Thermodynamic Modeling of Binary

and Ternary Metallic Solutions

R. L. SHARKEY, M. J. POOL, AND M. HOCH

A model is proposed for describing heat of mixing behavior in binary and ternary metallic
solutions. The binary model, which has the form, AFM = o, X3 Xp + X4 XB — a:X5 X3,
where X4 and Xp are mole fractions of components A and B and a1, a2, and a3 are con-
stants, is applied to the heat of mixing values for 84 solid and liquid systems and the

results are compared with the subregular model. The ternary model, which is composed

of the sum of the binary equations and a ternary interaction term of the form a4 pc X4 XgXc,
was applied to the Bi-Cd-Pb, Cd-Pb-Sn, and Cd-Pb-Sb systems. There was excellent
agreement both as to the shapes of the isoenthalpy of mixing curves and as to the heat of
mixing values in the ternary systems when the model was used to predict the experimental

values.

THE necessity to be able to describe the thermody-
namic properties of multicomponent alloy systems
using a minimum amount of experimental data is well
known. Several binary solution models’™ have been
proposed and have shown varied amounts of success
when used to calculate ternary solution character-
istics.

In order to predict the ternary heats of mixing, the
binary heats must be described by suitable equations.
The equations describing binary heats of mixing can
be divided into two broad categories: those which are
designed to deal solely with the dilute solution region
and those which describe the heat of formation over
large compositional ranges. This paper will be con-
cerned only with the latter category. Since it is de-
sirable to find an equation with a finite number of
terms to apply to most binary liquid and solid metallic
solutions,those models based on series expansions will
also be excluded.

The models in the latter category are based pri-
marily upon a bonding energy analysis. These models
are as follows:

1) Hildebrand’s regular solution model’ (AHM
= Xy Xp),

2) Hardy’s subregular model® (AHM = o, X3 Xp
+ a2XAX§)’

3) Guggenheim’s® and Rushbrooke’s* quasi-chemical
model (AH = aXsXg[1 — 2aX4Xp/(zRT)], and

4) Darken’s model® to describe the excess free
energy of mixing over the compositional range where
the excess stability function is constant
(AFSTicon region RTXp In yp — aXg).

In these equations, AHM ig the heat of mixing in
calories per mole of solution, AFXS ig the difference
between the actual and ideal free energy of mixing,

a, a,, and @, are constants, X4 and Xg are the mole
fractions of components A and B, respectively, z is
the coordination number of the crystal structure of
the solid solution (or the average number of nearest
neighbors for liquid solutions), R is the gas constant,
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T is the absolute temperature, and v; is the activity
coefficient of component ¢ in the Henrian Law region
for component 7.

The regular solution model holds for only a small
number of binary metallic solutions and the quasi-
chemical model is applicable only for those solutions
showing small negative deviations from regular solu-
tion behavior. Darken’s model, though not directly ap-
plicable to the heat of mixing could, however, be used
for mixtures having an ideal entropy of mixing. Under
this condition, AHY = AFXS = RT(Xp In yg+Xaln v4),
and AFM = RTXgp In ¥ as Xg — 0. Darken’s equation
gives a very good correlation between composition and
the corresponding experimental heats of mixing for
systems where A ~ 0 as is shown for the liquid
Bi-Pb system in Fig. 1, and poor agreement for sys-
tems having large deviations from an ideal entropy
of mixing as is shown in Fig. 2 for the liquid Cd-Sn
system. This is not surprising because the assump-
tion that AFXS = ABM is no longer valid.

The model which describes the heat of mixing be-
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Fig. 1—Experimental heat of mixing vs mole fraction for

liquid Bi~-Pb alloys at 700°K.® The equations represent

Darken’s model® to describe the excess free energy using

data points up to 30 at. pet solute. The excess entropy for

the system is less than 0.05 cal per mole, °K.
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Fig. 2—Experimental heat of mixing vs mole fraction for
liquid Cd-Sn alloys at 773°K.® The equations represent
Darken’s model® to describe the excess free energy using
data points up to 30 at. pct solute. The excess entropy equals
0.28 cal per mole, °K at the 50-50 composition.
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Fig. 3—Experimental heat of mixing divided by the product of
the mole fractions vs mole fraction for liquid Bi-Pb alloys at
700°K.% The experimental accuracy on the heat of mixing
values is +15 cal per mole.

havior reasonably well for most binary metal solutions
is the subregular model. If the equation for this model
is put in linear form as in Eq. [1],

AHM /(X4Xp) = 0,Xa + a:X5 [1]

and plotted as a function of the mole fraction of one
component then the data should lie on a straight line

if the model is correct. If the line has zero slope

then @; = @, predicting regular solution behavior. It
would also be expected that the data should be some-
what scattered due to the fact the error for each datum
point increases by the factor 1/(X4Xp) when plotted in
this manner. Figs. 3 and 4 show plots of the heat of
mixing divided by X4 Xp vs mole fraction for the
liquid Bi-Pb and Cd-Sn systems, respectively. Rather
than observing a large scatter, the data points appear
to lie on a fairly smooth curve deviating from the
linear line predicted by the sub-regular model. Large
scatter of data as well as data points lying on a linear
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Fig. 4—Experimental heat of mixing divided by the product of
the mole fractions vs mole fraction for liquid Cd-Sn alloys at
773°K.® The experimental accuracy on the heat of mixing
values is +20 cal per mole.

line seem to be the exception rather than the rule
when the heat of mixing divided by X4 Xpg is plotted
as a function of mole fraction. The justification for
this statement is based upon an analysis of 84 binary
liquid and solid solutions having complete solubility
at the temperature of measurement. The data were
taken from Hultgren, et al.%” and the results with an
analysis are given in tabular form later in this paper
in Table II. These data in many instances are
smoothed and averaged values of experimental results
and the error limits are estimates of the total error
including random error and bias. The fact that wide
scatter is not usually present when the data are
plotted in this manner does not necessarily suggest
that the data are more accurate than the stated error
limits because the actual positions of the curves may
be in error due to systematic errors on the measure-
ments, It is important, however, to note that the
general shape of the heat of mixing curves in Figs. 3
and 4 can be described by an expression of the form
given in Eq. [2].

AHM = 0, X3Xp + @,XaXB + 0, X3XB [2]

MODEL ANALYSIS
I) Binary Solutions

It is possible to consider that the energy of mixing
for binary metal solutions is composed of a series of
three reactions involving three different energies.
The first reaction involves a transformation energy
where the pure components transform to the crystal
structure of the mixture, (AE;)c N, for component i.
In the case of liquids this reaction energy can be
thought of as involving the transition in the average
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coordination of the molecules. The inclusion of this
transformation term allows the heat of mixing ex-
pression to be based on the standard states of the
pure components in their equilibrium structures at
the temperature of measurement.

The second reaction is composed of the energy
necessary to expand one structure and compress the
other structure (at a combined pressure of one at-
mosphere) to the point where both components have
the same lattice parameter as that of the mixture.
This quantity will be designated (AE;)pij, symbolizing
the energy change resulting from a dilation. For
solids, this quantity is related to the strain energy,
and for liquids this can be considered as the energy
to change the average atomic radius of each compo-
nent,

Once the components have the same structure and
atomic spacing as that of the mixture, the components
are mixed and allowed to interact. The energy change
of this third reaction will be a measure of the enthalpy
of interaction or what is commonly called the bonding
energy, (AH)gond. Since both pure components have
the same structure and atomic spacing as the mixture
as a result of the first two reactions, the terms
(AE)gonq and (AH)p,,q are synonomous. The sum of
these three energies should be equal to the enthalpy
of formation of the alloy when A(PV) is small. Through-
out the remainder of the paper it will be assumed that
A(PV) is small such that the quantities internal en-
ergy and enthalpy are interchangeable.

A) BONDING ENERGY ANALYSIS

Consider a mixture of two species A and B. The
first assumption is that long range forces between
atoms do not exist. Secondly, it is assumed that the
bonding energy of the mixture is the sum of the ener-
gies of pairwise interactions and that the bonding en-
ergy of each pair is affected by the number and type
of atoms occupying the remaining sites in the first
coordination sphere about a given pair. The third
assumption is that both components have the same
structure and atomic spacing as the mixture.

Consider one mole of atoms, N° consisting of Ng 4
atoms and Ny B atoms. Let 2zNgp equal the number
of A-B bonds in the mixture, where z is the coordina-
tion number. Ngp divided by the total number of
atoms will equal the probability of an A-B bond where
Nap represents the number of A or B atoms involved
in A-B bonds. Since there will be Nag A atoms in-
volved in the A-B bonds, this leaves (N4 — Nyp) A
atoms for A-A bonds. Since two A atoms are involved
in each A-A bond and each A atom forms z bonds
there will be +2(N4 — Nap) A-A bonds. Similarly,
there will be +2(Ng — Nag) B-B bonds.

Now take one A-B bond and consider A as the central
atom. There are (z — 1) remaining sites which may be
occupied by either A or B atoms in the first coordina-
tion sphere about the A atom. The total number of
bonds of the type (B-A)A, where B-A is the primary
bond and A is an atom next to the A atom in the primary
bond, is 2(z — 1)Nap Ps where P4 is the probability of
an A atom being next to an A atom in the primary A-B
bond. Similarly, the number of bonds of the type
A(B-A) where B is the central atom in the primary
bond is z(z — 1)NagP4. The total number of A atoms
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Table . Number and Energy of Each Bond Type

Energy of Each Average Energy
Bond Number of Primary Bond Influence on the
Type Such Bonds Type in Mixture Primary Bond
A-A %z(N 4-N4p) Es iy
A-B N4 g Eqp
B-B %z(Ng-N 4p) Epp
(4-4)4 2(z- )X, (N4-Nyp) E 44
(4-A)B 2(z-1)Xg(N4-N4p) E 4B
(4-B)A 22(z-1)X4N 4 E g4
(4-B)B 22(z-1) XNy g E pp
(B-B)A 2(z-1) X (Np-Nyp) Egpg
(B-B)B 2(z-1) Xg(Ng-Nyp) Eppp

in the first coordination sphere influencing A-B bonds
is 2z(z —1)Nop Pa. If the assumption is made that the
probability of an A atom being next to an A-B bond is
random, then P4 = X4, the mole fraction of A, It is
not assumed that P4 g is necessarily random but
rather that the atoms surrounding the A-B bonds are
random. The larger the assembly of atoms considered,
the more accurate this assumption becomes.

It is also assumed that each A atom has the same in-
fluence on an A-B bond whether it is the only A atom
in the coordination sphere or whether it is only one of
2(z — 1) A atoms in the coordination sphere. Another
way to state this is to assume a linear variation of
the influence of an A atom on an A-B bond. This as-
sumption is justified if in place of an absolute energy
influence, an energy influence averaged over all such
bonds is used. The average energy influence is defined
as the energy change of the primary bond energy caused
by an atom next to the primary bond. Table I lists the
number of various bond types determined in the same
manner as was done for the (4-B) A bonds and the
designations for the associated energies. In designating
the average energy influence, the first two subscripts
define the bond type and the third subscript defines the
influencing component.

The bonding energy of the mixture can be written as
the sum of the total energy resulting from each type
of primary bond and of the average energy influence on
the primary bonds as in Eq. [3].

Epond =5 2(Na — NaB)EgA +32(Np — NaB)EBpB
+ ZNABEAB + 2(z2 — 1)(NA — NAB)XAEAA4
+2(2 —1XNa — NaAB)XBEAAB
+22(2 —1)NABXAEABA
+22(z2 — 1)NABXBEARBB
+2(z —1)Np — NAB)XAEBBA
+2(z — 1N — NaB)XBEBBB (3]

If Eq. [3] is rearranged and the following substitutions
made

[4]
(5]

waB = 2[EoB —5(Eaa + Epp)]
wapa = 2(2 = 1)[2Eopa —(Egaa + EBBA)]
and

6]
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then Eq. [3] can be written as
Epond = ¥ 2NpEpa +72NBEBB
+2(z — 1)NaXAEasA
+2(z —1)NpXpEBBB + NABWAB
= NaABXAwABA + NABXBWABB [7]

The change in bonding energy on mixing will be
equal to the bonding energy of the mixture minus the
bonding energy of the pure components.

AERond = NABWAB * NABXAWABA

+ NoBpXBwABB (8]

The average value for the energy of mixing will
occur when Ny p is replaced by an average value,
Nap. The problem now is the evaluation of Ngap. The
random value of N4 may be expressed as®

Nip = (Na — Nap)XNB — NaB) [9]

If it is assumed, however, that the number of A-B
bonds is not random then Eq. [9] must be modified

in a similar manner as is done in the quasi-chemical
model derivation.*

Consider an isolated A-A and B-B pair of atoms
and interchange one A and one B atom from one pair
to the other. The resulting change in energy may be
expressed as 2wg4 p where both an A-4 and B-B bond
are broken and two A-B bonds are formed. In a con-
densed phase, this change in energy would have to be
divided by the coordination number, z. The work re-
quired to change an A-A and B-B pair into two A-B
pairs is therefore 2wap/z. This is not an exact ex-
pression since first it is assumed that the bond energy
for an isolated pair of atoms is 1/z the bond energy
in the condensed phase, and secondly, the effects of
the surrounding atoms have been neglected.

The number of A-B bonds should approach the ran-
dom value as T — ., If w4 p is positive then the num-
ber of A-B bonds should be less than the random value
and the opposite should be true when w4 g is negative.
This suggests that Eq. [9] be madified by a factor such
as exp(—2wa B/ zET). Rushbrooke,* through a statistical

analysis, shows this to be a reasonable modifying factor.

Nap is then given by equation [10].

Nip = (N4 — Nap)WNB — NaB) exp(-2w4 p/2kT) [10]

Guggenheim® states that this is the type of expression
which would be expected if the various molecular pairs
were in the gaseous state in chemical equilibrium. It
is for this reason that he has termed this approach as
quasi-chemical,

Solving the quadratic in Eq. [10] for the positive root
and letting X = ZwAB/sz gives

Nag ={ANa + Np) + [(N4 + NB)*
+ 4NgNpX]"*/26X
If the radical in Eq. [11] is expanded in a Taylor series

expansion as a function of eX and only the first three
terms are retained, Eq. [11] can be rewritten as

5 N NANp
AB = (N4 + Np)

[11]

NgNB
(Na + NB)
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X [exp(+2wAB/sz)—1]] [12]
where the value of X has been resubstituted. Now ex-
pand exp (2w B/2kT) as a function of 2w4 g/zkT and
retain the first two terms of the expansion. Substituting
this expansion into Eg. [12] and changing the number

of atoms to mole fractions gives

Nap ~ N°XsXg[1 — 2XaXpwap/2kT] [13]

The justification for including only a small number of
terms in the series expansions is that for mixing to
occur 2w g/zkT must be small for solids. If
2wy g/zkT becomes either highly negative or highly
positive there will exist an ordered phase or a
miseibility gap, respectively. For liquids the trunca-~
tion of the series expansions will introduce greater
error because the same limits on 2wAB/sz do not
apply.

Substituting the average value of N4p from Eq. [13]
into Eq. [8] and equating AEM to AHM | the bonding
enthalpy of mixing may be expressed as

AEM | = N°X4Xpwap(l - XpXp 2wap/zkT)
+ N°X5Xpwapa(l — XaXp 2wap/zkT)
+ N°XAX§0.>ABB(1 —X4Xp ZwAB/sz)

[14]
If the assumption is made that the energy influence on
the various bonds is small compared to the primary
bonding energy then

2w3B/2kT >> 2w ApwABA/2kT [15]
and
2wy B/2kT >> 2w, p @y g/ 2kT [16]

The major correctional term for nonrandomness is
therefore

—2XAiXpN°whp/zkT (17]

If this term is retained but the other two correctional
terms neglected the resulting expression should still
be a good approximation for the bonding enthalpy of
mixing. Thus,

AHY o~ N°XaXpwap(l — 2XaXpwap/zkT)

+ N°XiXpwABA + N°XaXgwapp  [18]
If the following quantities are defined
aap = N°wap (19]
@ABA = N°wApA [20]
and
®sBB = N°wABB [21]

and these substituted into Eq. [18], then this equation
can be written as

AFY  q=XaXpogp(l —2XsXBaap/zN°kT)
+ XAXpaaBA + XaAXBOABB [22]
Rearranging Eq. [22] gives
AHY = XaXpasp + XiXpaapa + XaXBoABE
~2XAXpaip/zRT (23]
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If the first term on the right of Eq, [23] is multiplied
by (X4 + XB) which is unity then Eq. [23] can be put

into the form of the subregular model equation with a
correctional factor for nonrandomness as in Eq. [24].

AHM

hond = XAXB(¥AB + @aBa) + XaXE(2AB+aaBB)

~ 2X3 X504 g/2RT [24]
Eq. [24] is identical in form to Eq. [2].

B) CRYSTAL STRUCTURE TRANSFORMATIONS

1) Solids. For a given structural transformation,
the enthalpy of reaction per mole, (AHS )¢ i, Will be
a constant for component A regardless of the compo-
sition of the mixture. If the mixture is composed of
one mole of molecules then the heat resulting from the
transformation can be given by (AH4)cnNXa. For
terminal solid solutions one transformation energy may
be needed for each terminal region. For intermediate
compounds, both components may undergo transforma-
tions in which case two structural transformation
terms must be included.

2) Liquids. Most liquid binary metal systems do not
show miscibility gaps over extended temperature
ranges, If it is assumed that in general the average
coordination number for pure liquid metais at identi-
cal temperatures is not the same then for there to be
a continuous single phase, liquid solution, the average
atomic configuration must change as the composition
changes. The transformation enthalpy would therefore
have to be a function of composition for each compo-
nent such that as the mole fraction of A goes to unity
the transformation enthalpy for A goes to zero. This
suggests a transformation enthalpy in calories per
mole for component A of the form

(AHg)cn = (AHg)o N ~ (AHA)CNX A

= (AHa)cNXB [25]

where X4 equals (1 — Xpg). A similar equation applies
to the B component. The total structural transforma-
tion enthalpy is then given by:

(AH)cn = Xa(AHZ)cn + XB(AHB)cN

which, upon substitution of terms of the form in Eq.
[25] and multiplication of the right hand side by
(Xa + XB), becomes

(AH)cn = [(AHA)en + (AHB)cNIXAXB
+ [(AHa)cn + (AHB)oN1XaXE

The following meanings have been given to the terms
used in Egs. [25], [26], and [27]:

(AH;)cn = structural transformation enthalpy of pure
i transforming to the structure of pure j,

[26]

[27]

(AH)c N = structural transformation enthalpy for
pure component ¢ transforming to the
structure of the mixture

= (Aﬁi)CNX]-, and
= integral fransformation enthalpy
= X;(AH)cN + Xj(AH) o N

Since the true nature of liguid solutions is unknown,

(AH)cn
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this analysis results in an approximate form for the
structural transformation terms. (If the transforma-
tion energy contribution, (AHJ )¢ N, was assumed to
be a second order function of composition, the final
form of the equation would still be the same as in the
subregular equation.) It is also not clear whether or
not the transformation energy would be independent
of composition in a single phase region for liquid
systems having a miscibility gap at the temperature
of measurement. Application of the model to this
type of system is not included in this paper.

C) DILATION TRANSFORMATIONS

1) Solids. This is merely the strain energy con-
tribution in solid solutions. Since the lattice param-~
eter of a crystal structure is a function of composi-
tion it would be expected that the strain energy would
be a function of composition. Lawson® has carried
out an analysis for the strain energy in a binary,
solid solution using a hard sphere model. His equa-
tion as modified by Speiser’® is

(Va — VB)
AEgirain = E_GA % Xf‘lXB
A
(Va — VBY
+%Gp v XaX5 [28]
where G is the bulk modulus and V is the molar
volume for the pure component. If the constants within
each term are lumped together and a small A(PV) is

assumed, then Eq. [28] can be written as
(AH) ) = (AHR)p; XAXB + (AHB) by XaXE [29]

which is equivalent in form to the subregular model
equation. It should be noted that this is only an ap-
proximation to the strain energy contribution and
that the model assumes only small solute concen-
trations.

2) Liquids. The energies to expand one and com-
press the other component to the average atomic
spacing of the mixture should be a function of compo-
sition since the structure of the liquid will vary as a
function of composition. It is assumed that the form
of the dilation terms should be similar to the form of
the structural transformation terms. This reaction
enthalpy can then be expressed as

(AH)p = [(AﬁA)Dil + (AEB)DH ]X,ZXB

+ [(aHp)py + (AHp)py 1XaX5 [30]

D) GENERAL HEAT OF MIXING EXPRESSIONS

1) Solids. Summing the three reaction enthalpies
gives

AEM = T3(AH)eNX; + (aap + aapa)XAiXp
+(aAB + 0ABB)XAXE — 2X]XBaAip/2RT
+ (AHA)pi1 X4XB + (AHB)pj XaXE [31]

If like terms are combined and new constants defined,
Eq. [31] may be expressed as

AHM = E(AHiO)CNXi + alXjXB + azXAX%

- a; X4 X5 [32]
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where «; and a; are composed of bonding and strain
energy effects. This expression should define single
phase regions of an entire binary system when the
correct transformation energies are included. As a
first approximation, the total bond energy can be
assumed structure independent for a given system.
The correctional factor for nonrandomness, s, how-
ever, will be a function of coordination number and
this should be taken into account. The magnitude of
the strain energy may vary as to crystal structure,
introducing some error into the expression for sys-
tems having short range solid solubility in the dilute
solution regions or forming intermediate compounds.
These effects, however, cannot be separated from Eq.
[32]. Two-phase regions are expressed as the linear
combination of the heat of mixing values at the tie
line end points.

2) Liquids. Summing the three reaction enthalpies
and adding like terms together gives an expression of
the form

AEM = a,X3Xp + 0 XaXE — s X5 XE [33]

where o; and @, are composed of bonding, dilation,
and transformation enthalpies. Again, & should be a
function of composition as the atomic radial distribu-
tion changes. However, since average coordination
numbers for liquids are generally unknown, this term
has to be assumed as a constant throughout the entire
compositional range.

In both the equations for solids and liquids as is
solely a measure of the nonrandomness. Since

a; = 204 8/2RT [34]

a; must always be positive and since the sign on a3
is negative, there should always be a negative devia-
tion from the subregular model similar to the devia-
tions shown previously in Figs. 3 and 4. The absolute
value of @gpg can be calculated from @3 and an esti-
mate made as to the magnitude of the change in the
primary bonding energy since

aap = zN°[Eap —+(Eaa + EBB)] [35]

These general binary heat of mixing expressions
will be termed the modified gquasi-chemical model.
1t gives the form of the regular solution model equa-
tion for o, = @,, and @; = 0; the form of the quasi-
chemical model equation for @; = a,, and —a; < 0; and
the subregular model equation when a; ;4 a,, and
a; =0,

II) Extension of Model to Ternary Solutions

If the derivation of Eq. [22] is extended to ternary
mixtures then the identical binary bonding energy
terms will appear in the expression as are in each
of the three binary systems plus three ternary inter-
action terms and three correctional terms for non-
randomness. In the ternary system there is the effect
of the third component on bonds between the other two
components, (A-B)C, (A-C)B, and (B-C)A, Following
the same derivation as was done for arriving at Eq.
[22], the ternary bonding enthalpy can be expressed as

M - M
AHBond - ZAHBo

+2(z —1)N°XaXpXcEAaBC

nd (binary systems)
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x [1—-2XsXpwsp/2kT]

+ 2(z2 ~1)N°XaXcXBEACB

x [1 = 2XaXcwac/2kT]

+ 2(z —1)N°XpXc XAEgca

x [1-2XpXcwpc/2kT] [36]

If the same assumption is made as for the binary
systems that the main correctional term for non-
randomness is that based on the primary bonding
energy term, then the terms of the form
—2XFX} Xy, E;jrw;j/2RT may be neglected without greatly
decreasing the accuracy of the expression. Neglecting
these terms and making the substitution

aspc = 22 —1)N°(Eapc + Eac * Egca)  [37]
gives for the ternary bonding enthalpy of mixing

Mo M
AHY 4 = 2IAH

Bon

+ aapcXaXpXc [38]

If it is assumed that the structural transformation
energies for liquids and the dilation energies for both
the liquids and solids in the ternary systems can be
represented by the sum of the binary terms then the
total heat of mixing may be expressed as

4 (binary systems)

AH]"I{otal = Z)Al‘lﬂvrv[oml(binary systems)
+ aapcXaXpXc [39]

for completely miscible liquid and solid ternary sys-
tems. (The strain energy for a ternary solid is as-
sumed as the sum of the binary expressions for lack
of a better model.)

For solid ternary systems having regions of immis-
cibility the appropriate structural transformation en-
ergies must be used. It may be necessary to deter-
mine some of these transformation energies from the
ternary data.

RESULTS
I) Application of Model to Binary Systems

Both the subregular and modified quasi-chemical
models were applied to 84 binary liquid and solid
solutions based on data taken from Hultgren, et al.®”
All substitutional liquid and solid solutions having
complete solubility at the temperature of measure-
ment were included. Also included were liquid sys-
tems having no miscibility gap but which did have the
liquidus line intersect the temperature of measure-
ment provided at least six data points in the single
phase region were known. Systems having limited
solid solubility were excluded because of a lack of
sufficient data in single phase regions to warrant the
determination of the transformation energies as well
as the constants a,, &, and a; in the modified quasi-
chemical model.

A least squares analysis was carried out to deter-
mine the unknowns in both the subregular and modified
quasi-chemical models. The standard deviation based
on the difference between the values predicted by the
equations and the experimental values were calculated
for both models. Each equation was rewritten so that
it could be represented by a linear function of the
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Table Il. A Comparison of the Modified Quasi-Chemical Model to the Subreguiar Modet for Eighty-Four Binary Systems?

Modified Quasi-Chemical Equation Subregular Equation
: Least Squares Fit Least Squares Fit
System Information DHM = 0, X2 Xp + 0, X4 X5 + a; X3 X5 DHM = 0, X3X g + azXAXZq
Errorb : :

Allo .. Linear L. Linear .
Syste}rln * cal. Error,© Data  Temp, Coefficients Correl. m Correl, L

A-B Mole Pct  Points °K  Phase a o, —0 laypld  Coeffe  o,f @, @, Coeff.8 o oio?
Ag-Au 40 3.6 9 800 Sol. —4849  -4016 -78 864 -0.9996 1.8 —4872 —-4025 -0.9994 1.9 1.14
Ag-Au 160 151 9 1350 Lig. —4642 -3808 -117 1374 -0.9988 23 —4675 3822 —0.9980 23 0.98
Ag-Bi 200 45.5 9 1000 Liq. 44 2927 185 -0.9998 3.0 94 2954 -0.9997 3.5 1.35
Ag-Cu 50 4.9 9 1423 Liq. 5332 4121 -2668 6750 0.9944 6.5 4562 3814 0.9048 320 24.50
Ag-Ga 250 28.8 8 1000 Liq. -6505 1400 0 0 -1.0000 0.2 -6505 1400  —1.0000 0.2 0.85
Ag-Ge 100 15.7 9 1250 Liq. -31458 3491 7680 -0.9995 109 -928 4377 -0.9694 92.5 72.57
Ag-Pd 100 74 9 1200 Sol. —8206 -1982 581 -09973 246 —8038 -1914 -0.9970 23.7 0.93
Ag-Sb 50 6.7 9 1250 Liq. -8345 1561 12681 —0.9945 49.7 —4685 3024 -0.9606 164.7 10.97
Ag-Sn 100 13.7 9 1248 Lig. =7701 41 11878 —-0.9976 285 —4272 1411 —-0.9484 1454 2595
Al-Au 600 74 9 1338 Liq. -15277 -31096 -36299 24142 0.9992 224 -25755 -35283 0.8819 427.0 362.30
Al-Cu 150 6.7 9 1373 Liq. -2986 -8393 -11745 13911 09771 61.7 -6376 —9748 0.8785 154.6 6.28
Al-Ga 50 31.3 9 1023 Liq. 849 528 -238 1711 0.9992 0.7 780 500 0.9847 2.9 17.79
Al-Ge 50 54 9 1200 Liq. —2630 -3102 -3376 6972 0.9898 2.6 —3605 —3491 0.4884 39.8 233.86
Al-In 50 3.7 9 1173 Liq. 6861 5047 —1974 5272 1.0000 1.1 6291 4819 09710 233 41485
Al-Mg 200 22.2 9 1000 Liq. -3443 -3389 -904 3293 0.0000 24.1 —3698 —3491 0.0000 21.5 0.79
Al-Sn 50 52 9 973 Liq. 5467 3666 —2846 5765 0.9961 74 4645 3339 0.9417 335 20.81
Au-Bi 50 333 7 973 Liq. 166 408 1205 -0.9763 3.3 549 568 —-0.0702 11.1 11.60
Au-Cu 75 39 9 800 Sol. —2073 —5387 -5003 6932 09565 37.6 3518 —5964 0.8795 65.0 2.99
Au-Cu 100 9.6 9 1550 Lig. -3720 -4622 -18 573 0.9999 0.3 3725 -4625 0.9999 3.0 1.15
Au-Fe 700 17.0 6 1473 Lig. 14295 9443 16102 0.9433  99.5 22172 6075 0.0780  609.3 37.50
Au-Ni 100 55 9 1150 Sol. 4539 7222 5435 -0.9826 204 6108 7849  -0.8720 66.0 1045
Au-Ni 200 345 6 1369 Liq. 2393 2732 -975 4003 , —0.9949 1.0 2392 2147  -0.4180 7.8 57.44
Au-Pb 100 529 9 1200 Liq. —879 824 —2721 6260 -—09807 177 —1644 510 —-0.9336 34.9 3.87
Au-Sn 100 3.8 9 873 Lig. -13016 —8426 1351 —-0.9821 515 -12658 —-8237  -0.9809 50.7 0.97
Au-Tl 25 73.5 7 973 Liq. -106 1 750 -0.9919 0.8 140 98 0.4638 49 42.08
Bi-Cd 80 36.4 9 773 Lig. 1021 1935 —2817 5111 —-0.9917 6.5 208 1610 —0.8400 337 27.15
Bi-Cu 200 15.4 8 1200 Liq. 5571 7693 -5902 9219 —-0.9979 8.2 4010 6814  —0.7993 65.1 63.32
Bi-In 50 114 9 623 Lig. -1186 -1707 -1238 3043 0.9333 73 -1544 -1850 0.7873 16.1 4.86
Bi-Pb 15 57 9 700 Liq. -830 =772 -1015 2920 -0.6227 2.1 -1123 -889  -0.1629 12.0 31.93
Bi-Sn 50 200.0 9 608 Liq. 43 43 253 0.0000 1.3 116 72 0.0000 3.0 3.42
Bi-T1 50 4.7 9 732 Lig. —2472 —5765 124 0.9943 15.0 2437 =5751 0.9942 14.0 0.87
Bi-Zn 200 17.9 9 873 Liq. 4043 6881 -4404 6793 -0.9943 136 2771 6374 -0.9424 521 15.75
Cd-Ga 40 6.5 9 700 Lig. 3461 3036 -3181 5169 0.9920 33 2543 2670 0.5307 372 12814
Cd-In 20 5.8 9 723 Liq. 1722 1154 -291 1590 0.9972 24 1638 1120 0.9902 39 2.58
Cd-Mg 50 38 11 543 Sol. -2994 -3724 -7593 7034 0.9859 59  -4995 —4749 0.4404 78.1 17346
Cd-Mg 200 14.9 11 923 Liq. -5189 -5101 =790 2959 0.2679 106 5397 -5207 0.2388 13.3 1.56
Cd-Pb 25 3.9 9 773 Liq. 3456 2368 -1515 3749 0.9944 53 3018 2194 0.9525 18.1 11.59
Cd-Sb 200 39.2 6 773 Liq. 2279 3188 -19172 13335 -0.9951 40 2204 -603 0.7741 186.5 2125.31
Cd-Sn 20 4.6 9 773 Liq. 2279 1613 -799 2722 0.9951 32 2049 1521 0.9680 10.2 10.03
Cd-Ti 20 3.6 9 673 Liq. 2903 1820 —741 2446 0.9982 3.0 2690 1735 0.9863 8.9 8.69
Cd-Zn 20 4.0 9 800 Liq. 2117 2202 ~628 2456 —0.9463 14 1936 2130 -0.5337 7.8 32.00
Cr-Mo 100 5.8 9 1471 Sol. 8317 5459 50 0.9925 175 8331 5465 0.9924 16.2 0.86
Cr-V 200 25.7 9 1550 Sol. =7519 —-2363 12442 —-0.9229 1003 -3927 =928 -0.7969 1788 3.18
Cu-Fe 100 4.7 9 1823 Liq. 9574 11297 =7656 12942 -0.9937 10.7 7364 10414  -0.7314 90.5 71.20
Cu-In 150 18.7 9 1073 Liq. —8833 300 12699 —-0.9990 23,5 -3459 2062 —0.9608 140.6 35.92
Cu-Mg 500 20.1 9 1100 Lig. =13713 -10022 8394 —-0.9804 308 -11473 -8870 —-0.8373 88.8 8.33
Cu-Ni 100 21.7 9 973 Sol. 600 2800 0 0  -0.9999 0.4 600 2800  —0.9999 03 0.86
Cu-Pb 100 6.2 9 1473 Liq. 8193 6939 —4637 9053 09796 14.4 6855 6404 0.7972 554 14.72
Cu-Pd 100 3.8 9 1350 Sol.  -12394 -9841 2379 -0.8392 69.6 -11707 -9567 —0.8376 738 1.13
Cu-Pt 150 5.6 9 1350 Sol.  —13794 —7286 —498 2839 —-0.9940 45.1 -13938 -7343  -0.9939 42.4 0.88
Cu-Sb 550 40.8 9 1190 Lig. -13119 1037 12450 -0.9994 27.0 9565 2509 09824 1529 32.11
Cu-Sn 150 15.3 9 1400 Liq. —9506 548 9977 —0.9998 24.0 -6626 1699 -0.9774 123.8 26.70
Cu-Tl 200 9.8 9 1573 Liqg. 6196 5043 10192 0.9753 159 9138 6219 04991 1227 59.63
Cu-Zn 500 27.8 8 1300 Liq. =7621 —7574 2461 0.1207 684 —6920 -7232 0.0778 65.7 0.92
Fe-Mn 400 34.0 9 1450 Sol. -3350 -6930 2479 0.9999 03 2635 —6654 0.9880 29.1 8137.20
Fe-Ni 100 9.4 9 1200 Sol. -1102 -6787 938 0.9881 369 -831 -6679 0.9876 36.3 0.97
Fe-Si 1750 19.3 9 1873 Lig. —34047 -20904 -35083 28081 —0.9700 134.1 —44175 24950 —0.7975 4309 10.33
Ga-Mg 200 8.3 9 923 Lig. -6646 -9393 -5075 7498 09601 540 -8111 -9979 0.9234 83.2 2.37
Ga-Zn 50 13.2 9 723 Liq. 1315 2148 -923 2829 09972 3.5 1049 2042 —0.9639 109 9.96
Hg-In 30 5.6 9 433 Liq. —2113 -1777 -874 2131 -0.9066 12,7 2365 -1878 —0.8382 12.8 1.02
HgK 1500 28.3 9 600 Lig. 27577 -12678 —1168 2899 -0.9975 50.5 -27914 ~12813 -0.9971 47.5 0.88
Hg-Na 300 4.5 9 648 Lig. —23843 —-4631 -42511 18182 —0.9212 337.5 -36115 —9534  -0.7898 5856 3.01
Hg-Pb 50 41.7 9 600 Liq. 1201 ~-410 -829 2443 0.9986 3.9 962 -505 0.9923 104 7.07
Hg-Sn 25 11.6 9 423 Liq. 1362 478 -438 1491 0.9991 1.3 1235 428 0.9932 5.2 16.40
In-Mg 50 29 9 923 Liq. —3499 —8341 -2799 5568 0.9711 499 —4307 -8664 0.9590 559 1.25
In-Pb 50 21.7 9 673 Liq. 929 824 190 0.9539 24 98s 846 0.8928 3.0 1.56
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Table H. Continued

Modified Quasi-Chemical Equation
Least Squares Fit
AHM =0, X3 Xp + 0, X4 X3 + 03 X3 X5

System Information

Subregular Equation
Least Squares Fit
AHM = o, X3 Xp + 0, X, X5

Allo Error® - Linear - Linear )
Syste}rln teal Errore  Data  Temp, Coefficients Correl. Coefficents Correl. £
A-B Mole Pct Points  °K Phase a, a, -y laypld  Coeffe  of a @, Coeff 8 o,h o3/0?
In-Sb 50 6.4 9 900 Liq. —3321 —1865 -2061 4718 -0.9698 149 -3916 -2103 -0.9044 26.8 3.24
In-Sn 40 80.0 9 773 Lig. -487 -237 741 -0.9744 3.0 -273 -151 -0.8419 8.9 8.70
In-T1 30 214 9 623 Lig. 699 356 44 0.9932 2.8 712 361 0.9925 2.6 0.86
In-Zn 40 5.2 9 700 Liq. 2674 3843 -680 2390 -0.9968 4.2 3478 3675  —0.9893 8.9 445
Li-Mg 500 389 9 1000 Lig. -1319 -3680 10402 11172 09505 30.7 —4322 -4880 0.6206 1264 16.97
Mg-Pb 200 8.8 9 883 Lig. -13456 —3288 -112 1056 —0.9999 2.8 —13487 —3303 -0.9999 29 1.05
Mg-Sn 400 11.6 9 1073 Liq. -18877 ~7609 -148 1378  —0.9999 3.3 -18919 -7626 -0.9999 3.7 1.33
Mg-Tl 200 119 9 923 Liq. —8033 —2057 -5365 7707 -0.9900 35.2 -9582 -2675 —0.9636 68.2 3.76
Mg-Zn 400 30.3 9 1073 Liq. -2962 ~8589 2039 0.9997 6.3 -2374 —8354 0.9960 24.1 14.68
Na-Pb 250 6.0 9 698 Liq. -21528 ~7998 4741 6302 -0.9980 35.0 -—22897 —8545 —0.9940 61.1 3.05
Na-Tl 300 9.0 9 648 Liq. -12792 -18544 9216 0.9981 19.8 -10131 -17481 0.9421 110.8 31.27
Ni-Sn 1000 21.5 9 1773 Lig. —32692 -11984 25226 -0.9917 1769 -25410 -9075 —0.9532 336.6 3.62
Pb-Sb 100 125.0 9 900 Lig. 160 =577 -107 1074 0.9966 2.9 129 -590 0.9962 3.0 1.05
Pb-Sn 30 9.2 9 1050 Liq. 1500 1370 —-496 2500 0.9966 04 1356 1313 0.7658 59 207.15
Pb-Tl 300 83.3 7 773 Lig. -532 —1437 -1728 4004 0.9963 4.6 -983 -1704 0.9706 20.3 19.18
Sb-Sn 300 60.0 9 905 Lig. -2182 -586 -2180 4866 —-0.9976 6.2 2811 —837 —0.9562 273 19.51
Sn-Tl 50 294 9 735 Lig. 840 406 83 0.9906 3.7 864 415 0.9903 3.6 0.95
Sn-Zn 50 6.3 9 700 Lig. 2547 4943 -2593 4667 —0.9914 155 1798 4644 —0.9653 32.5 4.40

aBased on data from Hultgren, ef al 7.
bStated error.
cStated error times 100 divided by the absolute maximum experimental value.

dCalculated only for systems having a negative deviation from the subregular equation. For liquids a coordination number of 12 is assumed.

eDetermined for (AHM — a3 X3 X3) X4 X5 vs Xg.

£ (deviations)?/(V - 3)] %, where N is the number of experimental values.
gDetermined for AHM X 4 Xp vs X.

h [ (deviations)*/(NV - 2)] %4, where N is the number of experimental alues.

iF is the ratio of the variances and can be related to the probability that the change in the variance by the inclusion of an additional term to the equation did not occur
by chance distribution of the data. The probability values are based on the number of data points and can be found from F distribution tables.

mole fraction of one component as in Eqs. [40] and
[41]

Agﬂgxp /(XaXg) = a1 + (@, — @)Xp

and

[40]

(AHG + @ XAXB)/(XaXp)= a; + (a2 — 01)Xp  [41]

New data were generated and a linear correlation co-
efficient determined. The linear correlation coefficient
is a measure of how well the data can be represented
by a straight line. The linear correlation coefficient
can take on values —1.0 to +1.0 inclusive. A value of
—1.0 indicates that the data lies directly on or is per-
fectly randomly scattered about a straight line of nega-
tive slope. A value of +1.0 indicates that the slope is
positive and a value of 0.0 indicates that the slope is
zero (corresponding to a regular solution for o; = o,
and a3 = 0, or a quasi-chemical solution for a, = a,
and @3 < 0). Intermediate values for the linear corre-
lation coefficient indicate that the data are scattered
nonrandomly or that the data can be represented

more accurately by a different form of equation.
Table II lists the data determined for the 84 systems
analyzed. The table includes the absolute value of

a4 p which was calculated only for systems showing

a negative deviation from the subregular model. In

all but four cases the absolute value of the correlation
coefficients for the modified quasi-chemical form of
equation[33]were either 0.0 or greater than 0.90 and
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in most cases the standard deviation was extremely
low in comparison to the stated error. The four sys-
tems, Bi-Pb, Cd-Mg, Cu-Pd, and Cu-Zn, having poor lin-
ear correlation coefficients,fell into two classes. The
poor correlation for the systems Cu-Pd and Cu-Zn
results from a nonrandom displacement of the data,
as is shown in Fig. 5 for the Cu-Pd system, where it
appears that the data could not be described more
accurately by any other reasonable heat of mixing
expression. The heat of mixing data for the systems
Bi-Pb and Cd-Mg when plotted in the same manner
as in Fig. 5 show an ‘‘S’’-shaped nature to the curve
as is illustrated for the Cd-Mg System in Fig. 6. For the
Bi-Pb system the deviation from the linear line is
only slight as is evident by the small standard devia-
tion of +1.8 cal per mole

In Table II it can be seen from the sign on (—a3) that
of the 84 systems analyzed, the deviation from the sub-
regular solution equation is negative for 52 of the bi-
nary systems, positive for 30 of the systems and 0.0
for two systems. The modified quasi~chemical model
always predicts a negative deviation. The fact that
the sign on a3 is negative or positive does not in itself
indicate that the system truly deviates from the sub-
regular model as is shown for the Ag-Ga system where
there was no improvement in the standard deviation
when the nonramdon correctional term in the modified
quasi-chemical model was included. The shape of the
heat of mixing curve for the Ag-Ga system can be de-
scribed equally well by either model.
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Fig. 5—The modified quasi-chemical equation plotted as a
linear function of mole fraction for the Cu-Pd system at
1350°K.? The experimental accuracy on the heat of mixing
values is £100 cal per mole. The straight line represents the
least squares fit to the modified quasi-chemical equation.
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Fig. 6—The modified quasi-chemical equation plotted as a
linear function of the mole fraction for the Cd-Mg system at
923°K." The experimental accuracy on the heat of mixing
values is +200 cal per mole. The straight line represents the
least squares fit to the modified quasi-chemical equation.

The last column in Table II lists F values for each
system. The F value is the ratio of the variance based
on the modified quasi-chemical model equation with
respect to the variance based on the subregular model
equation. The F value is a measure of whether or not
the modified quasi-chemical model equation actually
improves the fit of the data over the subregular model
equation. From F distribution tables a probability can
be assigned to an F value based on the degrees of free-
dom on the experimental data, where the degrees of
freedom are the number of experimental data points
minus the number of independent terms in the equation.
The assigned probability is the probability that the
change in variance did not occur by chance distribu-
tion of the data.

It was decided to exclude those systems where there
was not at teast a 75 pet confidence that the improved
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Table 111, Systems from Table 11 Where the Confidence Level on the Deviation
from the Subregutar Model is a Minimum of 75 Pct

lag g

System Phase Pct Error ~0y

Ag-Cu Liq. 49 —2668 6,750
Al-Au Lig. 74 -36299 24,142
AlCu Liq. 6.7 ~11745 13,911
Al-Ga Lig. 31.3 —238 1,711
Al-Ge Liq. 54 -3376 6,972
AlIn Lig. 3.7 -1974 5,272
Al-Sp Lig. 52 —2846 5,765
Au-Cu Sol. 5.9 ~5005 6,932
Au-Ni Liq. 34.5 -975 4,003
Au-Pb Liq. 529 -2721 6,260
Bi-Cd Liq. 36.4 —-2817 5,111
Bi-Cu Lig. 154 -5902 9,219
Bi-In Liq. 114 -1238 3,043
Bi-Pb Lig. 5.7 -1015 2,920
Bi-Zn Liq. 179 —4404 6,793
Cd-Ga Lig. 6.5 —-3181 5,169
Cd-In Lig. 58 —291 1,590
Cd-Mg Sol. 3.8 -7593 7,034
Cd-Pb Liq. 3.9 -1515 3,749
Cd-Sb Liq. 39.2 -19172 13,335
Cd-Sn Liq. 4.6 =799 2,722
Cd-T! Liq. 3.6 =741 2,446
Cd-Zn Lig. 4.0 -628 2,456
Cu-Fe Lig. 4.7 -7656 12,942
Cu-Pb Lig. 6.2 —4637 9,053
Fe-Si Liq. 19.3 —35083 28,081
Ga-Mg Liq. 83 —5075 7,498
Ga-Zn Lig. 13.2 -923 2,829
Hg-In Liq. 4.5 -42511 18,182
Hg-Pb Liq. 41.7 -829 2,443
Hg-Sn Liq. 11.6 —438 1,491
In-Sb Lig. 6.4 -2061 4,718
In-Zn Liq. 52 -680 2,390
Li-Mg Liq. 389 —10402 11,172
Mg-Tl Liq. 11.9 —-5365 7,709
Na-Pb Liq. 6.0 -4791 6,302
Pb-Sn Liq. 9.2 —496 2,500
Pb-Tl Lig. 83.3 -1728 4,004
Sb-Sn Lig. 60.0 -2180 4,866
Sn-Zn Liq. 6.3 -2593 4,667
Ag-Ge Liq. 15.7 7680

Ag-Sb Liq. 6.7 12681

Ag-Sn Lig. 13.7 11878

Au-Bj Liq. 333 1205

Au-Fe Liq. 17.0 16102

Au-Ni Sol. 5.0 5435

Au-Tl Liq. 73.5 750

Bi-Sn Lig. 4.7 254

Cr-V Sol. 25.7 12442

Cu-In Liq. 18.7 12699

Cu-Mg Lig. 20.1 8394

Cu-Sb Liq. 40.8 12450

Cu-Sn Lig. 15.3 9977

Cu-T} Lig. 9.8 10192

Fe-Mn Sol. 34.0 2475

In-Sn Lig. 80.0 741

Mg-Zn Lig. 30.3 2039

Na-Tl Lig. 9.0 9216

Ni-Sn Lig. 21.5 25226

fit did not occur by chance. The systems looked at
are those whose F values are greater than 1.60, 1.71,
1.79, 1.89, and 2.05 based on the number of experi-
mental data points of 11, 9, 8, 7, and 6, respectively."!
For the systems excluded it must be assumed either
that the systems do not deviate from the subregular
model because of the low confidence level based on
the variance ratio or that the accuracy of the data
does not warrant the determination of the term.

Table III lists those systems where the shape of
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the heat of mixing curve can be described more ac-
curately with the modified quasi-chemical form of
equation than the subregular model equation based on
a minimum of a 75 pct confidence level. The upper
portion of the table lists 40 systems which deviate
negatively from the subregular model and the lower
portion lists 19 systems which deviate positively. For
the systems that deviate negatively, the absolute value
of a4 p appears to be well within the range of usual
values determined from regular solution behavior.
For the systems showing a positive deviation, the
phase diagrams, the crystal structures, atomic radii,
and electronegativities of the solid pure components
were checked for similarities. There did not appear
to be any correlation to suggest the reason for the
positive deviation from the subregular model. The
percent error on the experimental measurements is
slightly higher for these systems than for those which
show a negative deviation. The percent error was de-
termined by multiplying the absolute error by 100 and
dividing by the absolute maximum experimental value
for the system. It should also be noted that for many
of the systems the presence of small systematic
errors can reverse the sign on the deviation from

the subregular model. For example, if 10 cal per
mole are added to each datum point for the Bi-Sn
system, the deviation can be reversed giving an ab-
solute value for @gp of 1065 cal per mole.

Due to the large errors on experimental heats of
mixing values, it is impossible to state whether or
not any solution model is valid. However, statistically
it can be stated that of the systems examined, all but
four fit the form of the modified quasi-chemical model
(disregarding the sign on the last term) rather well
based on the values of the correlation coefficients.
Sixty-two pct of the systems fit the model as to the
sign on the nonrandom term and 68 pct of the systems
fit the model where the confidence for using the model
in place of the subregular model was a minimum of 75
pct. It is felt that the modified quasi-chemical model
describes the shape of the heat of mixing curve as
well as or better than other solution theory models.

II) Application of Model to Ternary Systems

Eq. [39] was applied to the ternary liquid solutions
of Bi-Cd-Pb, Cd-Pb-Sn, and Cd-Pb-Sb. The data were

taken from work done by Elliott and Chipman'? in 1952.

They determined integral heat of mixing values along
two pseudo-binary lines in each of these three ternary

systems at 773°K. They used these data, combined with
binary heat of mixing data, to interpolate values through-
out each of the three ternary systems. The final results

were presented as isoenthalpy of mixing curves for
each system. From the isoenthalpy curves 51 heat of
mixing values were estimated for each of the ternary
systems along pseudo-binary lines. Three estimated
values at X;/X; = 1.0, Xp = 0.2, where 4, j, & are not
equal and each can have the values A, B, C, were used
to determine the ternary interaction term. The final
equation for each system was used to regenerate the
heat of mixing values at the same compositions as
those for the 51 estimated values. The standard devia-
tion was determined based on the differences in values
at each composition. The same estimated values were
also used to determine the standard deviation when
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the ternary interaction term was omitted from the
equation. The results for each ternary system are
given in Table IV. The ternary equations are composed
of the sum of the binary terms listed in Table II and
the ternary interaction term, assuming no temperature
dependence for AHM for those binary systems where
the experimental data were not determined at 773°K.
In Figs. 7, 8, and 9 the isoenthalpy curves as de-
termined by Elliott and Chipman'? have been repro-
duced and are represented by solid curves for the
Bi-Cd-Pb, Cd-Pb-8n, and Cd-Pb-Sb systems, re-
spectively. In each figure, the broken lines repre-
sent the isoenthalpy curves based on the equations
in Table IV. More recent experimental heat of
mixing values have been determined for several of

Table 1V. Equations for Describing Heat of Mixing Behavior for Three
Ternary Liquid Systems

System Modified Quasi-Chemical Ternary Equation* of o

AHM = 1021X%:Xcq + 1935X 5 X5og - 2817X5:X0q
+ 830X%; Xpy,-772XpXpp - 1015X5: X3,

Bi-Cd-Pb 16 26
+ 3456 X ey Xpp, + 2368XcaXmy, - 1515X 0 Xpy
- 115X g XcaXpp
AHM = 3456X% Xpy, + 2368X cqXmp, - 15150 X 5
2 2 2 2
Cd-Pb-Sn +2279X0 1 Xgp + 1613Xcq X5, - 199X0aXsn 26 117
+ 1500Xpy Xgp + 1370Xp, Xy - 496X 5 X5
+4661X g X Xon
AHM = 3456X % Xpy + 2368X o Xpy, - 1515X5q Xpy,
2 2 2 2
CAPb-Sh +2279X2Xgy + 3188X Xy - 19172X¢aXSy 55 o

+ 160Xy Xgp, - 577X pp X g - 107X, Xy
- 3915X g Xpp Xs1

*The ternary term was determined from three experimental values.

tBased on 51 experimental values.

¥Based on 51 experimental values with the omission of the ternary term from
the equation.

Fig. 7—Isoenthalpy of mixing curves for the Bi-Cd-Pb system
at 773°K. The solid curves were taken from Elliott and
Chipman?? and the broken curves are those predicted by the
equation in Table IV for this system.
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Fig. 8—Isoenthalpy of mixing curves for the Cd-Pb-Sn system
at 773°K. The solid curves were taken from Elliott and
Chipman!? and the broken curves are those predicted by the
equation in Table IV for this system.

Pb

oK
oK
aK

Xsb

Fig. 9—Isoenthalpy of mixing curves for the Cd-Pb-Sb system
at 773°K. The solid curves were taken from Elliott and
Chipman'? and the broken curves are those predicted by the
equation in Table IV for this system.

the binary systems. In all cases, the most recent
data have been used. There is therefore some
discrepancy between the experimental and predicted
curves as to the compositions where the isoenthalpy
of mixing curves enter these binary systems. How-
ever, there is excellent agreement both as to the
shapes of the isoenthalpy of mixing curves and as to
the prediction of ternary heat of mixing values based
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on the binary data and three ternary heat of mixing
values.

SUMMARY

A model is proposed for describing the heat of
mixing behavior in binary and ternary metallic solu-
tions. The model is derived assuming that the heat
of mixing for binary systems is composed of three
reactions involving three different energies. The first
is a transformation energy where the pure components
transform to the structure of the mixture; the second
is related to the expansion of one structure and the
compression of the other until both have the same
lattice parameter as that of the mixture and has been
termed a dilation transformation; and the third is
the energy change resulting from the interaction of
the components when mixed. The model has been
designated as the modified quasi-chemical model be-
cause the bonding energy analysis assumes the quasi-
chemical deviation from randomness. The analysis
also assumes that the energy level for a pair of atoms
is affected by the type and number of surrounding
atoms. The ternary model is composed of the sum
of the binary expressions plus a ternary interaction
term derived from the bonding energy analysis. (For
solids the appropriate transformation energy terms
must be included in the ternary equation.) Since for
many systems only one term need be determined from
ternary data it is possible to describe ternary heats
of mixing by combining the binary data with a limited
number of ternary heat of mixing values.
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