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Summary. — The one-pion exchange nucleon-nucleon potential (OPEP)
is constructed in the framework of the static PS-PV theory of nuclear
forces, taking into account Orear’s data concerning the presumptive
spatial dimension of the quark confinement region. The little-bag model,
outlined by Brown and Rho, is developed on the basis of the conjecture
that the spherically symmetric meson source should be nonuniform.
The physical content of the chosen meson density is interpreted in terms
of a Pais-Uhlenbeck nonlocal model of the nucleon. It is shown that the
potential thus derived possesses realistic physical features (at least for
even-parity triplet states) without resorting to the ad hoc introduction
of the hard-core radius and to cutting-off procedures at short distances.

1. — Foreword.

It is often said that, as & man grows old, he turns back to those problems
that worried him in his youth; this is perhaps the reason why over the past
years my attention has again been attracted by the theoretical jungle which
proliferated in the years 560 and '60 under the stimulus of innumerable at-
tempts to construct the meson potential. None of them was conceived with
the aim of giving a clear-cut answer to the following questions (1): a) How can
a nucleon model be chosen with some hope of it being a correct model? b) How
can one avoid putting tremendous efforts into calculations on a model which
has no connection with reality? ¢) How can experimental data be used to dis-
card wrong models and enable the research to converge towards the correct

(1) H. J. LipxiN: Phys. Rep., 3, 173 (1973).
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one? To avoid discussing false problems, I have printed in my mind, as a
personal vademecum, the shocking opinion expressed by GOLDBERGER (2)
twenty years ago: « There are few problems in modern theoretical physics
which have attracted more attention than that of trying to determine the
fundamental interaction between the nucleons. It is also true that scarcely
ever has the world of physics owed so little to so many.... In general, in sur-
veying the field, one is oppressed by the unbelievable confusion and conflict
that exist. It is hard to believe that many of the authors are talking about
the same problem: or, in fact, that they know what the problem is ».

2. — Orear’s data, the Brown and Rho little-bag model and the nucleon-nucleon
potential.

Recent theoretical developments, stimulated by the construction of ex-
tended models of hadrons (), will probably disclose new perspectives to a better
understanding of the nucleon-nucleon interaction: so far, however, the utmost
implications of such models are still unexplored. A quark bag model for
nucleons (the so-called «little bag ») has been outlined by BrRowN and RO (4):
their concluding remark is that «the resulting theory looks very much like
the old Yukawa theory for a pion with a small distributed source, the source
being now described in terms of quarks ». Let us recall that (by using standard
notations) the nucleon-nucleon potential, deduced from the old Yukawa theory
for one pion with a pointlike source, reads

(2.1a)  Ulr) = Ugylr) + 8, Uplr) = Uy(r,-7,){(6,°6,) ue(r) + S,u,(r)},

(2.15') ug(r) = (L) {2 F(ur) — 4ad(r)}
(2.10") F(ur) = exp [— prljr = f(ur)/r,
(2.10) un(r) = (L) {3Jrs + 3jr* + 17} f(ur),
(2.1d) Uy = (ue2(3) (/2 M) g* = 0.249 g2 MeV

the pion-nuecleon coupling constant g* being an adimensional parameter: in
the older literature it was customary to omit in u (r) the delta-function, be-

() M. L. GOLDBERGER: Proceedings of the Midwest Conference on Theoretical Physics,
(1960), p. 50.

(®) J. Kogur and L. SusskiND: Phys. Rep. 8, 75 (1973); A. Cmopos, R. 1. JAFFE,
K. Jounson and V. F. WE1sskopPF: Phys. Rev. D, 9, 347 (1974); A. Cuopos, R. L.
Jarre, K. Jounson and G. B. Tuorn: Phys. Rev. D, 10, 2499 (1974); G. T. FAIrLEY
and E. J. SQUIrEs: Nuel. Phys. D, 93, 56 (1975); K. Jounson: Acta Phys. Pel. B,
6, 865 (1975); P. HasenrraTZ and J. Kuti: Phys. Rep. C, 40, 75 (1978).

(9) G. E. Brown and M. Ruo: Phys. Lett. B, 82, 177 (1979).
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cause it does not influence the wave function of the two interacting nucleons (*).
The pathological aspects concealed in (2.1) have bothered many theorists for
about forty years; the ad hoc introduction of cutting-off procedures at short
distances (%) is theoretically clumsy. The purpose of this note is to set up a
physically reasonable description of the one-pion exchange potential (OPEP)
which does not have a tensor divergence like 1/r® from the beginning, rather
than to remove it by a suitable fudge (the hard core of radius r,) after its ap-
pearance, and then extend such a fudge also to the even-triplet central part
of the potential, in spite of the fact that its 1/r divergence at the origin is not
in conflict with the existence of the deuteron bound state.

I shall attempt to construct a new OPEP taking into account that large-
angle proton-proton scattering experiments (¢) and the observed momentum
distribution of muon and hadron pairs (?) have been explained by OREAR (%)
assuming that the r.m.s. radius of the quark confinement region is, respectively,

(2.2) R,=(0.23 4-0.03)-10-* em, R,=(0.204 0.03)-10"*%cm.

BrownN and RHO have pointed out that the length R, can be congidered as
the r.m.s. radius of a uniform distribution of nucleon matter in a sphere of
radius

(2.3) Rzg i/ Mc,

“

where M is the nucleon mass. We shall conjecture that such a distribution is
spherically symmetric but nonuniform, and assume that its radial behaviour
can be tentatively described by the 3-parameter function (normalized to 1)

(2.4) o(r) = A(mi/dm) F(m,r) 4+ (1 — A)(m;/47) F(m,7r),

(*) The numerical values given in this note have been calculated by assuming
Me2=938.9 MeV and ue?=138.1 MeV.

(®) H. A. BeETHE: Phys. Rev., 57, 260, 390 (1940).

(8) J. HARTMANN. J. OREAR, J. VRIESLANDER, S. Conkrri, C. Hogvar, D. G. Ryan,
K. SHAHBAZIAN, D. G. StAIRS, J. TRISCHUK, W. FAISSLER, M. GETTNER, J. R. JOHNSON,
T. Kepuart, E. PorHIER, D. PorTER, M. TAUTZ, P. BARANOV and S. Rusaxov: Phys.
Rev. Lett., 39, 975 (1977); H. De Kerrer, E. Nacy, R. 8. Orr, M. REGLER,
W. ScumipT-ParzeEFaiLL, K. WinTER, A. Branprt, F. W. Busser, H. H. Disum,
G. FLtcer, F. NIEBERGALL, P. E. ScuuMacHER, K. R. ScHIFFERT, J. J. AUBERT,
C. Bro1rr, G. CorgNET, J. FAVIER, L. MASSONNET, M. VIVARGENT, W. BARTL, H. EICHIN-
GER, Cu. GorTFRIED and G. NEUHOFER: Phys. Lett. B, 68, 374 (1977).

() D. M. Karraw, R. J. Fisk, A. S. Ito, H. JostLEIN, J. A. ApPEL, B. C. BrOWN,
C. N. BrowN, W. R. Innzs, R. D. Keruart, K. Ueno, T. YamanovcHr, S. W. HErs,
D. C. Hom, L. M. LEpErMAN, J. C. SEns, H. D. SxYDER and J. K. You: Phys. Rev.
Lett., 40, 435 (1978); R. D. KEPHART: Phys. Rev. Lett., 39, 1440 (1977).

(8) J. OREAR: Phys. Rev. D, 18, 2484 (1978).
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where, if we use the notation (2.1b"), F(m,r) are Yukawa functions, A is an adi-
mensional unknown parameter and m; (¢ = 1, 2) are two unknown parameters
homogeneous (in units # = ¢ = 1) to the inverse of a length. The Compton
wave-length of the nucleon is #/Me ~ 0.21 fm; since the average of the central
values of (2.2) is 0.215 fm, we shall take into aceount Orear’s data by putting

(2.5) Ry~ R, = #|Me.

As is well known, general quantum-mechanical arguments lead to the con-
clusion that the interaction between two nucleons is spread out at least over a
distance of the order #/Mec: it is remarkable that such a length is found to be
very close to the r.m.s. radius of the conjectured quark confinement region.
A first relation among the three parameters (m,, m,; 1) is obtained by equating
the r.m.s. radius of (2.4) with the square of the Compton wave-length of the
nucleon: it is found that

1 A 1—12
:—2-—}—- .

2.
(2.6) 6M:  m? m3

Two other independent relations are needed in order to specify the density (2.4):
one of them will be derived from the prescription that the asymptotic behaviour
of the nucleon-nucleon potential coincides with that given by the old Yukawa
theory (sect. 4), while the other will be deduced from the deuteron ground
state (sect. 5).

3. — A Pais-Uhlenbeck model of the nucleon.

It is interesting to investigate preliminarily what the physical content of
the density (2.4), as concealed behind its analytical form, is (or might be).
The little-bag model assumes that pions exist only outside the bag: the pion
field is introduced so as to ensure the continuity of the axial vector current at
the boundary of the bag. The opposite point of view consists in assuming
that the pion field also exists in the interior of the bag. As a compromise be-
tween these two extreme points of view, I shall heuristically assume that a) a
field @, is coupled (with strength g,) to an unknown meson source &, sunk
in the nucleonic bag; b) the field @, interacts with an intermediate field @,
(with coupling constant ¢,) and ¢) the field @, interacts (with coupling con-
stant g,) with the pion field @,: thus the pion field is not directly coupled to
the source %, but only through the linking field @,.

Let us suppose that @, (¢ =1,2,3) are neutral and scalar fields. The
Hamiltonian of the nucleon system is # = ¢, 4 #,, where s, and J#, are
the unperturbed and, respectively, the interaction Hamiltonians. Let II; be

12 — Il Nuovo Cimenio A.
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the variables canonically conjugate to @,; one has

(3.1a) Hy= é”‘”’ Hyi = %f{n;r’ + (VD)2 + m} D3} dr,
(3.1b) Hy=— S P — 0.0, — ¢:D, D;,

where m,= u. Using the equations

(3.2) SHISD; = —IT,, S#3I,= &, =1I,,

where 8 indicates variational differentiation, from (3.1) one obtains the system
of coupled second-order differential equations

(3.3a) (D + mi) b, = ¢S+ ¢.9D.,
(3.3b) (O 4 m3) @, = 0. D1 + 9, D,
(3.3¢) (O + p2) &y = 9, D,

O being the d’Alembertian operator. From eqs. (3.3a), (3.3b) one deduces
the fourth-order differential equation

(3.4) (R—g3) D= gs(D + m}) D + 0.9,

where Q = ({0 -+ m})(O + m;) is the Pais-Uhlenbeck operator (*). The internal
logic of the model is expressed by the inequalities

(3.5) My>My>My=fo,  Gi>Ga> Gs;

since ¢, < ¢1¢s, it is a plausible approximation to neglect the former term on
the right-hand side of eq. (3.4). Let us suppose that the fields @, are time
independent and spherically symmetric and indicate with ¢.(r) the functions
describing their radial behaviour; furthermore, we make up for our complete
ignorance of the spatial features of the source & (experimentally not acces-
sible through the available accelerators) by resorting for its description to the
delta-function é(r). From eqs. (3.3¢) and (3.4) one obtains

(8.6a) (V2— p®) @s(r) = — gse(r)
(3.6b) {(V2 — mA (V2 — m}) — g} olr) = — G142 6(r),

(*) A.Pars and G. E. UBLENBECK: Phys. Rev., 79, 145 (1950); P. Bupini and L. FoNDA:
Nuovo Cimento 5, 666 (1967).
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V2 being the radial part of the Laplacian operator. The physical meaning of
eqgs. (3.6) is evident: the Klein-Gordon equation (3.6a) describes (in scalar
and neutral approximation) the radial behaviour of the pion field in the presence
of an effective meson source proportional to ¢,(r), the radial dependence of
which is governed by the Pais-Unlenbeck equation (3.6b). For r % 0 the latter
equation becomes

(3.7a) (L, + g)@s(r) = 0
where €, is the static part of the Pais-Uhlenbeck operator, i.e.
(3.7b) Q, = D* -+ (1/r) D* — (m} + m) V® 4 mim},

with D= d/dr.
Let us put g,(r) = y(r)/r; from (3.7) it is found that

(3.8) {D*— (m} + m3) D> + mim} + g3} y(r) =
the general integral of (3.8), satisfying the condition y(oco) = 0, is
(3.9) @ofr) = — glgz{ch(oﬁ”') + OzF(“z"')} =— g:1g.0(r),

where ¢, and ¢, are arbitrary constants of integration, F(a;r) are Yukawa fune-
tions and

(3.10a) of = }{m: 4 m} 4+ V(mi— mi?— 4¢3},

(3.100) o} = }{m + m}—V(m? —mi)*— g3} .

Assuming 4g; < (m? — m3)?, from (3.10) one gets oy = m, and o, = m,; the
density o(r), defined in (3.9), is normalized to 1 independently of the values
of m; and m,, provided

(3.11) ¢, = Mm?/4m), ¢, = (1 — A)(m3/4x) .

Thus one finds that o(r) has the analytical form of p(r), given in (2.4); according
o (3.6a), the effective pion-nucleon coupling constant turns out to be

(3.12) 9 =2019:0-

— A new OPEP.

Let us introduce the density (2.4) into the symmetrical pseudoscalar theory
with pseudovector coupling. To overcome serious analytical difficulties (a po-
steriori proved to be physically irrelevant), the static second-order nucleon-

12* —~ Il Nuovo Cimenio A.
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nucleon potential will be calculated as follows:
(4.1a) V(r) = (9/2M)*(v, %) (01 V{6, V) v(r),

(4.1d) o(r) :f@([r’—— ri) Glulr'— r'|) o(jr" — ryf) dr'ar”,

where r = |[r;— r,| is the internucleon distance and G = F is the Green’s
function for the pion field. The PS-PV coupling constant appearing in the
potential (4.1) has been deliberately indicated with the same symbol used
in the scheme that led us to relation (3.12): the PS-PV coupling constant
can be determined only by comparing theoretical predictions with experi-
mental evidences, while the illustrative relation (3.12) shows, in a naive way,
that the remote origin of the phenomenologically determined coupling constant
lies in the still unexplored meson clouds which are intertwined in the inner
regions of the nucleon structure.
To evaluate the function »(r) we put

(4.2) r—ri=2X, r—r,=Y, r—r'==2, r—r,=U;

the double volume element, suitable for a straightforward evaluation of the
integral (4.1b), is

(4.3) dr'dr’'= (1)) XYZdXdYdZdUdp,dp,.

The geometrical choices underlying the deduction of (4.3) are summarized
in the following relations:

dr' = X*dXsinegdoedf,, dr' = Y2dY sin aydoy dp,,

Uz =X*+}+r2—2Xrcosey, 242 =Y24+ U>—2UY cosay,
(4.4)
UdU = Xrsin o, deyy ZA4Z = UY sin o dots

dr' =(@1/)UXdUdXxdp, &' =QQ/U)YZdYdZdp,;
the ranges of integration are

X —rl<U<X +r, 0<Y< oo,

(4.5)
Y- Ul<Z<Y+ U, 0<Z < 0.
The radial function (4.1b) explicitly reads (¢, j = 1, 2)

(4.6) o(r) = Atoy(r) 4+ AL — Z-){”m(r) + '021("‘)} + (1 — A)2v5(r) ,
(4.7a) v,5(r) = (m;m5[dar) L,,(r),
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(4.7b) 1.,(r) _ff (m. X) dXT; U)au +ff m.X dxﬁ, av,
(4.7¢) JNU) = fu f(m, Y dYT; (4Z)dZ + f Hm, Y dYTfr(yZ
[ [/ 4 ¥-u

where, according to the notations previously adopted, f(m,r)= exp[— m,r].
It is found that &(m,) = mi/(m]; — u?) and

(£.8a)  0,(r) = EX(m)[F(ur) — F(mr) — {(mi — p*)[2m} f(m1)],

(4.8b)  v1a(r) - () = 2&(my) E(my)-

. [F(m-) — (;’Z; —4 2) F(myr) + (1’”-:_—”2) F(mlr)] .

1— My m; — m;

If we take into account that

(4.9a) (6:°V)(0,'V) = %{(01'02) Q6 + 31291‘} ’
(4.90) Q. =D*42/nD, Q. =D*—(1/r)D,

where I = d/dr, the nucleon-nucleon potential (4.1) becomes

(4.10) V(r) = Vo(r) + S Va(r) = (71'72){(0'1'0'2) Vo(r) -+ Si 1/’T(")} ’

where U, is given by (2.1d), and

(4.11) uv(r) = ,0(r), wro(r) =, v(r)

are functions characterizing the radial behaviour of the central and, respectively,
the tensor part of the potential.
Let us examine the first of eqgs. {4.11). Since

(412) Q. F(m;r)=miF(m;r),  LRcflmr)=mif(m;r)— 2m,F(m;r),

one obtains (m;= u)

3

(4.13) 0g(r) = D { (Afp) E(m;r) + Bif(mz‘"')} ’

i=1

miA? .

2mimiA(1 — A
Alz_ -+ 1 2 ( )

wHmi — ) (mi —m3)’

a

(my — u*y
mi(l — A)? 2mimy A1 — A)

A= — —
(1.149) CT T = =) mi— ml)
4, — M 2mimiA(1 —2) | myl—A)’
Pmi—p®) T i — ) mi— ) T (mi— )
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ms?
Bl 2‘u3(m§ _‘u2) ’
ma(l — A)?
(4.14b) B, = _2TZT2_ ,
w(my —p’)
B,=0

It is readily proved that the following relations hold independently of 2, namely

(4.15a) 4,4 4,4 4,=0,

1 -A-l AZ .A3 2B1 2B2
4. ) — —_— — —_—— =
(4.150) y(m§+m§+yz)+mi+mg 0.

From eq. (4.15b) it follows that the central potential possesses the property
(4.16) f V) dr=0;
the same property is also possessed by U,(r) given in (2.1).

To preserve for ur > 1 the asymptotic tail of V,(r), which is experimentally
well established, we require that the condition

(4.17) A, =1

should be satisfied. From the third of eqs. (4.14a) one obtains the second-
degree equation in

_ 2mi(mi—p*) A
ui(my — ms)

(2m; — p*)(m3 — p*)
pA(mi— m3)*

(4.18) A2

+ =0;

the only physically meaningful solution of eq. (4.18) is
(4.19) A= Amyy my) = (mi— p*)[(m] — m3) .
As required by the logic underlying the model, one has
(4.20) Moo, mg) =1

it follows that in the limit m, —> co the central part of the new OPEP coincides
for r > 0 with the prediction of the old PS-PV Yukawsa theory. The adimensional
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coefficients (4.14) of the function (4.13) take the form (m;= u)

him (Y o 2,

m; — m; w(mi—m3)
2 P zmz(mz —u?)
(4.21a) — e Wy —p)
A= = m) Lemi—my
A,=1,
(4.21b) A, +4,+1=0,
B, _ milmi— )
YT 2pi(mi—my)’
5 2 2
4.21c) __ ma(my — )
( Be 2u%(m3 — mz)*’
B,=0

The dependence of the central potential coefficients (4.21) on m, and m,, cor-
related by Orear’s constraints (2.6) in the intervals specified in (5.2), is shown
in table I.

TasLe 1. — Numerical values of the ceniral coefficients (4.21) (43=1; B;=0) as func-
tions of the parameters m, and my, correlated by Orear’s constraint (2.6) in the intervals
specified in (5.2).

my my —4, 4, —B, —B,
1.501 11.10u 1.086 0.086 703.733 <10-8
2.00 8.33u 1.539 0.539 320.754 0.011
2.50p 6.664 3.688 2,688 195.618 0.176
3.00u 5.55 15.179 14.179 165.073 2.045
3.50p 4.76u 130.253 129.253 244,295 27.275
4,00 4.16p 64 768.486 64 767.486 5958.722 4505.479

The physical content of V (r) becomes more evident by writing the radial
function (4.13) in the form

(4.22a) vo(r) = (L p®) {2 F(ur) — 4md(r)},
(4.22b) afr) = — (u}dn) 3 {(4:fw) F(m,7) + Bif(m;r)} ;

the comparison of (4.21) with u,(r), given in (2.1b"), shows that the modifi-
cation of the central OPEP, induced by the source (2.4), consists in replacing
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the contact interaction term with the function d(r). Because of the spatial
spreading of the delta-function, the Fourier transform (instead of being equal
to 1 for all g) is

(4.23a) 8(q%; my, my) =fd(r) exp [iq-r]dr,

2 2 3
(+.23) @ ) = —gl{qz Tl T mfiz} ’
(4.23¢) 8(05 my, my) = $(q%; oo, mz) =1,  8(co; mi, m3) =0;

the result expressed by (4.23) has been eagerly, but unsuccessfully, sought for
in the past. Since delta singularities are trivially brought about by the ap-
plication of the Laplace operator to Yukawa functions

(4.24) V2f(m;r) = mi F(m;r) — 4ad(r) ,

their cancellation in (4.13) is due to the Hulthén functions appearing in v(r):
this is the reason why we have defined in (4.9b) the operator Q, simply as
the radial part of the Laplacian. The emphasis put in the past upon the con-
tact interaction (1°) seems nowadays a naive attempt to find a clue which might
make up for the paradoxical drawback of the old PS-PV theory (the theory
as was formulated conflicts with the existence of the deuteron bound state!),
without resorting to a therapeutical cutting-off of lengths at short internucleon
distances.

Let us now work out the analytical expression of the function v,(r) charac-
terizing the radial behaviour of the tensor potential V (r). As a consequence
of the transformations

(4.25a) Q F(m;r) = {3/r% + 3m,fr* + mi[r} f(m,r),
(4.25b) Qqr f(mir) = mif(m;r) + mF(m;r),

it is convenient to define the function

1(3 3m;  3mi—u®  my(m;—u’
(4.26) wT(m,-r)zl—ﬁ{T—S—l— s + 27” + ( 5 ”)}f(mfr)-
It is found that
3
(4.27) op(r) = 3 Ciwp(m;r),
i=1

(19 M. M. Lfvy: Phys. Rev., 88, 72, 725 (1952); H. A. BETHE and F. pE HOFFMANN:
Mesons and Fields, Vol. II (New York, N.Y., 1955).
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where the adimensional coefficients C; are given by

mi A 2mimiA(l— A)

Or= =t — @ T (md— ) (mE—mk)’

. my(1 — A)° 2mimiA(1l — A)

4:.2 C = 2 - 2 2 2
(+.28) P T Y (mh— ) (i — m?)
miA® 2mimiA(l — A) my(1l — 4)*
C, = i 1Sk
e — @ i — ) i — ) T ()

It is readily proved that the coefficients (4.28) possess the property, inde-
pendent of 4,

(4.29) 0,4+ 04 C,=0.

The analytical form of C,; identifies with that of A, given by the third of
eqs. (4.14a). Thus the condition C;=1, which for ur>1 preserves the asymp-
totic behaviour of V (r) in agreement with the old Yukawa theory, leads to
the result (4.18), already obtained through the mathematically identical con-
dition (4.17). Substituting (4.19) into (4.28), one obtaing

_ mi\ 2mi(m; — p’)
= () [+ i)

(£30) 0= () [rizt) 1],

1—mz) [ mi(mi—m3)

The dependence of the tensor potential coefficients (4.30) on m; and m,, cor-
related by Orear’s constraint (2.6) in the intervals specified in (5.2), is shown
in table II.

TaBLE II. — Numerical values of the tensor coefficients (4£.30) (C;=1) as functions of
the parameters m, and m,, correlated by Orear’s constraint (2.6), in the intervals specified
n (5.3).

My my — 0 — 0,

1.50u 11.10 1.038 0.038
2.00u 8.33 1.126 0.126
2.50u 6.66 1.407 0.407
3.00u 5.55 2.424 1.424
3.50 4.76 10.279 9.279

4.00u 4.16 3908.172 3907.172
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The behaviour of (4.26) for » — 0 is

(4.31) limw(m;r) — 1

it follows that, at short distances (m;r< 1), the divergence of V (r) like 1/r3
and 1/r are suppressed because the coefficients (4.30) satisfy the relation

(4.32) G+ C+1=0;

the suppression of the divergence like 1/r% at the origin occurs also in the old
Yukawa theory. The unexpected result is that the radial tensor function of
the OPEP, modified by the meson density (2.4), vanishes at the origin linearly
with 7, i.e.

(4.33a) lim v,(r) — apr
3
(4.33b) a=— Y {mi2m? — p?)/4n*} O,
i=1
(4.33¢) v,(0)=0.

This property of V.(r) compels one to a critical rethinking of many current
opinions based on the results obtained by fitting procedures used to explain
the deuteron ground state and to extract information from the nucleon-nueleon
elastic-scattering data. Two generations of physicists have been worried by
the unphysical implications of the 1/r® divergence of the old PS-PV tensor
potential. The theory of nuclear forces had gained nothing from the attempts
to suppress such a divergence or to reduce it to 1/r (for instance, mixed theories
of the Moeller-Rosenfeld type, controversial relativistic calculations of second-
and fourth-order potentials, ete.; in this connexion it is worthwhile mentioning
a paper by NoYES and PANDYA ('1)): only Bethe’s paleonuclear therapy has
survived, but the problem is still unsolved. This is probably due to the fact
that, as shown by the model outlined in this note, the problem simply does
not exist!

5. — The Fredholm equation for the deuteron S bound state.
In order to compare the predictions of the new OPEP with the experi-

mental data, we need to know the parameters (m,, m,; 1) characterizing the
density (2.4). It has already been pointed out that a first relation among them

(1) H. P. Noves and S. P. PaNDYA: Phys. Rev., 102, 269 (1956).
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is given by (2.6). A second relation is obtained by substituting (4.14) into
(2.6); it is found that

(5.1) My My = \/gM,u .

Since m, > p and m, > m,, the intervals of variability of m, and m, are

(5.2) u<my<(VEMu)=4.08u, 4.08u<m,<V6M =16.64u;

m, is evaluated as a function of m, in tables I and II. A third relation is re-

quired to determine the numerical values of m, and m,: we shall deduce it
from the S-state of the deuteron.

The Schrodinger equation for the deuteron S-state in momentum space is

(5.3) (p°+ P ¥(p) = 4°[H(lp— q) Pl@)dq,

where p} = — MB,/fi> = 0.110u? (B, = — 2.228 MeV being the deuteron binding
energy) and

(5.4) A2 = MU A2 = pe(M[F?) (/2 M)? g* = 0.036u2g? ;

the kernel of eq. (5.3) is the three-dimensional Fourier fransform of v,(r),

(6.5a) H(lp— q)) = (27)*[vq(r) exp [i(p— @) r)dr,

1 8 A, 2um; B, }
5.55) H(|lp—q|) = _ _ )
(6.55) (Ip—qi) Wugl {m + lp—-q|2+(mi + |p—qf?)?

Substituting (5.56) into (5.3) and integrating over the angle between p
and g, one obtains the one-dimensional, homogeneous, singular Fredholm
equation

@

(5.6) ¥(p) = 4°[ E(p, 9 P(@) g,

L]

where the new kernel is unsymmetric:

q 3 m; 4 (p — 9)2}
G0 Hno= A “{m? Torol T

4q® 2 m,; B,

T a(p® + p%); {m; +(p —@*Hmi + (p + 0%}

As is well known, eq. (5.6) possesses one, and only one, continuous solution
given by ¥(p) =0, unless the parameter A® assumes certain special values.
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The problem in that of finding the characteristic constants (12) of the kernel
(5.7), which are the roots of Fredholm’s determinantal equation

(5.8) AA) =1+ 3(— 1)Y(Sa/nl) A% =0

n=1

this is equivalent to saying that for given values of m, and m, the PS-PV pion-
nucleon coupling constant ¢ must be a characteristic constant of (5.6) or,
vice versa, that for a given value of g2 the parameters m, and m,, correlated by
the independent relation (5.1), must be determined so that eq. (5.8) is satisfied.
This mathematical aspect of the problem is fundamental: if it is ignored, the
S-state of the deuteron can also be described with physically meaningless
potentials, as is abundantly shown in the literature. The coefficients 8, are
determined by the recurrence relations

©

(5.9a) 8. = f T.alg, ¢)dg,

]

(5.99) To(p, 4) = 0 K(p, ) — n[ K(p, ) T als, 0) s,

where S, =1 and, therefore, T,(p, ¢) = K(p, ¢). From (5.7) one has

1 29} Sua'B:
(5.10)  K(g,0) = 5rmrom 2 [Af ln {1 T (m) } F it 4q2)] '

Only §,= 8,(m,) can be determined analytically; it is found (*3) that

1 e 2po| , _ 2u*B;
(5.11) Sy(my) = 2”2i=1[poAfln {1 + m} Fondm. T 2p0))

The evaluation of S, for » > 1 is complicated and time consuming; it has
been carried out up to » = 3 (the coefficients 8, corresponding to »n > 3 have
been found to be negligible). Consequently, the determinantal equation (5.8)
has been reduced to a cubic equation in A2, i.e.

(5.12) Sy(my) A® — 38y(my) A% - 68, (my) A2 — 6 =10.

The analyses of the data concerning the nucleon-nucleon interaction localize

() W. V. Lovirr: Linear Integral Equations (New York, N.7Y., 1950).
(13) I. 8. GrapsuTEYN and I. M. Ryzuik: Tables of Inltegrals, Series and Products
(New York, N.Y., 1965).
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the value of the pion-nucleon coupling constant approximately within the
interval

(5.13) g2 =15.0 4-3.0;
it follows that the uncertitude on A2, defined in (5.4), is
(5.14) A2 = (0.540 + 0.108) u2.

The parameter m, has been determined on the basis of what one might call
« the deuteron § bound-state approximation », ¢.e. by equating (5.14) to the
single positive real root of eq. (5.12); it has been found that

(5.15) My = (2.45 + 0.39) s .

Attempts have been made to solve eq. (5.8) by adopting the more realistic
8 4+ D bound-state description of the deuteron. Puzzling mathematical dif-
ficulties have so far prevented the achievement of this goal; in spite of this
failure, it has been possible to collect arguments for concluding that the § - D
deseription modifies the result (5.15) by less than ~ 59,

6. — The g>-dependence of the radial form of the new even-triplet OPEP.

From (5.15) one obtains, using eqs. (5.1) and (4.14), the value of m, and,
respectively, the value of 2. The potential coefficients (4.17) and (4.27), cal-
culated with the parameters m, and m, thus determined, are strictly related
to the OPEP behaviour in even-parity triplet states. It is by no means obvious
that the values of such coefficients are physically meaningful also for the de-
seription of the nucleon-nucleon interaction in other states, which do not come
into play in the description of the deuteron ground state (even-parity singlet
and odd-parity singlet and triplet states). For instance, a variation interval
for m, different from (5.15) could be determined for singlet-even states by
fitting the zero energy limit of the effective range theory:

(6.1) Lim {tg do(k)/K} = — ay,

where (k) is the asymptotic § singlet phase shift, k is the momentum in the
centre-of-mass system and a, is the experimental Fermi length (14). Similarly,
from the available information on the elastic nucleon-nucleon scattering data,
it is possible to determine m, both for odd-singlet and odd-triplet states. In

(*%) J. M. Brarr and V. F. WEisskorF: Theoretical Nuclear Physics (New York,
N.Y., 1952).
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conclusion, from (4.10) one can deduce four one-pion exchange potentials,
each one describing the nucleon-nucleon interaction in even- and odd-singlet
and triplet states: this possibility discloses theoretical perspectives which are
more significant than those originally offered by the phenomenological nucleon-
nucleon potentials of Gammel, Christian and Thaler (**). This problem will
not be discussed in this note in which we shall confine ourselves to the even-
triplet OPEP only.
The coefficients (4.21) and (4.30), as functions of g%, are

(6.2a) ¢*=12.0: m,=8.08z, m,=2.06u, A=1.053,

A,=—1.659, B, =—297.082, (,=—1151,

(6.2b) A,= 0.659, B,=— 0.016, ¢,= 0151,
'A3 = 1 H B3 = 0 9 03 = 1,
(6.3a) g:=15.0: m; = 6.79, my == 2.4by , A=1.125,

A,=—3.301, B,=—202400, C,=— 1364,

(6.3D) d,= 2301, By—— 0137, Ci= 0.364,
A3 = 1 y B3 = 0 5 03 = 1;
(6.4a) ' =18.0: m,—B5.86u, my=2.84u, A=1269,

A, =—9118, B,=-—166.865, C,=—1.924,
(6.4b) A,= 8118, B,=— 0945, (,= 0924,
A= 1, B, = 0, 0= 1.

The g*-dependence of the radial form of V(r) substantially modifies the fitting
procedures based on the search for a phenomenological correlation between
g* and the radius r_ of the hard core. It is worthwhile noting that for ¢g* = 12.0
the value of the parameter m, is approximately equal to the inverse of the range
of the two-pion exchange potential, while for g2 = 15 the value of m, prac-
tically identifies with that of the inverse Compton wave-length of the nucleon.
To visualize quantitatively the radial behaviour of the potential we give in
table III the roots of the equation v.(r,) = 0, the internucleon distances 77
and 7T corresponding to the maximum of v, (r) and, respectively, v,(r), and the
values of the maxima. It is remarkable @) that the maximum of v,(r) lies
in the pion cloud, at an internucleon distance approximately equal to the

(15) J. L. GammEr, R. 8. CEr1stIaN and R, M. THALER: Phys. Rev., 105, 311 (1957).
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TaBLE I11. - Roots of the equation vy(ry) = 0, internucleon distances 1$¢ and r7 corre-

sponding to the mazimum of vo{r) and, respectively, v (r) paramelrized as functions of ¢%;
the values of the maxima are also tabulated.

g Mo wry ve(rd) i va(r7)

12.0 0.726 0.949 0.362 0.191 33.902
15.0 0.789 1.076 0.322 0.191 29.513
18.0 0.836 1.098 0.307 0.191 14.928

Compton wave-length of the pion, and b) that the maximum of v (r) is sunk
into the nucleonic bag, at an internucleon distance (practically independent
of g% larger by a factor ~ 1.27 than the Compton wave-length of the nucleon.
The radial functions v,(r) and v,(r) are plotted in fig. 1a, 1b; it is seen that

T T T T T T T T
\ new central OPEP
041 \ \ gz=12.0 N
g4 =150
N g =180
0 + } 1 1 1 il
—0.41
old central OPEP
B =04 .
—0,8 L -
—1.2f .
— ]’6 - .
L | I 1 1 1 | ) L
0 04 08 1.2 16

ur

Fig. la. — Comparison of the radial functions uy(r) and vy(r) corresponding to the
old ( ) and to the new ( —) even-triplet central OPEP, respectively: both of
them are plotted with negative sign. The radius of the hard core of the former
has been indicatively assumed to be ur,= 0.4. The g2-dependence of the form of vy(r)
is clearly exhibited. The finite values of vy(r) at = 0 are 1) g2= 12.0: v4(0) = — 308.1;
2) g%=15.0: v,(0) = —218.3; 3) ¢*=18.0: v4(0)=—197.2.
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10.0- ' ‘ ’ ' new tlensor 'OPEP , 1
g2 =12.0
L 2 _i50 ]
g’ =180
0 } + + t t

- 100

-200

—300

old tensor OPEP
—400 ur, =04 -

Fig. 1b. — Comparison of the radial functions u.(r) and wv.(r) corresponding to the
old ( } and to the new ( ) even-triplet tensor OPEP, respectively: both of
them are plotted with negative sign. The radius of the hard core of the former
has been indicatively assumed to be ur,= 0.4. The g*-dependence of the form of
vo(r) is remarkable. The values of the parameter o, defined in (4.30b), are 1) 2= 12.0:
a=—2432.7; 2) ¢2=15.0: a=—1427.7; 3) g®*=18.0: x=—1089.4.

both the central and tensor parts of the potential exhibit a longer tail than
the Yukawa one: this is primarily due to the non-Yukawian (exponential)
term appearing in (4.84¢) and to the mathematical implications brought about
by the transformation (4.1a¢) which was used to obtain a realistic PS-PV po-
tential from an unrealistic neutral and scalar scheme.

The central potential V (r) is repulsive for r <7, and attractive for » > r,
for the nucleon-nucleon states characterized by a negative eigenvalue of the
operator

(6.5) O; = (6:°62) (7,1 T2) .

For example, by assuming g2 = 12.0, the finite value of V (r) at the origin,
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for an even-parity triplet state, is

(6.8) Ve(0) = — 3T, i {imu)A,+ B} ~2.94Mc2.

i=1

Thus in an even-triplet state the potential V (r), however free from artificial
core constraints, simulates at distances r <7, a radial behaviour, which it
would clearly be misleading to ascribe to a presumptive existence of a soft
core. Because of the influence of the source (2.4) the potential V (r) deviates
from the conventional even-triplet central OPEP in the region in which the two-
pion exchange potential and recoil effects are expected to become effective.
The dominating repulsion at short distances (r << r,) practically absorbs the
contributions of higher-order central potentials and conceals or minimizes
more complicated effects which, however, could not be correctly accounted
for in a static pseudovector coupling approximation. It is amusing to note
that the simulation of core effects occurs in a rather straightforward way in
the central potential, but not in the tensor oue, although the hard core was
originally introduced only in the latter in order to ensure the existence of the
deuteron bound state.

The phenomenological correlation between g2 and the hard-core radius
r, searched for in fitting procedures based on the old OPEP is replaced in the
new OPEP scheme by the g>-dependence of the form of the radial behaviour
of the central and tensor parts of V(r). Clearly, the coupling constants deter-
mined in the two cases are not equal: let g) be the coupling constant determined
(together with r ) in the former case. Let us define in three-dimensional space
the n-th order moments of the functions u.(r) and w.(r) truncated at the
phenomenological hard-core radius r (for the sake of simplicity, we make no
distinetion between hard cores related to either even-triplet central or tensor
interaction). Apart from unessential constant factors, they are (z = ur)

(6.7a) M = |z 2y () de, ME :J‘x"“uT(w) dx,

(2] Ze

where x, = ur,. The corresponding n-th—order moments of the functions v,(r)
and v (r) are

(6.7b) NE :J.x"“vc(m) dz, N :fx"“ v (@) dir .

0 o

A clue for understanding the link between the predictions of the old even-

triplet OPEP and the new one is given by the fact that the following relations
hold:

(6.8) G M =gNC, Gl =gNT;
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for n = 0 the relation g;.#, = g°4", is not true, because the cut-off on u(r)
prevents the property (4.16) from being valid also for U(r), as happens in the
old Yukawa theory with the contact interaction term. Let y = g*/g;; for 42
and ¢ included in the interval (5.13) the ratio y possesses a rather large interval
of variability

(6.9) 0.667<y<1.500,
which ensures the validity of equalities (6.8). The peculiar role played in

the tensor interaction by the hard-core radius r, appears clearly by inves-
tigating the equality

(6.10a) ME=yNT,
(6.100) My =3[F@)dz+ (4 +2)f(a,),
(6.10¢) A3 = 3{In (myfu) + C;1n (myfm,)} 4

+ (3 j2m) — (Bu[2){(A/my)* — (1/m,)%} C.— §.

Let us assume ur, = 0.354-0.05; it is found that

(6.11) T = 5.501 + 0.424

(6.12a) ¢?=12.0: #T=5.360, y=1.260-£0.079;
(6.12b) ¢>=15.0: #T=5312, y=1.035 4 0.080;
(6.12¢) g*=18.0: #T=5720, y=0.962 4 0.074.

To test the wvalidity of properties (4.33), I have undertaken the cal-
culation of the quadrupole moment of the deuteron. Let ¥ (r) and ¥,(r) be
the radial wave functions for the § and D triplet states; the coupled second-
order differential equations to be solved are

(6.130) W (0) — {0s(0) — 1} (O) = myun( D W(0)
(6.130)  W,(8) — {0,(0) — 204(0) 4- 6072 — ,} W (O) = 1, wn(O) (D)

where { = Ar, A being defined in (5.4), and
(6.13¢) n = B,/3U,, N=—V8.

Preliminary results indicate that the new even-triplet OPEP is beautifully
fit to reproduce the experimental value of the quadrupole moment of the
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deuteron consistently with the expected D-state probability. This matter
will be discussed in a forthcoming paper. Calculations of the fourth-order
contributions to the new OPEP are in progress: the form factor of the pion-
nucleon vertex is described as the three-dimensional Fourier transform of the
density (2.4) with the parameter specified by (4.19) and (5.1), i.e.

(6.14) 6l mt) = U

(6.150) a(m?) = m4(m* — p2) (m* — 6> M),
(6.15b) b(m?) = 6t (6 M* — m?)[(m* — 62 M),
(6.15¢) ¢ = 6ur M2,

(6.16) G(0, m?) = G(g?, o0) =1,

where the parameter m = m,, varying in the interval specified in (5.2), has
to be determined, together with g% from the experimental data.

The OPEP scheme developed in this note shows that the phantomatic
hard core of radius r_ i3 a conceptually wicked trick invented (and, unfor-
tunately, taken too seriously) in order to explain the deuteron ground state
and the low-energy nucleon-nucleon elastic-scattering data, using the un-
realistic potential predicted by the old PS-PV theory. According to the new
OPEP, the pion-nucleon coupling constant g2 and only one of the parameters
m, or m, have to be determined from the data: all the coefficients of the po-
tential (4.10) are g2-dependent consistently with three experimental prescrip-
tions: a) Orear’s data (sect. 2), b) the asymptotic coincidence of the new OPEP
with the old one (sect. 4) and ¢) the deuteron binding energy (sect. 5). Clearly,
the surreptitious parameter r, has nothing to do with the structure of the
nucleon. The identification of r, with an intrinsic parameter of the nucleon
structure, initially prophesied by BETHE, was fallaciously considered trust-
worthy also as a consequence of a serious misinterpretation of Jastrow’s
analyses (1¢): this has strongly contributed to disbanding the theory of nuclear
forces and to creating (with the help of a critically unrestricted use of Tamm-
Dankoff and other, more sophisticated, methods) the « unbelievable confusion
and conflict » drastically pointed out by GOLDBERGER (sect. 1).

* %k ok

I am very much indebted to Dr. L. SALVADORI for taking care of the pub-
lication of this note.

(%) R. JasTrROW: Phys. Rev., 81, 165 (1951).
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Note added in proofs.

I thank Dr. P. F. BorrieNoN for calling my attention, after the completion of
this work, to the paper by D. VeEntTo, M. RHO and G. E. BRowN: Phys. Lett. B, 103,
285 (1981).

@® RIASSUNTO

8i costruisce il potenziale di scambio internucleonico di un pione (PSIUP) nell’ambito
della teoria statica PS-PV delle forze nucleari, tenendo conto dei dati di Orear relativi
alle presunte dimensioni spaziali della regione di confinamento dei quarks. Il «little-
bag model », delineato da Brown e Rho, & sviluppato sulla base della congettura che
la sorgente mesonica, a simmetria sferica, non sia uniforme. I1 contenuto fisico della
densitd scelta ¢ interpretato in termini di un modello non locale del nucleone inteso
alla Pais-Uhlenbeck. 8i mostra che il potenziale che ne deriva possiede aspetti fisici
realistici (per lo meno negli stati pari di tripletto di spin) senza ricorrere all’introdu-
zione ad hoc del raggio del nocciolo impenetrabile e a procedimenti di taglio alle piccole
distanze.

HoBblii NOTEHNHAT ¢ OJHO-HHOHHLIM OOMEHOM.

Pestome (*). — KoHCTpynpyercs HyKJIOH-HYKJIOHHBIM IIOTEHIMAll C ONHO-DHOHHBIM O6-
MEHOM B paMKax craTmyeckoii PS-PV Teopuu simepHBIX CWJI, yIMThIBas JaHHbe Opwupa,
Kacaloldecs MPEAIoaraéMbX POCTPAHCTBEHHBIX Pa3MePOB 00JIaCTH yIEPKaHIA KBApKOB.
Pa3BuBaeTCcAd MOZIEIb MENIKOB, omucaHHas BpayHoM m Po, Ha OCHOBE IPEMIIONOXKEHHS,
41O CEPHYECCKH CHUMMETPUYHBIA ME3OHHBIH HCTOYHHK JOJDKEH OBITE HEOTHOPOIHBIM.
dU3UIECKOE COMAepXaHWe BhIOpAaHHON ME30HHOM IUIOTHOCTH HHTEPIPETHPYEICS B TEP-
MMHAX HeJIoKalnpHOM Mozemm Ileiica-YnenOeka HykinoHa. IToxasbIBaercs, YTO IIPEXIO-
JKeHHBDM MOTEHIMAN O0IafaeT peanucTHYHBEIMA (GU3MYeCKMMH CBOMcTBamMu (10 kpaiiHeit
Mepe, ISl TPUIUIETHBIX COCTOSIHUI C MOMOXHATENLHON YETHOCTEIO), Ge3 BBENEHMs panuyca
OCTOBa M mpouenyp oOpe3aHHs Ha MajbIX PAacCTOSIHMSX.

(") Iepesedeno pedaxyueil.
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