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Summary. — The difficulties with singular attractive potentials are traced
to the fact that they lead to nonself-adjoint Hamiltonians. These are
not acceptable in the framework of quantum mechanics.

1. — Introduection.

Singular attractive potentials have been considered for some time in quan-
tum mechanics (%), and a closer study revealed that these potentials exhibit
properties not shared by nonsingular or less singular potentials like the Coulomb
interaction or the harmonic oscillator. It is the intention of this note to shed
some light on these problems from a mathematical point of view. Particularly
we want to show that even in classical mechanics difficulties are encountered
in the naive approach. An argument is then presented which indicates that
the Hamiltonian connected with these potentials is not admissible in quantum
mechanics, since it is not esseatially self-adjoint. Some remarks will also be
made concerning the uncritical use of separation of variables in spherical
co-ordinates, which explains the spurious second I = 0 solutions.

TFor simplicity we consider only spherically symmetric potentials V{r).

*) Sapported by the U.8. Army Rescarch Officc Durham.
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We call V(r) singular if »*** V()50 as r -0 for some ¢>0 and ¥V bounded
and continuous elsewhere.

2. — Classical mechanies.

Solving the equations of the orbits in classical mechanics, one finds that
for a given energy all trajectories lead to the origin if the impaect para-
meter b is below a certain critical value b, when the potential V is singular
attractive. As a particle approaches the origin its trajectory smoothes to some
tangent. Physically this means that at the origin the orbit is independent of
the energy F and the angular momentum L. As the particle emerges on the
other side of the origin it has « forgotten » its former energy and angular mo-
mentum because at 0 its orbit was independent of these quantities. The con-
tinuation of the orbits through 0 thus poses a problem.

The reason for this difficulty is, that it is generally believed that a classical
system of n degrees of freedom is determined by # second-order differential
equations with 2n initial values. However in this case the origin is a singular
point of these equations since infinitely many orbits go through 0 with a given
tangent. Actually even a singular circle appears for b,, but it poses no problem,
since it will not contribute to scattering. Thus the integral curves of these
equations are strictly only defined from 0 to oo or vice versa and we need other
criteria besides the initial values to continue the integral curves through 0.

In physics these conditions are obviously energy and angular momentum
conservation along each orbit. However it should be clear that in the strict
differential equation approach to classical mechanics, these conditions have
to be given in addition to the equations, because though E and L conserva-
tion ontside 0 are consequences of the symmetries of the differential equations
this is not necessarily so at 0. The reason for this is that in the usual deriva-
tions of equations in classical mechanics smooth potentials and derivatives
are required mathematically. So with some physical goodwill, i.e. the postulate
of E and L conservation at or around 0, the problem with singular potentials
can be made well defined in eclassical mechanics. In the next Sections we will
see that the problems in quantum mechanics are much graver, sinee the above
difficulties remain and new ones appear.

3. — Symmetric operators.

In quantum mechanics the Hamiltonian is defined to be the infinitesimal
generator of the dynamical group {#(f)}. It is therefore necessary that the
Hamiltonian be self-adjoint. However in general the differential operator
H = —(fi*[2m) A+ V(r), which we are used to calling the Hamiltonian i only
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symmetric. This means (°7) that 2 has a dense domain 0, and satisfies
HAflgy = <A g for all f, gel, .

For differential operators self-adjointness in general is difficult to establish,
since it involves questions about the domain. Because of this VON NEUMANN
introduced the concept of essentially self-adjoint operators. We call an operator
essentially self-adjoint (e.s.) if it has a wunique self-adjoint extension. Thus
we see that the actual Hamiltonian in quantum mechanics is in general not
the differential operator #= — (£2/2m)A+V(r), but rather a self-adjoint ex-
tension  of this operator. This implies that, in general, a quantum mechanical
problem is only well defined if it is given by an e.s. differential operator. This
fact has so far attracted only very little attention, because most potentials
considered in quantum mechanics lead to e.s. operators (*°). There are however
indications that singular attractive potentials do not have this property.

Let us retura to the study of # = — (£2/2m) A+ V(r). For real potentials ¢
commutes with the operator of complex conjugation. Therefore # has a self-
adjoint extension H ((%) p. 1231). However these extensions are, in general,
not unique. This lack of uniqueness is expressed by the deficiency index,
d.i., (m, m) m= 0,1, 2, ..., co, m is here the number of parameters or boundary
conditions needed in order to determine a self-adjoint extension of # uniquely.
Thus a symmetric operator is only e.s. if and only if its d.i.is (0, 0). In particular
we need one parameter to make well defined a quantum mechanical problem
with an operator whose d.. is (1,1). An example for this is the potential
V= — g/r® for some suitable g. Here it turns out that all bound states depend
on one or more parameters ('°).

4. — Singular attractive potential.

We know from the above that #= — (£/2m)4+7 has a self-adjoint ex-
tension 7, even if V is singular attractive. Since A iy self-adjoint its spectrum
is not empty and there exists at least one eigenfunction of the continuous or
discrete spectrum. Since V' is spherically symmetric there exists at least one
eigenfunction for every I, m. For simplicity we restrict ourselves to 1= 0,
m = 0; the other cases are treated similarly since the potential ¥ dominates
the angular momentum term-(I(I41)/r?) near the origin.

(5) N. DunrorD and J. T. Scuawarrz: Linear Operators, vol. & (New York, 1963).

(") N. I. AcuresEr and I. M. GrasMaxn: Theorie der linearen Operatoren im Hilbert
Raum (Berlin, 1960).

(®) T. Karo: Transactions Am. Math. Soc., T0, 195 (1951).

(®) N. Limi¢: Comm. of Math. Phys., 1, 321 (1966).

(10y P. M. Morse and H. FesuBacu: Methods of Theoretical Physics (New York, 1953).
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Assume that P%y)(r) = Ey(r). Thea we know from Friedrichs’ theorem (1),
that #y(r) = Ey(r) for all » outside the singularity, ¢.e. for r> 0. In other
words yp is a weak solution of the differential equation.

By using the WKB method this implies that ¢(r) ~ Ay (r)+By_(r) with

Ty

paulr) wl; Virys exp[i i {fV(T)’f’dr}]

T

for small 7 and this holds for any solution Py(r) — Ey(r). At this stage the
8-funetion argument is usually introduced () to show that # (respectively .7 )
has no solutions, which is absurd in view of the spectral theorem of self-adjoint
operators oa Hilbert space. The argument is that ¢ does not satisfy # 'y = Ey
strictly but leads to some o-function term, i.¢. #yp= Ey-+{{(r)f{r)yp. This ar-
gument is fallacious in two respects:

a) The J-function is neither an element of Z%(R3), nor a functional on
L R?), in fact point evaluation on £2(R®) is senseless.

b) The real Hamiltonian is not 2 but . The difficulty is that most
arguments for partial differential equations which are valid on fune-
tion spaces of differentiable functions cease to be valid in a Hilbert-
space theory in this connection.

If # were e.s. the ratio A/B could be determined uniquely and we would
be able to determine a condition that singles out a particular linear combina-
tion. The condi‘ions in this case could be given in two forms

a) p(r)e LR3) locally.
b) A boundary condition at 0.
The boundary condition has to be given at 0 because the problem is prac-
tically insensitive to changes made in the potential for » > R, > 0 for some R,.

But both conditions fail to single out a particular v, because if v, is locally

square integrable, then so is u_, and ¢, and y_ have the same behaviour
as r—>0.

Requiring orthogonality for all solutions we find (*) that

7o

p(r) N;: V(r)=t cos {fV(r)%dr - a} ,

r

where o« is an arbitrary parameter, which is not determined by #.

(') K. O. Friepricus: Am. Journ. Math., 61, 523 (1939).
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Since for every I and m we have to determine the parameter «,,, we see
that the differential operator # is not only not e.s. but even has d.i. (oo, o).

The arbitrary phases «,, were first introduced by CASE (') in the case
l=m=0.

In general therefore the operator = — (#2/2m)A+V(r) with V(r) sin-
gular attractive is not admissible in quantum mechanics since it is not e.s. and
only yields a well-defined problem in quantum mechanics if we are given the
phases a;,, or some physical model which determines these parameters. It should
be remarked here that the various methods of analytic continuations are just
particular ways to fix these constants «;,. Physically this is probably not a
very compelling procedure. The determination of the o, by cut-off has the
disadvantage that all results will strongly depend on the cut-off.

The fact that 5 has d.i. (oo, oo) shows that 5 also has nonself-adjoint
extensions and would for example allow inelastic scattering. Most of the
peculiar problems with singular attractive potentials can be traced to the
great variety of possible extensions. These difficulties make the study of sin-
gular attractive potentials rather academic. However our discussion shows
that before trying to solve a quantum mechanical problem it is important to
establish the essential self adjointness of the operators.

5. — Separation in spherical co-ordinates.

Another problem which has puzzled physicists for some time is the appear-
ance of spurious ! = 0 solutions of the Schrodinger equation for not too sin-
gular potentials, particularly the hydrogen atom. Indeed let V be such that
r®eV(r) -0 as r -0 for some ¢>0, then we know that the two solutions
9., Y, of the radial Schrédinger equation behave as (*2) p,~r==l,p,~1r! as
r—0. For [>1, y, is not square integrable, hence can be discarded. For 1= 10
the radial Schrodinger equation however gives two possible solutions and the
above argument fails. Many explanations have been given in order to show
that ¢, is not admissible. The most prominent ones are:

i) , is more singular than ,,
and
ii) é-function argument.

Both arguments are however not acceptable in a Hilbert-space theory, which
is the framework of quantum mechanics. To state this dilemma in more
rigorous terms, we have (%):

(12) A. MEss1AH: Qnantum Mechanics, vol. 1 (Amsterdam, 1958).
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Theorem. The Schrédinger Hamiltonian = — (fi2[2m) A+ V(r) with V{(r)
R

such that frle(r)|2d3r< oo for some B> 0 and [V(r)| < oo for 7> R is essen-
0

tially self-adjoint and the eigenfunctions are bounded.
But the radial Schrédinger equation is not e.s. for I=0. In fact one
can show:

Theorem. The differential operator #,= — (A2/2m)(d2/dr2)+ V(r) with V as
above and attractive has d.i. (1,1) on .#2([0, co]).

The reason for this is, that through the separation in spherical co-ordinates
we introduce an additional boundary point 0, for which we need an additional
boundary condition in order to make the problem self-adjoint. This boundary
condition has to be obtained from the full Schrédinger equation. From Kato’s
theorem it is the requirement that the v bounded at 0.

For the singular attractive case however this fails since both functions
behave essentially in the same manner at 0. We therefore had to conclude
that in this case the Hamiltonian has d.i. (oo, oo).

We have seen above that the uneritical use of the separation of variables
in spherical co-ordinates introduces difficulties through spurious solutions.
Obviously we would expect similar results for the separation of variables in
other co-ordinates as scon as we introduce new boundary points.

% ok ok
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RIASSUNTO (%

8i rintraccia l'origine delle difficoltd che si incontrano con i potenziali attrattivi
singolari nel fatto che essi portano ad hamiltoniane non autoaggiunte. Queste non sono
accettabili nello schema della meceanica quantistica.

*) Traduzione a cura della Redazione,

HeKOTOpre JaMevaHus 0 CHHIYJIIPHBIX NOTCHIMAIAX HPHTHIKCHHA.

Pesrome ABTOPOM HC IIPCACTABJICHO.
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