expresses I as a function of the harmonic
ratios in the form of a multiple Mellin-Barnes integral (13), which converges absolutely
for all k positive.

Inserting (6) in (5) and allowing linear transformations of the s-variables, (5) can
be written more symmetrically as

+{® +io
(Ta) I = (2ni)~intn-d J f ds; .. dsyaingy 11 r(a,‘?, +3> c‘-,_ksk) r‘-j"b—%cu.m ,
et —to 1ISi<j<n k

where dY; is a particular solution, with positive real parts, of

(7b) > o =19;,
Foki

and the real ¢;;; = ¢, obey

(7¢) Ciix=0, Seix=0.
s

Here k= 1...4n(n—3), and the (In(n—3))%¢c;y, with 2<i < j<n, excepting ey,
which may be taken as the independent ones, must satisfy

(7d) [detegxf = 1.

The simple and symmetric form of (5) or (7) makes it unadvisable to attempt to use
the dependences among the harmonic ratios for large » to reduce the number of complex
integrations. Also the triangle inequalities play no role in the uses, to be described
below, of these formulae.

For propagators to nonscalar fields, the integral over a conformal invariant vertex
(i.e. one that is Lorentz invariant and at which z 6, = D holds) can bereduced to (1).
We will consider only the propagator ((y'x) = x#y,)

(8) I8+ 3 y-a(@) 0t = — } I(6 — §) Ba?) .

If lines 1 ... 2k have this propagator, we need consider, with again > 8, = D, instead of (2)

@

(9) L= 2"2kf---fn (da; 1) (3 )12
0 o

4

{0ty oee o) () ... (Per) €XD [— (S a) Y s —x,-)’] .

i<s

For k =1 and scalar (and similarly pseudoscalar) coupling we find, using y,y,+ »,7, =
= 2g,, and y,p* =D

(10) a;az exp [...:l = 4(2 d)—l oy olg *

'[Z 272 — (v-2), )y @) — (p2)s) + D+ 3 a,-(a/eou)] exp[...],

{=3 t=1
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where the homogeneity in « of the exponent has been used. The two last terms in the
square bracket in (10) cancel in (9) upon partial integration, such that

(A1) L8y, ey @, 8,) = 3 ((7-@)y — (7 2): ) (7 @) — (°2);)
i=3
L@ (8, + ), w20y 4 3), 0305, o0y @y iy, @6, + 1), z+1‘5i+1w~-a97n6n)’

i.e. using (7), we obtain a sum of n — 2 terms where in the (i — 2)-th term the propa-
gators 1i and 2i have been replaced by the propagator (8), with corresponding changes
in the dimensions of the scalar parts by } for cach, and corresponding changes in the
arguments of the I' functions.

For k>1, more complicated formulac hold. We give here for k= 2 only the for-
mula for scalar-scalar (and similarly, for scalar-pseudoscalar ete.) coupling:

(12) Iy 3.4(2, 61, 000, 3, 8,) =
=3 3 (rah— @Dy, — a),) %X (-2 — o)) ((ya)— (y-2),)-

1#1,2 j9%3.4

'](271(61 + J-")’ ey md(éi +< %)7 wsés, e wi(‘si +_ l)’ rey wj((sj '|‘ l)’ ARAE1 xnan) +
F[H(- @7 + - 2)) X (@) ¥, + Yy B)) — (@ @) X 1— LX (v 2)s(y-2)] -
(@ (0 + By, 2a(G + B), @555, v 2,6,)

whereby the I-arguments in the first term, if i=4 or ¢ = 3,4 andjor j= 1,2 are
obvious, the dimensional excesses summing up.

Using formulae (7), (11), (12) and higher ones in the computation of skeleton expansion
graphs as appear in Migdal’s theory (1'?), the n > 4-point functions are ultimately ob-
tained as }n(n — 3) fold Mellin-Barnes integral similar to (7) with, however, a kernel
K(s) ... 83,n_y) in the integrand, which in turn is a sum of multiple Mellin-Barnes inte-
grals, whose integrands are products of Beta functions arising through use of

(13) D(8,)(@?) % T(8,)(2) ™% = B(8y, &) (8, -1 8,)(x?) 0%,

since in all formulae (1), (7), (11), (12) only (*) the combinations I'(6)(x?)-? occur, which
obviously is the convenient propagator normalization. In these calculations, one can
always avoid the appearence of dimensions 6 violating 0 < Red < }D. This is due to
the facts thatin a graph that is UV-convergent by the criteria of Mack and Toporov (%),
carrying out the integration over one vertex cannot bring about a UV-divergence, and
that (« catastrophic » (8), i.e. apart from those at exceptional momenta) UR-divergences
never arise in a UV.convergent Migdal graph.

The results of integrating over the vertices in a Migdal graph in different order
differ from each other only by linear substitutions on the complex integration varia-
bles, which is due to the fact that in principle the final formula can be obtained also
directly from the completely symruetric configuration space formula () for Feynman
integrals by copious use of (4) and interchange of s- with «-integrations.

(*) When (7 x)(y-x)=2* is used to combine parallel scalar-coupled spinor lines, an obvious modifica-
tion occurs.

(*) C.S.LaM and J. P, LEBRUN: Nuovo Cimento, 59 A, 397 (1969); N. Naga~Nisui: Progr. Theor. Phys.,
42, 966 (1969).
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For n = 3, as needed in Migdal’s vertex bootstrap equations (*) and in those of
Parist and PeriTi (%), the co-ordinate dependence factors out, and the coefficients
in the algebraic relation

(14) g = 9°f1(0y, Og) -+ ¢°fa(Oy, Op) + ...,

are directly obtained in the form of multiple Mellin-Barnes integrals. E.g., in the com-
putation of f; in ps-ps theory, only formulae (7) and (11) are needed, and a sum of
fourfold integrals is obtained. A more clegant way, using complex dimension as
remarked at the beginning, yields one threefold integral, which can be converted, by
ingertion of the well-known integral representations of beta- and gamma-functions,
interchange of integration, and use of (4), into a sixfold real integral in suitable form
for numerical estimate but apparently not reducible to named functions (*).

In Migdal’s theory, the vertex bootstrap eq. (14) must be complemented by pro-
pagator bootstrap equations (8). For these, rather than using the unitarity condition,
it is more convenient (*) to use the equations for momentum-differentiated inverse
propagators (1%). This avoids the difficulties inherent in the use of conformal invariance
in Minkowski space (7).

The results presented here suggest how one should proceed in a theory with funda-
mental quadrilinear coupling such as ¢* or four-fermion coupling theory. One would
have to insert a Mellin-Barnes intogral representation (which implies, e.g., growth pro-
perties of the function represented, for large and for small values of the harmonic ratios)
of the four-point vertex function (and, conveniently, also for its totally two-particle
irreducible part) into the appropriate bootstrap skeleton equations; unfortunately,
hereby (14) becomes replaced by a nonlinear integral equation for kernels K(s;s,)
(subjected to crossing symmetry). Here, and also in analysing the representations of
conformal covariant amplitudes in terms of multiple Mellin-Barnes integrals described
earlier, one should insert for the K{(...) their representations by Bergmann-Weil formu-
lae (%) and interchange integrations. This will be undertaken elsewhere.

A Migdal approach, with tools as described here, appears possible also for perturba-
tion-theoretically unrenormalizable theories such as four-fermion coupling in D3
dimensions (**) since the UV-convergence condition }D < dimy < 3D is compatible
with the positive-definiteness condition dimy > } (D —1).

Finally, concerning Minkowski metric, we note that the convergence of some of
the Mellin-Barnes integrals for amplitudes may be conditional (or worse), such that
the analytic continuation () from Euclidean to Minkowskian arguments should, as
is always recommendable, be performed only in final formulae, invoking hereby the
analytic properties (**) deriving from causality and spectrum eonditions.

* * *x

The author is greatly indebted to G. Mack for discussions on subjects of this paper.

(*) The expression for f(n,») given in ref. (') is incorrect.

(%) K. SYMANZIK: in Lectures on High-Energy Physics, edited by B. JARSIC (Zagreb, 1961) (New York,
1965).

(%) F. SOMMER: Math. dAnn., 125, 172 (1952).

(**) This emerged in a discussion between G. Mack, K. WILsoN, and the author.

(*") J. SCOWINGER: Proc. Nat. Acad. Sci., 44, 956 (1958); K. SYMANzZIK: Journ. Math. Phys., 7,
510 (1966).

(**) R. F. STREATER and A. S. WIGHTMAN: PCT, Spin and Statistics and AUl That (New York, 1964);
R. Jost: The Qeneral Theory of Quantized Fields (Providence, 1965).



