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On Calculations in Conformal Invariant Field Theories. 
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Recently, MIGDAL (1,~) has proposed a very interesting technique to deal with the 
large-momenta limit of strong-interaction field theories, namely, by the use of con- 
formal invariance (3) in conjunction with Wilson's anomalous dimensions {4). Since it 
appears that  the Gell-Mann-Low limit (5) of renormalizable theories indeed is conformal 
invar iant  {6.7) and Migdal's bootstrap equations (~) have been shown (s) to be ultra- 
v i o l e t - a n d  infra-red-divergence free, it  is challenging to analyse Migdal's algebraic 
vertex bootstrap condition (2) and similar algebraic conditions derivable from analogous 
propagator bootstraps (3.9). Equivalent algebraic bootstrap equations for critical expo- 
nents have been proposed by PARISI and PELITI (10). 

We show here how to obtain the general term in these bootstrap relations by way 
of a simple manifestly eonformal invar iant  calculus, based on a generalization of a 
formula of D'ERAMO, PELITI and PARISI (11) from three to n points. We use Euclidean 
metric and comment on the relation to Minkovski metric only at the end. Consider 
the integral over D dimensions (*) 

f n 
(1) I (Xl  61 . . . . .  xn 5,) = n--tD d ~ u I - [  ( (u  - -  x,)*) ~ ,  F(~,)  , ~ 5 ,  = D 

t - 1  

(1) A.  A.  MIGDAL: Phys. Lett., 37  B, 98 (1971). 
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with Rc (~ > 0, Vi. Fami l ia r  procedures give 

(2) 
co co 

o o 

with u~ = 1, Vi, however, the independence of (2) of the Xi, provided u~>~0, ~ x ~  > 0, 
follows from the easily proved equali ty of (2) with 

( 3 )  
xi<~ 

0 0 

independently of the 2i, 2i>~ O, ~ 2 ~ > 0 .  In formulae (2) and (3), eonformal ecva- 
fiance in accord with (1) expresses itself in the arbitrariness of the x~ and the 2~, respec- 
t ively. Choosing in (2) x i = 5~1 and using for the 2(n--  3) + ~ (n - -  3){n-- 4) = � 89  3) 
terms in the exponential  with i j = 2 k ,  3k ( 4 < k < n )  and 4 < i < j < n ,  the rep- 
resentation (13) 

e+ico 

(4) e x p  [ - - z ]  = ( 2 ~ i ) - l f d s / ~ (  - s ) z  s (G < 0, largzl < ~:~), 

one can perform the ~-integrations with the result (for typographical  simplicity, we 
set (xi--x~) 2 = rij and restr ict  in (5) and (6) the values of i, j to 4 . . .  n) 

(5) I : v-~l-~2+�89189189 a ] 7 -  ~ -d~ t~4~-~n(n - s ) .  
--12 " 13 "23 I I " I ~  / - - ' " /  

i 

" P d l - } - d 3 - - � 8 9  , 2i s i ,  i l  i t ,  
i <J 

where we have introduced the (squares of the) independent (*) harmonic ratios 

( 6 )  h2 ~ - 1  . - :  . - 1  . -1  r l  i 723r2i?13 , h3 i hi  j = -1 -1 = ~ r l t  ? 23r3ir12 , r2i rat ri~r2s (i < j) 

in terms of which all others can be expressed, and where, to validate the interchanges 
of integrations tha t  lead to (5), the paths  of the s. integrations have to be choosen paral-  
lel to the imaginary axis with real par ts  such tha t  the real par ts  of the arguments of 
all F-functions arc positive. The necessary and sufficient condition (**) for this to be 

(is) Higher Transcendental  Funct ions ,  Vol. 1, edi ted by  A. ]q]~RDELYI (Now York,  1955). 
(*) We  disregard the relations, for large n, be tween  the  harmonic  rat ios s t e m m i n g  f rom tho vanish ing  
of the  G r a m  de te rminan ts ,  see the  la ter  r emark .  
(**) This can bc proven  by g iv ing  an  explicit  construct ion,  bu t  is m a d e  plausible s implest  by  consid- 
erhig a mechanica l  analogy.  The  condit ion also implies all p ropaga tors  to possess o rd inary  Fourier  
t ransforms,  and  is equ iva len t  to the  UV convergence of (1). 
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possible is that  0 <  Re6i  < ~D, Vi. (5) expresses I as a function of the harmonic 
rat ios in the form of a multiple Mellin-Barnes integral  (~s), which converges absolutely 
for all h positive. 

Insert ing (6) in (5) and allowing linear t ransformations of the s-variables, (5) can 
be writ ten more symmetrical ly as 

+ t o o  + i o o  

(7a, 1-I 
--act) - t o o  

where 6~ is a par t icular  solution, with positive real parts ,  of 

(7b) ~ 6~ ---- 6 , ,  
J ~  

and the real c,~, = cji.~: obey 

(7c) c.,k = 0, ~c~r = O. 

IIerc k :  l . . . � 8 9  and the ( ~ n ( n - - 3 ) ) ~ c , k  with 2 < i < ~ < n ,  excepting %3.~, 
which may be taken as the independent ones, must satisfy 

(7d) Idet c . .  d = 1 . 

The simple and symmetric  form of (5) or (7) makes i t  unadvisable to a t t empt  to use 
the dependences among the harmonic ratios for large n to reduce the number of complex 
integrations. Also the triangle inequalities p lay  no role in the uses, to be described 
below, of these formulae. 

For  propagators to nonscalar fields, the integral  over a conformal invar iant  vertex 
(i.e. one tha t  is Lorentz invar iant  and at  which ~ 6 i = D holds) can bercduced to (1). 
We will consider only the propagator  ( ( r . x ) =  x , r , )  

(8) F( ~ + �89 r.z(x~)~-t = - -  �89 F( 6 - -  �89 g(x~) -a+~ . 

If lines 1 ... 2k have this propagator,  we need consider, with again ~ 6~ = D, instead of (2) 

(9) I]...z~= 2 - ~ . . f l - ~ i  ~ ( d ~ , - l ) ( ~  a)-iD. 
0 0 

�9 (a, ... ~,}-t(i~,) . . .  (~,d exp [ - - ( ~  ~)-1 ~<?,ct,(xi--x,)~] . 

For  k = 1 and scalar (and similarly pseudoscalar) coupling we find, using V#F,+ V~r# = 
= 2g~. and },~7~ = D 

(lo) 

�9 ~ , ( ( r . x ) l -  ( r . x ) , ) ( ( r . x ) , -  (r.x),) + �89 + ~,(~1~,) exp [...1, 
~t--3 t--1 
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where tlm homogeneity in ~ of the exponent has been used. The two last terms in the 
square bracket in (10) cancel in (9) upon partial integration, such that 

( l l )  ~,.~(x~ ~ ,  ~ ~,) ((;,. xh - (;," x) , ) ( ( ; , 'xh  - (r.x),).  
i=3  

i .e .  using (7), we obtain a sum of n - -  2 terms where in the ( i - -  2)-th term the propa- 
gators l i  and 2i have been replaced by the propagator (8), with corresponding changes 
in the dimensions of the scalar parts by ~ for each, and corresponding changes in the 
arguments of the r functions. 

For k > 1, more complicated formulae hold. We give here for k = 2 only the for- 
mula for scalar-scalar (and similarly, for scalar-pseudoscalar etc.) coupling: 

(12) 

= ~ ~ ( ( r ' ~ ) ~ -  (~ .x) , ) ( (r .x)~-  (r.x),) • ( ( ~ - x ) ~ -  ( ; - x b ) ( ( ~ . x ) , -  (~-x)~). 
i~1,2 i~3,4 

�9 I(x~(O~ ~- �89 . . . . .  x4(5 ~ ~- ~), xs~ ~ . . . . .  x , (5 ,  ~- l) . . . . .  x~(~ t- l) . . . . .  x~($,) ~- 

+ [~ ((~.x)~r" + ~"(r -xh)  • ((r.x)~r,, + ~,(~.x),) - (r.x),(r.x~) • 1 - ~ • (r-xh(~.x) ,]  �9 

�9 ~ ( ~ ( ~  + �89 . . . . .  x,(~, + ~), x ~  . . . . .  ~ , ~ ) ,  

whereby the I-arguments in the first tcrm, if i =  ~ or i =  3,4 and/or ~ =  1,2 arc 
obvious, the dimensional excesses summing up. 

Using formnlae (7), (l 1), (12) and higher ones in the computation of skeleton expansion 
graphs as appear in Migdal's theory (a.2), the n ~ 4 - p o i n t  functions are ultimately ob- 
tained as ~ n { n - - 3 )  fold Mellin-Barnes integral similar to (7) with, however, a kernel 
K{s~ .. .  s�89 in the intcgrand, which in turn is a sum of multiple Mellin-Barnes inte- 
grals, whose integrands are products of Bcta functions arising through use of 

(~3) P(~,)(x~) -ti  r(o2)(x~) -~, = B(5~, 52) r(o~ t 5~)(x2) -~,-~' , 

since in all formulae (1), (7), (11), {12) only (*) the combinations F(6)(x2) -~ occur, which 
obviously is the convenient propagator normahzation. In  these calculations, one can 
always avoid the appcarence of dimensions 5 violating 0 ~ Re (~ ~ ~D. This is due to 
the facts that  in a graph that is UV-convergcnt by the criteria of MACK and TODOROV (8), 
carrying out the integration over one vertex cannot bring about a UV-divergence, and 
that ((, catastrophic )) (s), i .e .  apart from those at exceptional momenta) UR-divergcnces 
never arise in a UV.convergent Migdal graph. 

The results of integrating over the vertice~s in a Migdal graph in different order 
differ from each other only by linear substitutions on the complex integration varia- 
bles, which is due to the fact that in principle the final formula can be obtained also 
directly from the completely symmetric configuration spacc formula (~4) for Feynman 
integrals by copious use of (4) and interchange of s- with a-integrations. 

(*) ~Vhen ( ~ . x ) ( v . x )  ~ x 2 is  u s e d  to  c o m b i n e  pa ra l l e l  s c a l a r - c o u p l e d  s p i n e t  l ines ,  a n  o b v i o u s  m o d i f i c a -  
t i o n  occu r s .  

( l ,)  C. S. ],AM a n d  J .  P .  LEBRU~' :  N.uovo Cimento, $9 A,  397 (1969);  N .  NAKANXSUI: Progr. Theor. Phys., 
42,  966 (1969).  
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For n = 3, as needed in Migdal's vertex bootstrap equations (2) and in those of 
PARISI and PELITI (10), the co-ordinate dependence factors out, and the coefficients 
in the algebraic relation 

(14) 

are directly obtained in the form of multiple Mellin-Barnes integrals. E . g . ,  in the com- 
putation o f / l  in ps-ps theory, only formulae (7) and (11) are needed, and a sum of 
fourfold integrals is obtained. A more elegant way, using complex dimension as 
remarked at the beginning, yields one threefold integral, which can be converted, by 
insertion of the well-known integral representations of beta- and gamma-functions, 
interchange of integration, and use of (4), into a sixfold real integral in suitable form 
for numerical estimate but  apparently not reducible to named functions (*). 

In  Migdal's theory, the vertex bootstrap eq. (14) must be complemented by pro- 
pagator bootstrap equations (s). For these, rather than using the uni tar i ty  condition, 
it  is more convenient (9) to use the equations for momentum-differentiated inverse 
propagators (15). This avoids the difficulties inherent in the use of conformal invariance 
in Minkowski space (~). 

The results presented here suggest how one should proceed in a theory with funda- 
mental quadrilinear coupling such as ~4 or four-fermion coupling theory. One would 
have to insert a Mellin-Barnes integral representation (which implies, e.9.,  growth pro- 
perties of the function represented, for large and for small values of the harmonic ratios) 
of the four-point vertex function (and, conveniently, also for its totally two-particle 
irreducible part) into the appropriate bootstrap skeleton equations; unfortunately, 
hereby (14) becomes replaced by a nonlinear integral equation for kernels K ( s l s  2) 

(subjected to crossing symmetry). Here, and also in analysing the representations of 
eonformal covariant amplitudes in terms of multiple Mellin-Barnes integrals described 
earlier, one should insert for the K(...) their representations by Bergmann-Weil formu- 
lae (16) and interchange integrations. This will be undertaken elsewhere. 

A Migdal approach, with tools as described here, appears possible also for perturba- 
tion-theoretically unrenormalizable theories such as four-fermion coupling in D>~3 
dimensions (**) since the UV-convergence condition �88 < dim ~ < �89 is compatible 
with the positive-definiteness condition dim ~ > �89 

Finally, concerning Minkowski metric, we note that the convergence of some of 
the Mellin-Barnes integrals for amplitudes may be conditional (or worse), such that  
the analytic continuation (~7) from Euclidean to Minkowskian arguments should, as 
is always recommendable, be performed only in final formulae, invoking hereby the 
analytic properties (is) deriving from causality and spectrum conditions. 

* $ *  

The author is greatly indebted to G. MACK for discussions on subjects of this paper. 

(*) The expression for ](n, v) given in rcf. (~1) is incorrect. 
(is) K. SYMAN'ZIK" in Lectures on, High-Enertly Physics, edited by ]3. JAK~I~ (Zagrob, 1961) (New York, 
1965). 
(is) F. SOMME.R: Math. Ann., 125, 172 (1952). 
(**) This emerged in a discussion between G. MAC~, 1(. WXLaO~, and the author. 
(1,) j. SCII-WINGER: Prec. Nat. ~4cad. ~gci., 44, 956 (1958); 1(. SYI~kNZIK: Jour~. Math. Phys., 7, 
516 (1966). 
('*) R. F. STREATER and A. S. ~VVIGHTMA.~': PCT, ,~l~in and Statistics and All That (New York, 1964); 
R. JEST: The General Theory oi Quantized Fields (Providence, 1965). 


