
Nonrenewable Resources, Vol. 6, No. 1, 1997 

Classification of Mineral Deposits into Types Using 
Mineralogy with a Probabilistic Neural Network 

Donald A. Singer 1~ and Ryoichi Kouda 2 

Received August 15, 1996; accepted September 9, 1996 

In order to determine whether it is desirable to quantify mineral-deposit models further, a test 
of the ability of a probabilistic neural network to classify deposits into types based on mineralogy 
was conducted. Presence or absence of ore and alteration mineralogy in well-typed deposits 
were used to train the network. To reduce the number of minerals considered, the analyzed 
data were restricted to minerals present in at least 20% of at least one deposit type. An 
advantage of this restriction is that single or rare occurrences of minerals did not dominate 
the results. Probabilistic neural networks can provide mathematically sound confidence mea- 
sures based on Bayes theorem and are relatively insensitive to outliers. Founded on Parzen 
density estimation, they require no assumptions about distributions of random variables used 
for classification, even handling multimodal distributions. They train quickly and work as well 
as, or better than, multiple-layer feedforward networks. Tests were performed with a probabilis- 
tic neural network employing a Gaussian kernel and separate sigma weights for each class 
and each variable. The training set was reduced to the presence or absence of 58 reported 
minerals in eight deposit types. The training set included: 49 Cyprus massive sulfide deposits; 
200 kuroko massive sulfide deposits; 59 Comstock epithermal vein gold districts; 17 quartz- 
alunite epithermal gold deposits; 25 Creede epithermal gold deposits; 28 sedlmentary-exhalative 
zinc-lead deposits; 28 Sado epithermal vein gold deposits; and 100 porphyry copper deposits. 
The most common training problem was the error of classifying about 27% of Cyprus-type 
deposits in the training set as kuroko. In independent tests with deposits not used in the training 
set, 88% of 224 kuroko massive sulfide deposits were classed correctly, 92% of 25 porphyry 
copper deposits, 78% of 9 Comstock epithermal gold-silver districts, and 83% of six quartz- 
alunite epithermal gold deposits were classed correctly. Across all deposit types, 88% of deposits 
in the validation dataset were correctly classed. Misclassifieations were most common ifa deposit 
was characterized by only a few minerals, e.g., pyrite, ehalcopyrite,and sphalerite. The success 
rate jumped to 98% correctly classed deposits when just two rock types were added. Such a high 
success rate of the probabilistic neural network suggests that not only should this preliminary test 
be expanded to include other deposit types, but that other deposit features should be added. 
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I N T R O D U C T I O N  

At present the only parts of  mineral deposit mod- 
els not based on subjective estimates are the grades 
and tonnages (Cox and Singer, 1986). Removal of  the 

subjective element of  estimating grade and tonnage 
distributions has resulted in significant benefits to 
resource assessments and exploration planning. These 
benefits exceed the costs even after considering the 
great effort required to construct proper grade and 
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tonnage models (Singer, 1993). If it were possible to 
correctly classify a large proportion of deposits and 
occurrences into deposit types based on the kinds of 
information commonly available in the geologic litera- 
ture, then a system could be built that would automati- 
cally screen large data files. In such a system, the 
necessary and sufficient information would exist to 
discriminate among deposit types. Extensions to this 
kind of system might serve as a basis for integrating 
geological, geophysical, and geochemical information 
for estimating and managing risk. 

Barton (1986) provided estimates of the fre- 
quency of mineral occurrence by deposit type. His 
subjective estimates for over 150 minerals in about 80 
deposit types were used by McCammon (1992) with 
subjective estimates of frequencies of rock types, ages, 
alteration, geophysical, and geochemical signatures in 
an attempt to classify deposits with a system called 
Prospector II. McCammon's test of this system (1992) 
resulted in 83% of 124 deposits correctly classed. 

In expert systems like Prospector II, a human 
expert's knowledge, in the form of qualitative princi- 
pals as perceived by the expert, is encoded. Perfor- 
mance of these systems depends on the quality of the 
expert's knowledge and the care taken in the represen- 
tation of that knowledge. Such expert systems are 
desirable where the underlying model relationships 
or information are not known. Expert systems have 
difficulties where the experts are internally inconsis- 
tent or rely on inconsistent information. 

Where information is available, inductive learn- 
ing systems exist that can use preclassified samples as 
a training set to learn the appropriate classification rule. 
These learning systems can be very good classifying 
previously unseen samples, that is, at generalization. 
Examples of inductive learning systems are decision 
trees (Quinlan, 1986), artificial neural networks (Mas- 
ters, 1995), and statistical pattern recognition (Fuku- 
naga, 1990). Features of statistical pattern recognition 
such as probabilistie estimates of class membership 
and ability to handle contradictory examples are inte- 
gral to probabilistic neural networks. 

In order to determine whether it is desirable to 
quantify mineral deposit models further, a test of the 
ability of a probabilistic neural network to classify 
deposits into types based on a simple representation 
of mineralogy is conducted here. The study is relatively 
small in scale in that only the mineralogy in eight 
deposit types and 773 deposits are employed. The 
nature and sources of these data are discussed first. 
Following this, probabilistic neural networks and their 

implementation in this study are discussed. Classifica- 
tion of deposits into types by the neural network is 
tested in the next section. Finally, classification errors 
are examined and possible improvements identified. 

THE DATA 

Information on the mineralogy of mineral depos- 
its varies widely in quantity and quality. Depending 
on the purpose of a study and its researcher's interest, 
a report on a mineral deposit might contain a detailed 
listing of alteration minerals and a mention of unnamed 
sulfide and sulfosalt minerals, a detailed list of ore 
minerals and mention of alteration in broad terms, a 
complete list of all minerals, or a sparse list of minerals. 
In some studies, the author attempted to list the relative 
or absolute amounts of each mineral. Unfortunately, 
these attempts were not common and frequently not 
comparable with many other reports because of differ- 
ent standards. Thus, it was decided to use only the 
presence or absence of minerals in our study. 

Both ore and alteration minerals were recorded 
for this study. Rock forming minerals such as varieties 
of quartz, feldspars (except adularia), and amphiboles 
were not recorded, even if they locally represent alter- 
ation. General statements about mineralogy such as 
"clays," "carbonates," or "phyllic alteration" present 
were ignored because multiple minerals were possible. 
These decisions were made to keep minerals not related 
to the mineral deposit type out of the analysis, to reduce 
the number of minerals considered, and to keep the 
data objective. Even with these restrictions and the 
exclusion of clearly single case listings, the presence or 
absence of 132 minerals was recorded. Closely related 
minerals such as the tellurides, manganese oxide min- 
erals, anhydrite-gypsum, and enargite-luzonite were 
combined to reduce the number of minerals to 109. 
To further reduce the number of minerals considered, 
the analyzed data were restricted to minerals present 
in at least 20% of at least one deposit type used in the 
study. An advantage of this restriction is that rare 
occurrences of minerals cannot dominate the results. 
The data were reduced to the presence or absence of 
58 reported minerals in eight deposit types (table 1). 

The data from eight deposit types were collected 
and divided into a training set containing 506 deposits 
and a validation set consisting of 267 deposits. The 
training set contained: 49 Cyprus-type massive sulfide 
deposits (Singer, 1986 a); 200 kuroko massive sulfide 
deposits (Singer, 1986 b); 59 Comstock epithermal 
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Table 1. List of Minerals Used in the Training and Validation Data 

adularia alunite 
apatite argentite 
barite biotite 
cerussite chalcocite/digenite 
chrysocolla copper 
electrum engarite 
fluorite galena 
gold graphite/organics 
jasper kaolinite/illite 
manganite/psilomelanedpyrolucite/wad 
muscovite/sericite pearceite 
pyrargyrite pyrite 
rhodoehrosite rhodonite 
sphalefite/wurtzite stephanite 
tellurides/calverite/hessite/petzitedsylvanite 

anbydfitelgypsum ankerite 
arsenopydte azudte/malachite 
bomite cerargyfite 
chalcopyrite chlorite 
covellite cuprite/tenorite 
epidote famatinite 
garnet goethite/limonite 
hematite/specularite jarosite 
luzonite magnetite 
marcasite molybdenite 
polybasite proustite 
pyrophyllite pyrrhotite 
siderite silver 
stibnite sulfur 
tennanite tetrahedrite 

vein gold deposits (Mosier and others, 1986 c); 17 
quartz-alunite epithermal gold deposits (Berger, 1986); 
25 Creede epithermal gold deposits (Mosier and others, 
1986 d); 28 sedimentary-exhalative zinc-lead deposits 
(Briskey, 1986); 28 Sado epithermal vein gold deposits 
(Mosier and others, 1986 a); and 100 porphyry copper 
deposits (Cox, 1986). All Cyprus-type and kuroko 
training and validation data were from Mosier and 
others (1983), the Comstock, Creede, quartz-alunite, 
and Sado data were compiled by Mosier and others 
(1986 b). The sedimentary-exhalative Zn-Pb, por- 
phyry copper, and some quartz-alunite data were com- 
piled for this study. 

THE PROBABILISTIC NEURAL NETWORK 

The goal here is to be able to make an estimate 
of the probability that an unknown mineral deposit 
belongs to a given deposit type. Standard statistical 
classification methods assume some knowledge of the 
distribution of the variables used to classify. Typically 
a multivariate normal distribution is assumed and the 
training data are used to estimate the means and vari- 
ances. Large deviations from normality or multimodal 
distributions cause these methods to fail. Neural net- 
works can typically handle very complex distributions. 
The three-layer feedforward network (Singer and 
Kouda, 1996) is an excellent classifier (Masters, 1995); 
however, it trains very slowly and does not produce 
probabilities. 

Probabilistic neural networks were designed to 
be classifiers. If we know the true probability density 
function,J~(x), for all populations, then there is a Bayes 

optimal decision rule for classifying unknown sample 
x into population i: 

picif~(x) > p~c ffAx) (1) 

for all populations j not equal to i. Where Pk is the 
prior probability of the general class k, and c~ is the 
cost associated with misclassification of population k. 
Under these conditions, a Bayes decision rule will 
minimize the expected cost of misclassification. The 
problem is that we do not know the true probability 
density function, fk(x). Standard statistical classifica- 
tion methods, such as discriminant analysis, typically 
assume that the variables follow a multivariate normal 
distribution or that the nearest neighbor is the appro- 
priate class regardless of the density of other samples 
near the unknown. 

The development by Parzen (1962) of a general 
way to estimate a univariate probability density func- 
tion from a random sample, even when the parent 
density function is unknown, provides a necessary tool 
to free us from these constraints. Parzen's estimator 
is essentially a sphere-of-influence weighting function, 
commonly called a kernel, and the scaling parameter, 
o', controls the width of the area of influence. The 
weighting function has its largest values at sample 
points and decreases toward zero as the distance 
increases. For a single population of x which has sam- 
pie size n, the estimated density function for the popu- 
lation is: 

3~(x) = ,~o W (2) 

For this study separate sigma weights (o') were 
used for each class and each variable and a Ganssian 
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kernel was used for the weighting (W) function (Mas- 
ters, 1995). The choice of the Gaussian function is 
based on its excellent performance and has nothing to 
do with assumptions of normal distributions, Specht 
(1990) constructed a neural network form of Parzen's 
estimation procedure. In this study, the algorithms for 
a probabilistic neural network developed by Masters 
(1995) were employed. Masters' algorithms find the 
scale factors, tr, that minimize the error of misclassifi- 
cation of the training data using the standard statistical 
technique called jackknifing in which every case is 
sequentially held back from training. 

Probabilistic neural networks require no assump- 
tions about distributions of random variables used to 
classify; they even can handle multimodal distribu- 
tions. They train quickly and as well as, or better than, 
multiple-layer feedforward networks. They have the 
ability to provide mathematically sound confidence 
levels and are relatively insensitive to outliers. Mathe- 
matically sound Bayesian confidence levels require 
that the classes are mutually exclusive and exhaustive 
(i.e., no case can possibly fall into more than one 
population and the training set encompasses all popula- 
tions fairly). When these conditions exist, Bayes' The- 
orem can be used to compute the probability that an 
observation X was the product of population A. 

fa(X) P[AIX] = ~ A(X) (3) 

k 

Each density estimate, fk(X), in the numerator and 
denominator of equation 3 could be multiplied by prior 
probabilities and cost constants, if desired. These fea- 
tures are not used in this study, however. 

In many practical cases, the mutually exclusive 
and exhaustive class conditions might not exist. The 
unknown sample used in testing might be from a popu- 
lation different from any of the training classes. For 
example, if the mineralogy of a polymetallic replace- 
ment or polymetallic vein deposit were tested in the 
network developed in this study, Bayesian confidence 
estimates could not be properly computed. The neural 
network program will estimate the probabilities that 
the unknown deposit belongs to the deposit classes it 
has been taught; thus, careless, use of a neural network 
could lead to mistaken classifications. 

TESTING THE NEURAL NETWORK 

Two datasets exist to test the neural network. The 
validation data, because it was not used in any training, 

is the proper dataset to test the efficiency of classifica- 
tion. Failures of proper classification of deposits used 
in training can provide important information about 
problems in the data or in the class identification. 
About 97% of the 506 deposits in the training data 
were classed properly. 

The most common training problem was the 
incorrect classification of 27% of Cyprus-type massive 
sulfide deposits as kuroko massive sulfide deposits. If 
deposits having less than four minerals reported are 
excluded from the training and validation data, this 
misclassification rate drops to 17% of Cyprus-type 
massive sulfide deposits. In general, misclassifications 
were more common where the deposit had only a 
few minerals listed such as pyrite, chalcopyrite, and 
sphalerite; for several deposits only pyrite and chalco- 
pyrite were listed. 

Independent tests of previously unseen samples 
from the validation set gave the following results: 88% 
of 224 kuroko massive sulfide deposits were classed 
correctly (table 2); 92% of 25 porphyry copper deposits 
correct; 78% of nine Comstock epithermal gold-silver 
correct; and 83% of six quartz-alunite epithermal gold 
deposits correct. The one "misclassification" of a 
quartz-alunite epithermal Au deposit was Recsk, Hun- 
gary, which has parts that are porphyry copper, quartz- 
alunite epithermal gold, and skarn. The neural network 
classed Recsk as a porphyry copper with a probability 
of 0.56, the remaining probability (0.44) was assigned 
to quartz-alunite. Had the neural network been taught 
to recognize skarns, it might have distributed some 
of the probability to that class also. Although the 
misclassification of  Recsk lowered the success rate 
statistics, it also suggests that the probabilistic neural 
network might be able to recognize mixed deposit 
types and various positions between end member 
deposit types. 

Many classification errors are of kuroko deposits 
that were classed as epithermal or other deposit types 
that would not be confused with kuroko deposits if 
the geologic setting of the deposits were known. For 
example, just knowing whether there are marine mafic 
volcanic rocks or marine felsic to intermediate volcanic 
rocks near the deposits increases the correctly classi- 
fied kuroko deposits in the validation set from 88% 
to 98% and decreased the training error rate for Cyprus- 
type deposits from 27% to 4%. The overall correct 
classification rate in the validation set increased from 
88% to 98%. 
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Table 2. Confusion Matrix Showing the Number of Mineral Deposits Correctly (in bold) and Incorrectly Classified from the 
Validation Set 

True class 
Deposit type Kuroko ms Comstock Au-Ag Qtz. alunite Au-Ag Sed.-exhal. Zn-Pb Porphyry Cu 

Predicted 
Class 

Cyprus ms 10 0 0 0 0 
Kuroko ms 196 1 0 0 0 
Comstock Au-Ag 2 7 0 0 1 
Qtz. alunite Au-Ag 0 0 $ 0 0 
Creede Au-Ag 4 1 0 0 1 
Sed.-exhal. Zn-Pb 8 0 0 3 0 
Sado. Au-Ag 1 0 0 0 0 
Porphyry Cu 3 0 i 0 23 
Total 224 9 6 3 25 

CONCLUSIONS 

Correctly classifying 88% of  the validation set 
deposits using only presence or absence of  reported 
mineralogy is a remarkably good outcome. This is in 
comparison to 83% classified correctly by Prospector 
II (McCammon, 1992) which used mineralogy, rock 
types, ages, alteration, geophysical, and geochemical 
signatures. Because the original mineral deposit mod- 
els were based on lithologies, mineral abundances, 
geochemistry, and other attributes, one might expect 
that a system using these features would have a very 
high success rate in classifying deposits into types. It 
is important to remember that the original estimates 
of  frequencies of these features and the estimation of  
their importance in Prospector II were made subjec- 
tively. The high success rate of  the neural network 
suggests that there is a clear improvement in correct 
classification when objective data are used in the 
deposit models. It also suggests a clear advantage of  
probabilistic neural networks over expert systems 
when information is available. In the authors' view, 
not only should this preliminary test be expanded to 
include other deposit types, but other deposit features 
should be added. Just knowing whether there are 
marine mafic volcanic rocks or marine felsic to inter- 
mediate volcanic rocks near the deposits increases the 
correctly classified deposits in the validation set from 
88% to 98%, a significant improvement over the Pros- 
pector II results. 

These results suggest that it is possible to correctly 
classify a large proportion of  deposits and occurrences 
into deposit types based on the kinds of  information 
commonly available in literature. Extensions to this 
kind of  system might serve as a basis for integrating 
geological, geophysical, and geochemical information 

for estimating the probabilities of  specific deposit types 
existing within a given area. 

A C K N O W L E D G M E N T S  

B. R. Berger provided data on a number of  epith- 
ermal quartz-alunite Au deposits which allowed more 
thorough testing of  the system. 
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