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Summary. — Bell’s inequality is a necessary condition for the existence of a clagsical
probabilistic model for a given set of correlation functions. This condition is not sat-
isfied by the quantum-mechanical correlations of two-spin systems in a singlet state.

We give necessary and sufficient conditions, on the transition probabilities, for the
existence of a classical probabilistic model. We also give necessary and sufficient con-
ditions for the existence of a complex (respectively real) Hilbert space model.

Our results apply to individual-spin systems hence they need no «locality » assump-
tion. When applied to the quantum-mechanical transition probabilities, they prove not
only the necessity of a nonclassical probabilistic model, but also the necessity of using
complex rather than real Hilbert spaces.

Statement of the problem. — The problem of understanding the empirical basis of the
quantum-mechanical formalism has been studied by many authors, both physicists
and mathematicians (ef. the excellent survey (1) and the bibliography therein). Recently
a new approach to this problem has been proposed (ef. (24)) in which one considers the
conditional (i.e. transition) probabilities as the basie empirical data from which the
mathematical model should be deduced. The main idea of this approach is to classify
the probabilistic models, both Kolmogorovian and non-Kolmogorovian, according to
statistical invariants, which are expressed in terms of the transition probabilities.

(') A. 8. WIiGHTMAN: Hilbert’s sixth problem: mathematical treatment of the axioms of physics, in
Mathematical Developmenis Arising from Hilbert Problems. Proceedings Symposia in Pure Mathemalics,
Vol. 28 (Providence, 1976).
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In the present work the statistical invariants for some simple systems are explicitly
computed and it is shown that they allow us to distinguish among Kolmogorovian, real-
Hilbert-space and complex-Hilbert-space models. These statistical invariants depend
only on the transition probabilities which can be considered as empirical data, and it
is very simple to produce examples of quantum systems such that the statistical
invariants associated to their transition probabilities do not allow any Kolmogorovian
or real-Hilbert-space model, but obviously allow a complex-Hilbert-space model.

Therefore the method of statistical invariants allows us to solve the problem of
« ... singling out in full generality the empirical basis for the choice of complex numbers
in quantum theory ...» {(cf. {3), § 8-5). The problem of the meaning of the number
field in quantum theory has been studied, from different points of view, by several
authors (ef. (59)).

Let us now state the problem in a precise mathematical form. Let A, B, O, ... denote
some (a finite or an infinite set) observable quantities with values (as), (bg), (¢y), respect-
ively. We will agsume that «, f, 9, ... = 1, 2, ..., n for some n < + oo, independent of
A, B, 0, ... and that a,, bg, ¢y, ... € R. Consider the transition probabilities

(1) P(A = asB = bg), P(B=104C=c,), PO =cyd=ay),..,

where P(4 = as|B = bg) denotes the probability that 4 takes the value a, conditioned
by the fact that B is known to assume the value bg. Since we are interested in the
comparison between the classical and the quantum-mechanical situation, we will assume
that the transition probabilities satisfy the symmetry conditions

@) P(A — a4|B = bg) = P(B = bgld = aa), ...

(where, here and in the following, the dots after a relation will stand for the same relation
written for all the remaining observables). It will also be assumed, although this is not
esgential for our goals, that for each «, f, ...

(3) P(A = as|B =1bg) > 0, ....
We will say that the transition probabilities (1) admit a Kolmogorovian model, if
there exist

1) a probability space (£, 0, u),

2) for each observable A4, B, (, ..., a measurable partition of 2 — (4,), (Bs),
(Cy), ...

&) J. M. JaucH: Foundations of Quantum Mechanics (Reading, Mass., 1968).

(®) G. EmcH: Helv. Phys. Acta, 36, 739, 770 (1963).

() D. FINRELSTEIN, J. M. JAUCH, S. SCHIMINOVICH and D. SPEISER: J. Math., Phys. (N. ¥Y.), 3,
207 (1962).

(*) D. FINKELSTEIN, J. M. JavucH, S. ScHIMINOVICH and D. SPEISER: J. Math. Phys. (N. Y.), 4,
788 (1963).

(°) E. C. G. STUECKELBERG: Helv. Phys. Acta, 33, 727 (1960); E. C. G. STUECKELBERG and
M. GUENIN: Helv, Phys. dcta, 34, 621 (1961); E. C. G. STUECKELBERG, M. GUENIN, C. PIRON and
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such that, for cach «, 3, », ...

lan B
(4) P4 = aglB — by) = 0D

w(Bg)
We will say that the transition probabilities (1) admit a complex (respectively, real)
Hilbert space model, if there exist

1) a complex (respectively real) Hilbert space of dimension n — 5#;

2) for cach observable 4, B, C, ..., an orthonormal basis of # — (4), (vs), {xy), ---:
such that, for each «, 5, y, ...

(5) P(A = a4|B = bg) = [{@a, ¥p)|?, ....

In this case we say that the given orthonormal basis realize the corresponding transi-

tion probabilities.

Thus, for a given set of transition probabilities P(4 = ax|B = bg),..., which we can

consider as « experimental data », it is quite natural to ask the following questions:
Problem 1. Do they always admit a Kolmogorovian model?

Problem 2. Do they admit a Hilbert space model but not a Kolmogorovian one,
or conversely?

Problem 3. Do they admit both a Kolmogorovian aend a Hilbert space model?

Problem 4. Do they admit a complex Hilbert space, but neither a real Hilbert space
nor a Kolmogorovian model?

An example of transition probabilities admitting a complex Hilbert space, but not
a Kolmogorovian model is implicit in Wigner’s proof of Bell’s inequality (%) (in Bell’s
original proof, correlations rather than eonditional probabilities are considered (11)).
In general one can prove (cf. (»%)) that if the conditional probabilities satisfy (2)—as
is always the case in quantum theory—there is always a Kolmogorovian model for twe
observables, but not in general for three or more (for this reason, henceforth, we will
always consider three observables 4, B, 0). In the following it will be shown that the
method of statistical invariants, mentioned above, allows us to give a complete solution
of Problems 1-4—and of similar questions—in the case of three observables 4, B, U
cach of which assumes two real values (cf. (?) for the extension to the case of an arbitrary
finite number of values).

Kolmogorovian models. — Let A, B, ' be three n-valued observables.

Proposition 1 (cf. (%)). In the notations and assumptions introduced above the three
transition matrices with coefficients

P(A = ax]B =bg), P(B=04C=cy), P(C=cyd = as)

(%, B,y = 1, ..., n) admit a Kolmogorovian model if and only if there are n® real numbers

(1) E. P, WIGNER: 4dm. J. Phys., 38, 1005 (1970).

(1) J. S. BELL: Physics, 1, 195 (1964).

(12) T.. ACCARDI and A. FepuLLo: Statistical invariants for the probabilistic models of finite-valued
observables (in preparation).
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(I'n,p,y) such that

(6) Fa,ﬂ,v>0 s

(7) Zra,ﬁm: P(A = as|B = bg),
b4

(8) 2 Tapy=P(A = asC = o),
B

(9) ZI‘,,,/;,V: P(B = bﬁ|0 = (}v) .

Proof. Necessity. Let (2,0, pn), (As), (Bg), (C,) be a Kolmogorovian model for
the given transition matrices. Then the symmetry condition (2) implies that (cf. (3))

1
M(AO‘) = F‘(Bﬁ) = .’-‘(01’) = 7';’ Va, ﬁ’ Vo

hence

1
:';P(A = aa|B = bﬁ) = ‘u(AaﬁBp) = Z,M(Aa ﬁBﬂf\ (,'y) ,
v

which implies (6) and (7) with Iy g, = n-u(da N Bpn C,). (8) and (9) are obtained
in a similar way.

Conversely, let (I'x g,) be n® numbers which satisfy (6)-(9). Then on the set 2 of
all triples («, 8, ) (&, f,y = 1, ..., n) one can define the measurc u by

1
fu(o‘s ﬁ’ 7) == ra,ﬁ,v
n

and the partitions

AzX:U(O"ﬁa'}’)v Bﬁ:U(“’ﬁ’V)’ CV::U(O‘!/L?’)

Ay ay af

and it is easy to check that they provide a Kolmogorovian model for the given transi-
tion matrices.

From now on we will limit our discussion to the case in which the three observables
A4, B, O take only two (arbitrary) valucs. The associated transition probability matrices
will be denoted

p l—p cos¥(a/2)  sin®(«/2)
PA/B) =P = ) = s
1—p» p sin%(«/2)  cos(x/2)
qg 1—q cos¥(f}/2) sin?(f/2)
(10) P(B/0) =@ = = )
1—q ¢ sin?(f3/2) cos}(3/2)
P e cos2(y/2) sin?(y/2)
P(C/4) =R = ) = ,
1—r 7 sin?(y/2) cos?(y/2)
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where, because of the assumption (3), 0 <p,q,7 <1 and therefore the angles o, f,
can always be chosen to satisfy

(11) O<a, By<a.

Theorem 2. The transition matrices P, ), F defined by (10} admit a Kolmogorovian
model, if and only if

(12) |p - g—1<r<1—|p—gql.

Remark. The asymmetry between the parameters » and p, ¢ in condition (12) is only
apparent. The inequalities (12) provide a simple example of a statistical invariant for
Kolmogorovian models.

Proof. ~ We show that (12) is a necessary and sufficient condition for the solvability
of (6)-(9) with » = 2 and P(4/B), P(B/C), P(C/A) given by (10).

In our case (7), (8), (9) yield twelve equations in the eight unknowns I g,
(a, B,y = 1, 2). Using this equations, we express seven of these unknowns as fune-
tions of I, and p, ¢, r obtaining

j— A T — o
Tigi=q— 15145 Iipa=7—¢+ Iy,

Iiga=p—q+ Lo, Iypo=1-—p—1Th,,
(13)

, , . L
Dige=1l—r—p+q—">y1 Dopp=1—7—1I4,

Iapo=Toya— 14 p tor.

The positivity conditions (6) arc then equivalent to

gzl 1—p—r, l—p>ly,,2q—1,
(14)

1—p+q—r=ly;,>0, L—r>l,,>9—p.

Thus any number I, , ; satisfying (14) defines, through (13) and proposition 1, a Kolmo-
gorovian model for the given transition matrices. Since, as shown by elementary com-
putations, (12) is the necessary and sufficient condition for the solvability of the system
of inequalities (14), the theorem is proved.

Remark. Under our assumption 0 < p, ¢, » < 1, it is easy to verify that if a solution
for the system (14) exists, then there will be infinitely many solutions. In other terms,
the Kolmogorovian model, when existing, will not be unique up to stochastie equi-
valence. This is intuitively obvious, since the transition probabilities provide informa-
tion only on the joint probabilities of couples of the observables 4, B, C, and it is well
known that the stochastic equivalence class of the process A, B, ¢ is determined by the
joint distribution of the triple A, B, C.

Spin models. — Our discussion of problem 4 will consist of three main steps: 1) first
we characterize those triples of transition probabilities which admit a complex-Hilbert-
space model such that the three orthonormal basis satisfying (5) can be chosen to be
cigenvectors of three spin matrices—these will be called « spin models »; 2) we then
find a necessary condition for a triple of transition matrices to admit a complex-Hilbers-
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space realization and show that this condition is equivalent to the one characterizing
the existence of a spin model. From this we can easily deduce that all complex Hilbert
space models for the given transition matrices are spin models; 3) finally we characterize
those triples of transition matrices which admit a real Hilbert-space model and show
that there are many triples of transition matrices which admit a complex Hilbert space
model, but do not admit neither a real Hilbert space nor, a Kolmogorovian model.

Let P,Q, R be the transition matrices defined by (10), (11). In the following,
whenever we speak of a complex Hilbert space model for P, @, B we shall always sup-
pose that an orthonormal basis has been singled out in # ~ C2. With respect to this
basis we define the Pauli matrices

0 1 0 —1 1 0
(15} G = » Oy = s Gy = s
1 O 1 0 0 —1

and the spin operators
00 = 0,0y + 0p0y + 0303,

where

3
a = (a1, @y, 03) € 8D = {(ay, a,, a5) € R?. > a] = 1} .
1

We will always refer to this fixed « canonical » basis when speaking of « components »
of a vector in # without further specification. The eigenvector of o-a corresponding
to the eigenvalue + 1 (respectively, — 1) will be denoted u,(a) (respectively, w,(a)).
A complex Hilbert space model for P, @, B will be called a spin model if there exist three
vectors a, b, ¢ € 8 such that the three orthonormal basis (a(a)), (ws(d)), (w{c)) Tealize
the matrices P, @, B in the sense of the cqualities (5). Since for each «, §,

(16) [Kw1(@), 1y (B)>[2 = cos? (ab/2), ...

(17) [<wa(a), we(b)>[? = sin? (ab/2), ...

(where ab denotes the angle between @ and b), one easily verifies that a spin model for
P,Q, R exists if and only if there exist three vectors a, b, ¢ € §®, such that

(18) cosa:cosﬂ), cosﬂ:cos(;?:, cosy:cosg&.
Proposition 3. Three vectors a, b, ¢ € §® satisfying (18) exist if and only if
(19) cos?a + cos?f 4 costy —1<2co08acosfcosy.

Proof. Two vectors a, b € S satisfying the first of the equalities (18) always cxist,
and we can choose co-ordinates in R3® so that a = (1,0, 0), b = (cos a, sin «, 0).

The existence of a ¢ € 8 satisfying (18) is therefore equivalent to the existence of
a vector (cy, ¢y, ¢3) € R3, satisfying

3
(20) €= 608y, ¢ 080 -+ ¢8ina=cosf, D=1
1
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and (19) is the necessary and sufficient condition for this occurrence.

Proposition 4. i) If a triple of coplanar veetors satisfies (18), then all the triples
with this property arc made of eoplanar vectors. ii) If there is a triple of vectors
a, b, ce 8@ which are not coplanar and satisfy (18), then for any other triple o/, b’, ¢'e §®
satisfying (18) one has

—— - ——

(21) ab=a'b, be=0bc¢, ca=ca.

Proof. Any three vectors a, b, ¢ € S are such that

(22) |ab — be| < ca< ab + Do,
(23) ab + be + ca<2n .

{ef. (*#), § X-689, 690) and the equality in (23} holds if and only if a, b, ¢ are coplanar.
If a, b, ¢ satisfy (18), then for each of the angles we have only two possibilities:

(24) ab=a or 2n—u, Dbe=pf or 2a—f, Ga=7y or 2m—y.

Because of (11), 27— a, 27 — 8, 27 — y >« therefore, because of (23), the second
possibility can take place at most for one of the angles. Let now o', b, ¢’ € S be another
triple of vectors satistying (18). Put 6, = ab, 6, = B¢, 6, = ¢a and 6; the corresponding
angles fora’, b’, ¢/. If (21) does not hold, then for the reasoning above there is at most
an index—1let us eall it i—such that §; = 27 —6,. Denoting j, k¥ the remaining indi-
ces, one has, from (23) and (22),

(25) 2w 8 + 0, + 6, =2 —6,+ 0,+ 0,> 2n—6,+ 6, = 2x.

Thus @', b’, ¢’ must be eoplanar. But in this case from |6 — 0;[< 0, we deduce 27<
< (0; + 6, + 6;)< 27, hence also a, b, ¢ must be coplanar. If a', b’, ¢’ are not coplanar
the first inequality in (25) is strict, and this contradicts the last inequality. Hence for
no index ¢ we can have 6, # 6 and this proves (21).

Complex Hilbert-space models for P,), E. — Assume that there exists a complex-
Hilbert-space model for P, Q, R. Then, there are a Hilbert space # ~ C2; three ortho-

normal basis (ga) (¥s), (xs) satisfying (5); and real numbers g,(4, B), ggy(B, 0), gya(C, A)
such that

(26) {Pa> Y5> = Xp [ioap(4, B)JV P(A = aa|B = bg), ... .
Therefore using the orthogonality relation

{Pas gv> = ;; {Pas Yoo W8> A
one immediately verifies the cquality

(27)  expl—ien(C, A)Jcosy/2 = oxp[ilon(4, B) + en(B, O)]]cos /2 cos f/2 +
cexp [i[o(4, B) + on(B, C)]]sin «/2sin §/2 .

(**) F. ENRIQUEZ and U. AMALDI: Elementi di geomelria (Bologna, 1921).
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Lemma 5. Let A, A,, A; be positive real numbers. A necessary and sufficient con-
dition for the existence of real numbers x, ¢, z, which solve the equation

(28) Aexp[iz] + A, exp[iy] = A;exp [iz],
is that
A2 — (23 + 22
(29) —1< A — (A + A) <1
22, 4,

or equivalently, that

(30) P Tt
T 2M,4,

Proof. — If a solution of (28) exists, then

A3 — (43 + 43)

31 os{x—y) = ——————
(31) 08 (x —y) YN
and (29) is satisfied. Conversely, if (29) bolds one can choose an arbitrary couple z, y
such that (31) is satisfied, and with this choice both sides of the equality (28) have the
same modulus, thus a solution of (28) exists. Finally, the solvability of (28) is equivalent
to the solvability of

(32) Ay exp [ix] — Ay exp [i2] = — A, exp [iy]

and, writing condition (29)—with the appropriate coefficients—for ecq. (32) one
finds (30).

Remark. — One easily verifies that an equivalent condition for the existence of solu-
tions of eq. (28) is that the inequality 4,<<1,+ 4; and those obtained from this by
circular permutation hold. This form of the condition, as we will show elsewhere, has
a more general character than (29) or (30), but in the present paper only this last type of
inequalities will be used.

Corollary 6. The following equivalent inequalities are necessary conditions for the
existence of a complex-Hilbert-space model for the transition matrices P, @, R:

(33) costa + cos?f 4 cos?y — 1< 2cosacosfcosy,

1< cos®af2 4 cos?f/2 + cos?8/2 —1

(34)
2 cos «/2 cos /2 cos p/2

(35)  [cos /2 cos /2 — sin «/2 sin §/2]2< cos? p/2<

< [cos /2 cos §/2 + sin «/2 sin §/2]2 .

Proof. — 1f a Hilbert space model for P, Q, B exists, then (27) holds and therefore
eq. (28) with the coefficients

Ay=cosyp/2, A =cosaf2c08B/2, A= sina/2sinpf/2
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must be solvable. With this choice of the coefficients the solvability condition (29)
becomes

(36) —sinasin f<<cosy — cos o cos f<<sinasin §

and this is an equivalent formulation of (35).
Because of (11) the sines are positive, hence (36) is equivalent to

leos y — cos o cos B2 <Isina sin? 7,

which is easily seen to be equivalent to (33). If, instead of the solvability condition (29),
the equivalent condition (30) is used with the same coefficients 4, 4,, 45, the resultis (34).

Theorem 7. — The following assertions are equivalent:
i) the transition matrices 7, @, B admit a complex-Hilbert-space model;
ii) the transition matrices P, @, B admit a spin model;
(37) 1iii) cos?a |- cos2f 4+ cos?y — 1<C2cosa coSff cosy;

cos2 o/2 -+ cos2 /2 + cos2y/2 —1
(38) iv) — 120 pIz 1 costyiz—1_ .
2 cos a/2 cos /2 cos p/2

+ 1
(39) v) — 1< ,ﬂfi,ﬁ <1;
2v/pgr

Proof. — The equivalence iii) <> iv) has been shown in corollary 6 and v) is just iv)
in different notations. That iii)<>ii) is the content of proposition 3. Clearly ii) =>1i).
But, because of corollary 6, i) =>iii) and hence ii). The equivalence v)<- vi) has been
established in corollary 6.

Corollary 8. — i) Every complex-Hilbert-space model for P, @, E is a spin model.
ii) If a spin model for P, Q, R is defined by three noncoplanar vectors a, b, ¢ € R3, then
all spin models are unifarily equivalent (in the sense that there exists a single unitary
operator which maps the three orthonormal basis of one model into those of the
other one).

Proof. — 1 {@4), (wp), (xy) arve any three orthonormal basis of # which realize a com-
plex Hilbert space model of P, @, R, then by theorem 7 there are in # three orthonormal
basis of spin type (ws(a)), (va(d)), (wy(e)) with the same property. If U;, U,, U, are
three unitaries such that

(41) Uipala) = o, Ustpd) = y5,  Usp(o) =
they define three rotations R, R,, R, such that
va(Bia) = gus  va(Bed) = g5 ¥y(Bye) = xy

and this proves i). If a,b,c¢ are not coplanar then, denoting o = R,a, b’ = E;b;
og. . . o~ — —~ —— .
¢' = Rye, proposition 4 implies that ab = a’b’, ¢ = b’¢’, éa = ¢’a’ hence there is a
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rotation B in R® such that Ra = o/, Rb = b’, R¢c = ¢’. Therefore in (39) the three uni-
taries can be taken equal.

Remark. — It is easy to verify that because of (11) condition (37) is equivalent to the
following couple of inequalities:

la—fl<y<a+p, a+p+y<2n,

which are necessary and sufficient conditions on «, 8, y to be adjacent angles of a tri-
hedron in R®. This provides a geometrical interpretation for condition (37).

Real-Hilbert-space models for P, Q, R.

Theorem 9. — The transition matrices P, @, R admit a real-Hilbert-space model, if and
only if

pretr—1t ., prgt+r—1

42 — or —
“2) 2Vpgr 2vpqr

—1
or equivalently
Vi=Vpg+ vVOi—p)I—¢) or Vr=[Vpg—VI—-p)l—79q).

The proof of theorem 9 will be based on the following

Theorem 10. The transition matrices P, Q, B admit a real-Hilbert-space model, if
and only if they admit a spin model defined by a coplanar triple of vectors a, b, ¢ € S,

Proof. Sufficiency. If the transition matrices P, @, R admit a spin model defined
by a coplanar triple of vectors a, b, ¢ € S®, then by proposition 4 all triples are co-
planar and in appropriate co-ordinates in R® the vectors a, b, ¢ will have the form

(43) a= (6, 0,a5), b=1(0,00), ¢=1(6,00¢).

But in a basis of 5 in which the Pauli matrices have the usual form (15), the eigenvectors
of o a(x = (2, %, 2;) € R?) have components (defined up to a common phase)

VI F )2 ViT==,)]2
hiz) = %y + 1w, s Polx) = . Ty + @, s
VT + ) V(1 —w)

hence for each vector of the form (43) the phase can be chosen so that it has real com-
ponents. With this choice of the phase the vectors of the two basis (wp(d)), (wyle))
belong to the real Hilbert space generated by the basis (ya(a)), hence this space provides
a model for P, Q, R.

Necessity. Assume that the transition matrices P, @, R admit a real-Hilbert-space
model. Then they admit a complex-Hilbert-space model and, by corollary 8, a spin
model. Let (ya(a)), (va(b)), (¥,(c)) be a triple of orthonormal basis which define this
model (a, b, ¢ € §¥). Then, because of our assumption, (27) must hold with the phasis
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which are integer multiples of #. Using conditions (29) and (30) with the notations
(44) = cosp/2, Jy=cosx/2c08f(/2, A= sina/2sinpf/2,
one easily verifies that at least onc of the following equalities must be satisfied:
(45) 1) 4L+ A= 4, 2y — A+ A=A, 3y A—A= 14
and, because of (44), the ecqualities (45) are, respectively, equivalent to
46) 1) 2a—a+f+y=2n, a+p+ry=2a, a+p+2n—y=2n.
Because of (24) any of the cqualities (46) will yield

ab + b + éa = 2= .
Hence a, b, ¢ are coplanar.

Proof of Theorem 9. In the notations (44), the transition matrices P, @, B admit
a real-Hilbert.space model if and only if the equation

A exp [iz] + 2,exp [iy] = A exp [42]

has a solution such that z, y, = are integer multiples of n. From the proof of lemma 5
it follows that such a solution exists, if and only if, for some integer &

R

cos (km) = 277
173

and this is equivalent to (42).

Conclusions. — Let us denote (Kolm), (C-Hilbert) (R-Hilbert) the family of triples
P, Q, R of bi-stochastic matrices of the form (10) which admit respectively a Kolmo-
gorovian, a complex-Hilbert-space, a lreal-Hilbert-space model. Clearly (R-Hilbert)C
C (C-Hilbert), and theorems 7 and 9 show that the inclusion is strict. The elementary
inequalities

@1 [Vpg— VOI=—p)A=¢ P<|p + ¢— 1<l —[p—ql<[vpg + VI =p)T—-q) ],

together with theorems 2 and 7, show that also the inclusion (Kolm)C (C-Hilbert)
takes place. Since, in the first inequality the equality sign holdsif and onlyifp 4 ¢ = 1,
and in the third one if and only if p = ¢, also in this case the inclusion is striet. In
particular, if the three matrices P, (), B correspond to a spin model defined by three
noncoplanar vectors a, b, c € §® and are such that either

[VPg—vVO=p)T=¢g)]P<r<|p +¢g—1] or
1—|p—gq|<r<[Vpg + VI=p)(1—q)]?,

then they will not admit neither a Kolmogorovian nor a real-Hilbert-space model but,
by construction, they admit a complex-Hilbert-space model.



172 L. ACCARDI and A. FEDULLO

‘While the inclusion (R-Hilbert) C (C-Hilbert) is of general character, the inclusion
(Kolm) C (C-Hilbert) depends strongly on the fact that we are considering 2-valucd
observables.

For three (or > 3) valued observables this inclusion fails already at the level of couples
of observables, 4.e. in the case of a single bistochastic matrix. For example, it can
be shown (ef. (%)) that if 0 < § < 1/2¢ the bistochastic matrix

"1 /1 1 11 1
A=+ — —_
2(2Jr ) 24 24 2

1/1 1 1 11 1
—{= 46 1—20—|———4¢
2\2 2 24 2

1 1

p— —— 34 20

— 2 asnsal

(which, of course, admits infinitely many Kolmogorovian models) does not admit a com-
plex-Hilbert-space model.

Remark. — Our theorem 2 is equivalent to a result established by D. GurKowskr
and G. Masorro (1) (nceessary condition) and by G. CorLEO, G. GUTKOWSKI, G. Ma-
soTtTo, M. V. VALDES (1%) (sufficient condition). Their result is expressed in terms of
joint rather than conditional probabilities, and our inequality (12) is obtained by their
inequality (1) (in (%)) just dividing each term by }. The factor } is canonical since,
due to the symmetry condition (2), any Kolmogorovian model for the given set of
transition probabilities must satisfy

wd =ax) = p(B =bg) = p(C = ¢} =}, o Py =1,2.

The equivalence of our theorem 2 with the mentioned results of Gutkowski et al. was
kindly pointed out to us by prof. R. Ascowrr, to whom we want to express our grati-
tude for this as well as for other interesting remarks. Let-us also remark that a neces-
sary condition on the 2-dimensional joint probabilities of any finite number of 2-valued
observables, for the existence of a Komogorovian model, has been established by A. Ga-
rUccio and F. SELLERI (1%).

(1) D. GuTkowsKl and G, MASOTTO: Nuovo Cimento D, 22, 121 (1974).
(13) G. CorLEO, D. GUTROWSKI, (. MASOTTO and M. V. VALDES: Nuovo Cimento B, 25, 413 (1975).
(1*) A. Garvccio and F. SrLLERI: Found. Phys., 10, 209 (1980).



