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In particle physics the axial vector current, together with the vector current, has
played an important role in current algebras (!) and chiral dynamics (2). Does it play
any role in other branch of physics? In this letter we argue that the axial vector cur-
rent, along with the energy-momentum tensor, of the spin-} baryons and leptons may
influence the space-time structure through the spin angular-momentum tensor contri-
buting to gravitational sources. In high-energy physics both the mass and spin of the
hadrons are dynamically incorporated into the concept of Regge poles which has been
successful in analysing the scattering data. On a macroscopic scale, however, the spin
will play no significant role as well ag the electric charges. Therefore it appears quite
reasonable that Einstein’s macroscopic theory of gravitation lets the mass, or the stress
tensor, of macroscopic bodies alone be a unique source of gravitation and at the same
time lets it be a sole agency in generating a curved space-time. If we take such a micro-
scopic viewpoint as that by which gravitation arises through individual nucleons and
electrons, or more generally spin-} baryons and leptons, straightforward extrapolation
of Einstein’s idea to the realm of particle physics would not be justified. In thiscircum-
stance we would rather think that the mass and spin, or the energy-momentum tensor
and spin angular-momentum tensor, are both contributing to gravitational sources
and hence have influence on the space-time structure.

In order to avoid unnecessary confusion we emphasize the macroscopic nature of
Einstein’s gravitational field equations. The stress tensor of macroscopic bodies ap-
pearing therein as a source tensor of gravitation is represented by macroscopic observables,
for example, the energy density, the fluid velocity and the pressure in the perfect-fluid
model of a star. This stress tensor has nothing to do with the energy-momentum tensor
of individual hadrons and leptons, except for that of the electromagnetic field which
has a macroscopic and classical limit. Hence it would be incorrect to judge our theory to
be developed below as an alternative theory to Einstein’s. It must be remembered that
two theories stand on a different scale, one microscopic and the other macroscopic, and
that a relation between two could be established by taking the macroscopic limiting

() M. GELL-MANN: Phys. Rev., 125, 1067 (1962); Physics, 1, 63 (1964).
(*) J. SCHWINGER: Phys. Lett., 24 B, 473 (1967); Phys. Rev. Lett., 18, 923 (1967).
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procedure of our theory. Now we shall see how our hypothesis proposed previously
nay be formulated and how a resulting theory may be reduced to Einstein’s theory by
such a limit.

Let L = L, + L, be a total Lagrangian for a system consisting of a spin-} particle
and the gravitational field, where L, denotes a material part involving arbitrary grav-
itational interactions and L, an arbitrary free gravitational part. It is well known that
the gravitational variables are not the metric tensor in this ease but the tetrads, b,/(x),
or their inverse by, (x), where the Greek index refers to a Riemann space and the Latin
index to the local Lorentz space. See our previous papers for further details (34).
First we are going to construct L, by demanding its action integral be invariant under
A) a general co-ordinate transformation, B) a Lorentz transformation (with respect
to the Latin index), and C) L, of quadratic form in the first derivatives of the tetrads.
The most general form of L, to meet these demands was already given partly in ref. (3)
and here perfectly given with 4 arbitrary real coefficients:

(1 Lo = baTy, + BV + vAL + nVeds)
where the Lorentz tensors are invariant under a general co-ordinate transformation,

Tklm = (%)(Oklw + Olk’m) + (%)(amk Vl + 6‘ml Vk) - (%) 6kl Vm 4

(2} Vk = Ymmk »

and
A = (4/6) &m0 Ovinn

are the irreducible components of 0Oy, = by by (bey , — by, ). We use the notation,
b = det (b;,). The above Lagrangian can be rewritten into a more convenient form as

(3) Ly = Ly/2:2 + b{(a + B) Vi— (941 A} + n Vi A},

where L= +v/-~gR (R = the Riemann scalar) is the Einstein’s free gravitational
Lagrangian, and we adjust an overall coefficient with the Einstein’s gravitational
constant as 3« = »~2 and introduce the notation, « —4y/9 = A-2. Note that in (3) we
suppressed a four-divergence arising from the Riemann scalar because it does not af-
fect the field equations. From (3), though L, is yet unspecified, we can derive the field
equations of gravitation:

(4) le — w2 By = —xTy,

where the first member on the left is the well-known Einstein tensor, now rewritten in
terms of the tetrads, G, = b(E,, — (}) 0, E),

(6) By, =-— (bm'quzm),,u + {(%) Opin Frmn — Cmnkanl} + 5kz{the second terms of (3)} >

(6) Fklm = 41){(0! + ﬂ) 6k[l Vm] + (3@/8’12) Extmn A'n + (77/2)(619[1‘4-771] - (7’/6) Exlmn Vn)} ’

(*) K. HavasHr and T. NAgRANO: Progr. Theor. Phys., 38, 491 (1967).
(*) K. Havasui: Lett. Nuovo Cimento, 5, 529 (1972).
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and the energy-momentum tensor is defined as a source tensor of gravitation with
respect to L, yet unspecified:

(7) Ty=— (SLM/Sbku)bL” .

Here symbol 8/3b;, means taking the Euler derivative with respect to the inverse tetrads
Observing that the second terms in (5), enclosed by curly brackets, are symmetric in %
and 1 (this can be proved by using the irreducible tensors (2)), we decompose the field
equations info the symmetric and skewsymmetric parts:

(8) G — By = — #* T »

9 " (bm'uF[kl]m),u = T[kl] s

where parentheses enclosing indices mean symmetrization and square brackets mean
antisymmetrization. Making use of the invariance property B) mentioned previously,

we can derive the generalized tetrode relation between the antisymmetric part of the
energy-momentum tensor and divergence of the spin tensor:

(10) Tkz_Tzk:S”kz,M,
where
(11) S'ukl = (aLM/awlu)(’LSkl) 4 'T" (aLM/abmy,y)(iSkl)mnbnv .

Here 8, is the spin matrix; for a spin-} particle Syu= (ypy:— y:1y:)/4¢ and for the
tetrads (Sp)mn = —1(0xm O — OxnOrm). Formula (10) can be easily obtained from
eq. (2.22) of ref. (3). Assuming the boundary condition that there is no gravitation in
the absence of the nucleon’s spin, we can integrate (9) with (10) only to find

(12) Ekl]m = (‘}) Smkl s

where S,.,; = by, S - Next we turn our attention to the remaining free parameters,
B, v, and 5. Can they take arbitrary values? To answer this question, we make use
of the weak-fleld approximation specified by

(13) bky—> (5km + Qe «

It is not necessary in this approximation to distinguish Greek index from Latin index.
1t follows from (8) and (9) that

(14) Dskl + 2o + B)(0, 0, — 5kzD) S + (5/3)77”1%7»7'(1: O 0; Amp = — "T(kn s
(15) DAM — (/3) A e 01105 A = — ATy

where we have used the new linearized variables

%81 = gy — (3) Ori G »

Mg = ayy ,
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together with the divergence-free conditions &,8;;,= 0= 8,4;,. Thus the parity-vio-
lating term 77V, 4, in L; makes both sets of field equations coupled each other. We
shall set # = 0 s0 as to let each set of field equations closed in itself. Thus one may
find the retarded solution to (14) with the absence of the last term on the left-hand
side (5):

T t—|lx—yl|, 1— 386, T m
(16)  Sulor, 1) =1 fd“’y et [ yllj)_;(f/ D Tom |
ol — ] — [y —
L & J‘J’daydazakaﬂ’mm(ct lx—y]—ly z[,z),
(47)* 1 —3¢ lx—ylly — 4|

where the argument of T, appearing in the first integral is T,,(ct— | —¥], ¥) and
& = x*(o + p). The first term in §,; represents the retarded solution to the usual wave
equations; gravitation propagates on the backward light-cone. On the other hand
the second term implies that gravitation propagates imside the backward light-cone
to its vertex, thus violating Huyghens’ principle, however small & might be. We shall
gset o« + = 0. From (6) we obtain the completely antisymmetric tensor

(17) Fyim= (3/24%) bieyypn A,
and hence from (12) we get upon multipling it the Levi-Civita tensor
(18) Ay = (B[188) e1n Simn = — (4%/3) 8y,

where S, = b8y, and 8, denotes the totally antisymmetric part of the spin tensor.
Inserting (17) with (18} into (8), we finally reach the desired form of the field equa-
tion of gravitation:

(19) By —(3) 0B =— ”Z{T(u) — (@)X Crrun Siemn — 20mnkslmn)} — (4%/4) ‘51::‘8',2” .

The left-hand sides of the resulting field equations are same as that of Hinstein's; it is the
Hinstein tensor, now rewritten in terms of the tetrads. The right-hand side, however, dif-
fers from that of Einstein’s. Our equations involve the spin tensor, besides the energy
tensor, in the source tensor of gravitation. It should be noticed here that the physical
meaning of a gravitational source tensor in Einstein’s theory is different from ours;
in the former it is the stress tensor of macroscopic bodies as a phenomenological rep-
resentation of matter, completely independently of how constituent particles interact
with gravitation. In our theory, however, a gravitationalsource is the energy-momentum
tensor of individual spin-} baryons and leptons, and its properties may be completely
determined when a particular gravitational interaction of these particles is known.
For example, whether the energy-momenfum tensor is symmetric or not depends
erucially on how a spin-} particle couples to the gravitational field. It it happens to
be symmetric, then the spin tensor must be vanishing owing to the generalized Tetrode
relation (10), thus having no influence on spacetime. To choose such a specific gravita-
tional interaction as symmetrizes the energy-momentum tensor is equivalent to the dynamical
assumpiion that the spin tensor is forced to play no role in curving space-time. There is,
however, no reason why the microscopic energy-momentum tensor must be sym-

(*) I am indebted to Dr. N. SETo for informing me his results on (14) by private communication.
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metrie, because we do not know which type of gravitational interactions of a spin-}
particle is allowed or forbidden. Under these circumstances there might be no other
way than proceeding with trials and errors.

First let us consider the simplest gravitational coupling (%) in that it does not involve
the derivatives of the gravitational field and it reduces, without gravitation, to the
Dirac Lagrangian;

(20) Ly = {0 P ¥ — § (Vi ¥) + My}
From (7) we get

(21) T = H{B) 0 " Pny . — P9}
The spin tensor is defined by (11) as

(22) Skim = —b(i/2) eetmadn »

where we denote the axial vector current as Ji = igy;v,v. Henee it follows from (18)
that A= (A%/6)J5. If spin-} baryons and leptons interact with the gravitational field
according to the above Lagrangian (20), then the axial vector current will affect the space-
time continuum through the form of the spin tensor. On a maecroscopic scale, however,
such an effect due to the axial vector current will be negligible with the possible ex-
ception of the neutron stars with strong magnetic field which tends to align spin
orientation.

Secondly, can we find such a gravitational interaction as symmetrizes the energy-
momentum tensor? To do so, we just add a more complicated axial vector interac-
tion to L, (20):

(23) Ly, — () A, J5b .

The spin tensor arising from the second term just counteracts the spin tensor (22) from
the first term, thus rendering the total spin tensor null: Ty = T,.

It would be worth noting that the gravitational interaction (20) may be obtained
by replacing the ordinary by covariant derivatives with respect to an asymmelric af-
fine connexion

I, = biby,

while the latter interaction (23) may be derived by using the covariant derivative with
respect to the Christoffel symbol. We can envisage more complex interactions of a
spin-§ particle, but it is diffieult to find an affine connexion corresponding to each of
these interactions. This fact implies that it 4s not always clever to atiack the present pro-
blem by the comventional geometrical approach to gravitation. Presumably the gravita-
tional intaraction of spin-} baryons and leptons would be very complicated, thus mak-
ing the energy-momentum tensor gemerally asymmetric. For example, some authors
investigated if it conserves parity and time-reversal (})). The conclusion reached up

() J. LEITNER and S. OKUBO: Phys. Rev., 136, B 1542 (1964); K. Huna and Y. YAMAGUCHI: Progr.
Theor. Phys. Suppl. (Kyoto), Commemoration Issue for the XXX Anmiversary of the Meson Theory by
Dr. Yulkawa (1965); K. HAYASHI: Parity, charge conjugation and time reversal tn the gravitational inter-
action; the possible existence of o massless scalar particle and Schwinger’s equal-time commulation relation
for energy density, preprint, MPI.
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to now is rather uusatisfactory and not yet conclusive; one cannot rule out the pos-
gible violation of these discrete symmetries. We cannot help leaving the answer to this
question to further researches in the future.

Finally, we close this letter by remarking that the macroscopic limit taken in our
field equations brings them to the Einstein’s field equations of gravitation (presumably
with the exception of the neutron stars with strong magnetic fields) whatever gravita-
tional interactions of spin-{ baryons and leptons may exist, because all the spin polar-
ization effects will be averaged out in this limiting process and hence the stress tensor
of macroscopic bodies will have no memory of microscopic gravitational interactions
whatsoever.
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