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The influence of plastic anisotropy and the shape of the yield surface on localized necking of thin metal 
sheets is examined. Forming limit curves (FLCs) of strain hardening, rate-sensitive sheets including 
Ti alloys, A1 alloys, and steels are calculated on the basis of the Marciniak-Kuczynski approach using 
the quadratic Hill or the Drucker yield function in conjunction with either the flow or deformation 
theory of plasticity. The roles of the R-value and the yield surface shape in biaxial stretchability of 
sheet metals are delineated and discussed in relation to the plasticity theories and yield functions. It 
is concluded that the limit strains decrease with increasing R-vatue in the e2 > 0 region of an FLC 
but increase with the R-value in the e2 < 0 region, and are independent of the R-value at plane strain 
conditions. These mixed, strain-path dependent effects are explained in terms of the shape of the yield 
surface and a recently proposed critical thickness strain criterion. 

I. INTRODUCTION 

SHEET metals subjected to biaxial stretching usually fail 
by localized necking. Hence, the stretchability of sheet met- 
als depends on the material's resistance to localized necking 
and, in particular, upon material factors which delay the 
onset of such a plastic instability. The beneficial effects of 
strain hardening and strain rate hardening on stretchability 
are well known; both of these effects increase the forming 
limit strains of sheet metals, which are usually defined in 
terms of the maximum principal strains (el and E'2) attain- 
able from sheets prior to the onset of localized necking. ~.2 It 
is well known that a high degree of plastic anisotropy as 
represented by a large R-value, which is the ratio of width 
strain to thickness strain in a uniaxial tensile specimen, 
promotes formability in drawing. Recent stretch forming 
studies on strongly textured Ti-alloy sheets indicate that a 
large R-value also increases the resistance to localized 
necking in stretching conditions involving negative minor 
strains. 3'4 The experimental results, 3'4 a theoretical analy- 
sis s which assumes localized necking being initiated from 
an imperfection aligned along Hill's direction of zero- 
extension 6 and a reexamination 5 of Hill's theory, 6 all indi- 
cate that in the 62 < 0 regime, the enhancement of the 
forming limit strains by the R-value can be understood in 
terms of a critical thickness strain criterion for localized 
necking. According to this criterion, e* increases with the 
R-value as the result of increasing difficulties in attaining a 
critical thickness strain (e*) at a higher R-value. 

The effects of the R-value on biaxial stretching involving 
positive minor strains, on the other hand, remain inconclu- 
sive because of difficulties in separating the effects of plastic 
anisotropy from those of strain hardening and strain rate 
hardening in sheets with relatively similar, low R-values 1 
(R < 2) and of difficulties in determining whether localized 
necking takes place prior to fracture in sheets with high 
R-values .4 Theoretical efforts to elucidate the effects of the 
R-value are complicated by the fact that the calculated 
FLCs, in addition to strain hardening and strain-rate harden- 
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ing, also depend on the choice of the yield function 7'8 (for 
example, quadratic vs  nonquadratic Hill yield functions), 
the plasticity theory 9'1~ (flow vs deformation or vertex 
theories of plasticity), and on whether localized necking 
originates from material imperfections, 12 instability re- 
sulting from the presence of a vertex on the yield surface, 9 
or void growth.~3 Since Hill's direction of zero-extension 6 
does not exist when 62 2> 0 ,  neither Hill's theory nor the 
critical thickness strain criterion for localized necking is 
applicable under these biaxial stretching conditions. 

The hypothesis that localized necking initiates from mate- 
rial imperfection was first proposed by Marciniak and 
Kuczynski ~2 (M-K), with later extensions by Sowerby and 
Duncan, ~4 Hutchinson and co-workers, 6'8'~ as a means of 
describing localized necking in biaxial stretching when e2 is 
positive. The M-K analysis assumes the presence of a mate- 
rial imperfection in the form of a linear groove which lies 
parallel to the e2 direction. Imposing the same e2 inside 
and outside the groove while proportional straining is main- 
tained outside the groove, M-K have shown that deforma- 
tion within the groove occurs at a faster rate than the rest 
of the sheet. The concentration of strain within the groove 
eventually leads to the plane strain condition (de2 = O) 

within the groove and to localized necking. Using flow the- 
ory of plasticity in conjunction with Hill's quadratic yield 
function, 15 Marciniak, Kuczynski, and Pokora ~6 and also 
Sowerby and Duncan ~4 have demonstrated that by virtue 
of the sharp curvature in the smooth yield surface, a high 
R-value material containing an imperfection and stretched 
under equi-biaxial tension would locally attain the plane 
strain condition for localized necking at an earlier stage 
of the straining process and result in lower forming limit 
strains than that of a low R-value material. Similar depen- 
dence of forming limit strains on the R-value are also ob- 
served in theoretical FLC calculations 7'8 which are based on 
the flow theory and the nonquadratic Hill ~7 or the Bassani 
yield function.* is 

*The Bassani yield function is: [O" 1 ~- O-21N -}- N/M(1 + 2R)o'~" M 
]o'~ -- O'21M = [1 + N/M(1 + 2R)] o'N, where o', is the yield stress in 
uniaxial tension, and N and M are constants greater than or equal to 1. 
For N = M, the Bassani yield function reduces to the non-quadratic Hill 
yield function. 

That localized necking can originate from instability in 
the form of a vertex on the yield surface was first recognized 
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by Storen and Rice 9 and later by Hutchinson and Neale,m 
and by Neale and Chater. 7 Based on the rationale that the 
deformation theory of plasticity is equivalent to a flow the- 
ory which pernfits the development of a pointed vertex on 
the yield surface, these authors incorporated deformation 
theories of plasticity into classical bifurcation analyses 
demonstrating that for rate-insensitive materials localized 
necking can occur as the result of the development of a 
sufficiently sharp vertex on the yield surface during plastic 
straining such that the plane strain condition for localized 
necking is satisfied. The vertex theory was subsequently 
extended to imperfect, rate-sensitive materials by incor- 
porating deformation theories of plasticity into the M-K 
analysis. 7,m Comparisons of these calculations with results 
obtained based on the flow theory with smooth yield sur- 
face indicate that the computed limit strains are sensitive 
to whether or not a pointed vertex is allowed to develop on 
the yield surface; consequently, the shape of the yield sur- 
face and the choice of plasticity theories in FLC calcula- 
tion are important. In particular, the work of Neale and 
Chater 7 reveals that the role of the R-value in biaxial stretch- 
ing appears to be relatively small when the FLC predic- 
tions based on deformation theory are compared to those 
predicted by the flow theory with smooth yield surfaces. 

The objective of this paper is to delineate the roles of 
plastic anisotropy and the shape of the yield surface in 
localized necking of sheet metals under biaxial stretching 
(~2 > 0). Theoretical FLC calculations will be performed 
on the basis of the M-K analysis and using the quadratic Hill 
yield function in conjunction with either the flow or defor- 
mation theories of plasticity. The calculated FLCs will be 
compared with the experimental curves of a variety of sheet 
metals which exhibit a wide range of R-values and include 
a number of Ti alloys, AI alloys, and steels. In light of 
recent experimental data 19 which indicate that the biaxial 
response of HY80 steel is better described by the Drucker 
yield function, 2~ the constitutive aspects of FLC calculations 
will also be examined. The assessment will focus on steels 
and compare experimental data with theoretical results 
based on the flow and deformation theories of plasticity, 
including one which incorporates the Drucker yield func- 
tion. Although this study is mainly concerned with the 
E 2 > 0 side of the FLC, results for the case of e2 < 0 are 
also presented for the sake of completeness. The present 
effort thus augments recent work by Chan, Koss, and 
Ghosh 5 who examined, among other material factors, the 
effects of the R-value on localized necking at negative minor 
strains, and previous studies on the effects of strain harden- 
ing and strain rate hardening on sheet metal stretchability by 
Ghosh, 2 Lee and Zavert, z~ and Thomas, Oh, and Gegel} ~ 

II. M-K ANALYSIS FOR I M P E R F E C T  S H E E T S  

The procedures adapted in the present study for com- 
puting the e2 > 0 regime of an FLC follow closely the 
analyses of Marciniak, Kuczynski, and Pokora ~6 and those 
of Hutchinson and Neale, m Neale and Chater 7 for the cases 
where the methods of analysis are based on the flow and 
deformation theories of plasticity, respectively. For the 
e2 < 0 region, the analysis of Chan, Koss, and Ghosh 5 is 
used. Since the mathematical details of the analyses are well 
documented, they will not be repeated here; only the essen- 
tials are outlined below. 

A .  Const i tut ive  Re la t ions  

The sheet metals are assumed to exhibit isotropic harden- 
ing and a power law type effective stress-effective strain 
constitutive relation: 

3 = K ~ ~  ~ [1]  

where ~ = effective stress, ~ = effective strain, n = 
strain-hardening exponent, K = strength constant, e = 
effective strain rate, and m = strain-rate sensitivity ex- 
ponent. While use of Eq. [ 1 ] is common and that it appears 
to be adequate for the materials considered here, it should 
be recognized that neither it nor any multiplicative power 
law constitutive equation is able to predict the dependence 
of an FLC on the absolute strain rate unless the material 
constants themselves are a function of strain rate} 2 It should 
also be noted that Eq. [1] is identical to the Swift equation 23 
if a pre-strain term is added to 3. Since the pre-strain term 
is generally small (<0.01) ,  the material parameters in 
Eq. [1] which substantially affect the limit strain calcula- 
tions are the n and m values. 

B. Yie ld  Func t ions  a n d  the Assoc ia t ed  F l o w  L a w s  

The quadratic Hill yield function is frequently used to 
describe the biaxial behavior of  the thin sheets. For this 
yield criterion, assuming normal anisotropy, the effective 
stress and effective strain for plane stress (o-3 = 0) are given 
by 15 (see Appendix I) 

o" = 1 - - a  + a 2 o'i [2] 
~ R + 2  I + R  

de = ~ / ~ / ( 2 + R ) ( 1  + R ) I  + 2R 

�9 1 + - - - - -RPl  + + p2 de1 [3a] 

where 
0" 2 

a = - -  [3b] 
o ' I  

de2 
p = - - -  [ 3 c ]  

d E  l 

According to the flow theory of plasticity, the associated 
flow laws are 

de  i de  2 de  3 

ao-, - o-2 ao-2 - o - ,  (1 - a)(o1 + o'z) 

3R d~ 

2(2 + R ) ~  
[4] 

where a = (1 + R ) / R .  It can be shown from Eq. [4] that 
a is related to p, and 

a a  - l 
p - - -  [5] 

a - -  o~ 

On the other hand, the corresponding deformation theory 
relations are obtained by replacing d_ei and dE in Eqs. [3] 
and [4] by their total values e~ and e (i = 1,2,  or 3). It 
should be noted that the deformation theory is identical to 
the flow theory for simple, proportional loadings. For con- 
tinued plastic flow with small deviations from proportional 
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loading such as that experienced in an imperfection, the 
deformation theory yields plastic strain increments which 
are not normal to the smooth, quadratic yield surface. How- 
ever, the use of  the deformation theory in these loading 
paths can be rationalized on the basis that the yield surface 
develops a pointed vertex during plastic straining. 9 At such 
a vertex, the plastic strain increment vector can lie anywhere 
between the two outward normals of the yield vertex. 

The Drucker yield function, g, which contains both the 212 
(the second deviatoric stress invariant) and J3 (the third 
deviatoric stress invariant) terms is applicable for sheets 
with R = 1 and can be represented by 19 

27 
g - [J~ - CJ~] [6] 

27 - 4C 

where C is a constant. Based on Eq. [6], the effective stress 
for plane stress (o-3 = 0) is 

[ 27 ( 1 -  CJ~/J~) 1 ~ o  = [1 - c~ + a2] ~/2 27 4----~ 
t /6  

O" I 

[7] 

with J2 = bcr~ 
J3 = ho'~ 
b = E1 - c~ + c~2]/3 
h = - ( 2  - cr)(2c~ - 1)(1 + c~)/27 

and the corresponding incremental effective strain is ob- 
tained from Eq. [3] by substituting R = 1. The incremental 
plastic strain components are obtained from the associated 
flow rules (see Appendix I), and the plastic strain ratio p is 
obtained as follows: ''~ 

9(2o~ - 1)b 2 - 2C(2c~ 2 - 2cz - 1)h 
P = 9(2 - o0b 2 - 2C(2 - 2c~ - c~:)h IS] 

Plastic volume constancy is assumed such that 

de~ + de2 + dE2 = 0 [9] 

The constant C in the Drucker theory is a fitting parame- 
ter which determines the relative contributions of  J2 and J3 
in the yield function. For C = 0, the contribution of J3 is 
zero, and the Drucker yield surface is reduced to the von 
Mises, the quadratic Hill (with R = 1) and, for bcc metals, 
the pencile-glide yield surfaces. 24 A finite, positive C-value 
affects the shape of the yield surface and consequently the 
plastic strain ratio at a given stress state. Chan, Lindholm, 
and Wise 19 recently noted that in the range of C = 1.75 to 
2.25, the Drucker yield surface is practically identical to the 
Bishop-Hill yield surface 25 calculated by Bassani ~s for iso- 
tropic bcc polycrystalline metals deforming by {110} (1]1) 
slip. Both the Bishop-Hill and the Drucker yield surfaces 
were confirmed for a HY80 steel 19 and less conclusively for 
a HY 100 steel.26 Thus, upon a proper choice of the C-value,  
the Drucker yield function can be used as an analytical 
expression for either the pencile-glide or the Bishop-Hill 
{110}(1]1) yield surfaces. A comparison of the Drucker 
yield surface with the quadratic and the nonquadratic yield 
surfaces for the case o f C  = 2.25, R = 1, a n d M  = 1.6 in 
the appropriate theories is shown in Figure l(a). Compared 
to the quadratic Hill yield surface (which is identical to the 
von Mises yield surface when R = 1), the Drucker yield 
surface exhibits a shape curvature near the equibiaxial ten- 

sion (o-~ = o-2) region and a rather extended region where 
the plane strain condition (p  = 0) is approximately satis- 
fied, as illustrated in Figure l(b) which shows the plastic 
strain ratio as a function of the stress ratio, a .  On the other 
hand, the nonquadratic Hill yield surface is seen to elongate 
in the o-t = o-2 direction and the plane condition is satisfied 
at c~ = 0.75 (see Figure l(a)). 27 

C. M-K Approach 

The M-K approach postulates that a linear material imper- 
fection exists on the plane of a sheet metal deforming under 
biaxial stresses oh and o-2. The orientation of  the imper- 
fection is taken to lie perpendicular to the o-~ axis in the 
original M-K analysis for biaxial stretching involving posi- 
tive minor strains (e2 > 0) (Figure 2(a)) but has been modi- 
fied to lie in the direction of zero-extension for strain states 
involving negative minor strains (e2 < 0) (Figure 2(b)). As 
shown in Figure 2, the imperfection is designated as region 
B, and its initial thickness is to~. The region outside the 
imperfection is considered to be uniform and is referred to 
region A ; its initial thickness is designated as toa. 

The governing equations in the M-K analysis are the load 
equilibrium and compatibili ty conditions between regions A 
and B. For sheets with perpendicular imperfection and under 
biaxial stretching (e2 > 0), the equilibrium equation is: j6 

IAo- IA  ~- tBo-It~ El0] 

o r  

(O'IA//~A) (EA) n eA n exp(e3A) = f ( O - I / ~ / ~ B ) ( E B ) "  E~ ~ exp(e38) 
[11] 

where t is the thickness of  the sheet, E3 is the thickness 
strain, f is the imperfection factor which is defined as 
(KB toB)/(Ka toa), and the quantities ( )a and ( )~ represent 
the quantities in regions A and B, respectively. For a perpen- 
dicular imperfection, the corresponding compatibili ty equa- 
tion between regions A and B is 

de 2A = de 2B E 12] 

The limit effective strain 7A for a specific constant plastic 
strain ratio in region A (PA) c a n  be obtained numerically by 
incremental solution of Eqs. El 1] and E12] using the proce- 
dures described in Appendix II. For both flow and defor- 
mation theories, the incremental solution procedures are 
carried out until d~a is less than 1 • 10 4. The limit strain 
components (e* and e*) are then calculated from EA using 
Eqs. [3] through [5]. 

D. Critical Thickness Strain Criterion 

Using both the Hill theory 6 and an M-K analysis in which 
the imperfection is modified to lie at Hill 's angle of  zero- 
extension, Chan, Koss,  and Ghosh 5 have demonstrated that 
in the strain states between uniaxial tension and plane strain, 
localized necking of sheet obeys a critical thickness strain 
criterion whether or not an imperfection is present; the crite- 
rion is represented by 

el*(l + p) = - e *  = constant  [13] 

where e*,  the critical thickness strain for localized necking, 
is equal to the n-value for rate-insensitive sheets without an 
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(b) 
Fig. 1 - - ( a )  A comparison of the quadratic Hill yield function with the nonquadratic Hill and the Drucker yield 
functions for the case of R = 1. (b) A comparison of the plastic strain ratios for the Drucker yield function at 
various C-values. At  C = 0,  the Drucker yield function is reduced to the yon Mises, quadratic Hill, and the 
pencile-glide yield functions. 

imperfection but depends on the n, m, and f values for 
rate-sensitive, imperfect sheets. For imperfect sheets de- 
formed under the plane strain condition, the magnitude of 
e* is equal to e* and can be obtained using the M-K analy- 
sis. The e2 --< 0 side of the FLC can then be calculated using 
[13] and [3@ 

III. RESULTS 

A summary of the material parameters used in the FLC 
calculations is shown in Table I. The calculations are gener- 

ally based on small imperfections ( f  -> 0.99). Figure 3 com- 
pares the experimental FLC of a low R-value (R = 0.77) 
2036-T4 sheet ~ with the calculated curves based on either 
flow theory or deformation theory. In the e2 > 0 region, 
deformation theory predicts limit strains which are in rea- 
sonable agreement with the experimental data, while flow 
theory tends to overpredict the limit strains. Additional re- 
sults which compare the deformation theory predictions 
with the experimental FLCs are shown in Figure 4 for a 
number of aluminum alloys (6061-T4 AI,I 1100-H 12 A1,28 
5180-A129) and in Figure 5 for a HSLA steel 3~ (HS-4) and a 

6 3 2 - - V O L U M E  16A, APRIL 1985 METALLURGICAL TRANSACTIONS A 



c~ 2 

1 1 

I t t t t t t  

" -  - "  \ ' ~ x  ~ A ~ 

o 1 c 1 ' 

(a) (b) 

J 

~o~ 2 
2 

Fig. 2- -A schematic view of a sheet containing a linear imperfection and 
subjected to the biaxial stresses cr~ and or> The orientation of the imper- 
fection is: (a) normal to the or, axis, (b) aligned at Hill's angle of direction 
of zero-extension, 4'. 

Table  I. A S u m m a r y  o f  the n,  m,  and  
R V a l u e s  o f  V a r i o u s  Th in  M e t a l  Shee t s  

Material n m R 

ll00-Hl2 aluminum 2s 0.04 0.003 0.76 
2036-T4 aluminum ~ 0.24 0 0.77 
5180-0 aluminum 29 0.33 0 0.89 
606 l-T4 aluminum I 0.22 0 0.64 
HSLA steel (HS4) 3~ 0.16 0.005 0.80 
A-K steel 33 0.24 0.012 1.5 
Low-carbon steels ~ 0.24 0.012 1.0 
Ti-6A1-4V (weak texture, 24 ~ 3~ 0.065 0.016 1.0 
Ti-6A1-4V (weak texture, 538 ~ 3' 0.018 0.020 1.0 
Ti-6A1-4V (basal texture) 4 0.052 0.016 12.0 
Ti-5A1-2.5Sn (basal texture) 4 0.066 0.014 12.0 
C P - T i  32 0. 136 0.023 3.7 

2036-T4 Aluminum 

Critical Thick--/ 
ness Strain / 
Criterion / 

n = 0.24 
m = O  
R = 0.77 
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/ 
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4 / 
/ / "  (2xP erimental 1 

~ ~ I / . ~  LDTformation Theory 2 

I I I I I 
0 .I .2 .3 .4 .5 .6 

e2 

Fig. 3 - - C a l c u l a t e d  and experimental  FLCs of 2036-T4 aluminum. 

Ti-6A1-4V alloy 31 with a weak texture and low R-value 
(R = 1.0). Figures 3 through 5 indicate that for these sheet 
metals with an R-value less than or equal to unity, defor- 
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- ,6 
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- .5  Function 

~ Ref 29 
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1 :lO0-H12 Al 
f/~ Lf  : 019998 J 
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.3 -.2 -. I  0 .I .2 .3 .4 
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.5 

Fig. 4 - - C a l c u l a t e d  and experimental  FLCs of l l 0 0 - H l 2  A1, 5180-0 Al, 
and 6061-T4 AI. 

.6 
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\ + ~ . . . t  ~Hs-4 
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-.3 - i2 - , l  0 .I ,2 .3 .4 .5 

~2 

Fig. 5 Calculated and experimental  FLCs of a HSLA steel (HS-4) and a 
weak-textured Ti-6A1-4V. 

mation theory gives FLC predictions in the e2 > 0 region 
which are at least in fair agreement with the experimental 
data. In the e2 < 0 regime, the critical thickness strain 
criterion of Chan et  al. 5 also gives results which are in good 
agreement with the experimental curves. 

The results in Figure 6 indicate that for CP-Ti with a 
moderate R-value (R = 3.7) flow theory predicts limit 
strains which are in good agreement with the experimental 
da ta)  2 On the other hand, deformation theory is seen to 
underestimate the limit strains. For strongly textured Ti- 
6A1-4V and Ti-5A1-2.5 Sn sheets with R = 12, the flow 
theory predicts equi-biaxial limit strains (e* = e* = 0.057) 
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Fig. 6 - -  Calculated and experimental FLCs of CP-Ti. 
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Fig. 7--Calculated and experimental FLCs of strongly textured Ti-6AI- 
4V and Ti-5AI-2.5Sn. 

which are considerably smaller than those at uniaxial tension 
(e* = 0.80, e* = -0 .72) ,  as shown in Figure 7. The 
agreement between the experimental 4 and calculated FLCs 
is good in the e2 < 0 region but is inconclusive in the 
e2 > 0 region due to complications arising from inter- 
vention by fracture prior to localized necking. 

Neither flow theory nor deformation theory yields satis- 
factory forming limit strains in the e2 > 0 region for A-K 
steel 33 when used with the quadratic Hill yield function. As 
seen in Figure 8, deformation theory tends to underestimate 
while flow theory tends to overpredict the limit strains, 
unless the flow theory results are modified by a fracture 
criterion as done by Ghosh. 2 A possible way for rectifying 
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Fig. 8 - -  Calculated and experimental FLCs of A-K steel. The FLC which 
is based on flow theory and modified by fracture is from Ghosh.2 
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Fig. 9--Calcula ted and experimental FLCs of low-carbon steels. 
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the overprediction by the flow theory is by using the 
Drucker yield function instead of the quadratic Hill yield 
function, as demonstrated in Figure 8. Figure 9 shows 
that the FLC calculated based on the Drucker theory com- 
pares favorably with the forming limit scatter band of low- 
carbon steels, j In the e2 < 0 region, the critical thickness 
strain criterion again gives good agreement with the experi- 
mental data. 

IV. DISCUSSION 

In previous studies, Hutchinson and Neale have shown 
that theoretical FLCs calculated on the basis of the M-K 
approach depend critically on whether the flow or the defor- 
mation theory of plasticity is used. ~0 Their calculations indi- 
cate that the deformation theory tends to give FLC results 
which are less sensitive to the size of the imperfection and 
the resulting forming limit strains are smaller than those 
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obtained based on the flow theory. Similar differences be- 
tween the flow and the deformation theories were also ob- 
served in FLC results computed based on the Bassani yield 
function. 7 The present results not only confirm that the the- 
oretical FLCs depend on the method of solution of Eqs. [ 11] 
and [12] but also demonstrate that neither the flow nor the 
deformation theory can predict with confidence the stretch- 
ability of a variety of sheet alloys (see Figures 3, 4, and 8). 
Thus, a judicious choice of plasticity theory is required for 
theoretical analysis of sheet metal formability. 

None of the yield functions considered can predict the 
FLCs of sheet alloys exhibiting a wide range of R-values. 
Consequently, the yield function must also be selected judi- 
ciously. As demonstrated by Marciniak, Kuczynski, and 
Pokora, ~6 and by Sowerby and Duncan, 14 one of the most 
important factors affecting the limit strain calculation using 
flow theory in the biaxial tension region is the shape of the 
yield locus. Specifically, the sharp curvature in the quadratic 
Hill's yield locus of a high R-value material containing an 
imperfection would allow the plane strain condition for lo- 
calized necking to be attained at an earlier stage of defor- 
mation and result in reduced limit strains in the e2 > 0 
region than that for a low R-value material. The good agree- 
ment between flow theory and experiment in Figure 6 for a 
moderately high R-value CP Ti appears to support these 
analyses. The use of the quadratic Hill yield function for 
CP-Ti is supported by the work of Lentz et al. 34 On the 
other hand, the large limit strains predicted by these analy- 
ses for the low R-value sheets (R < 1) are not realized. The 
discrepancy between theory (flow theory with quadratic 
Hill's yield function) and experiment observed in the low 
R-value sheets can be explained in terms of an improper 
yield function. Recent FLC calculations by Mellor, 27'35 Neale 
and Chater, 7 and Bassani et al. ~ indicate that the forming 
limit strains of a low R-value sheet are considerably reduced 
if the nonquadratic Hill or the Bassani yield function is used 
in place of the quadratic Hill yield function. The reductions 
occur when the stress exponents in the yield functions are 
less than 2 such that the resulting sharp curvatures at or near 
the equi-biaxial tension region easily lead to the plane strain 
condition for localized necking. A comparison of the qua- 
dratic and the nonquadratic Hill yield functions is illustrated 
in Figure 1. It is also worthy to note that the nonquadratic 
Hill yield behavior has been observed in 2024-aluminum 
with an R-value of 0 .6 .  36 

In a similar way, the inclusion of a J3 term in the Drucker 
yield function also results in a sharper curvature near the 
equi-biaxial tension. The increased curvature is achieved, 
however, not by extending the yield surface in the o-~ = o-2 
direction as in the nonquadratic Hill and the Bassani yield 
functions, but by reducing stress path hardening as repre- 
sented by the reductions in the o-~/o-, ratios at and near the 
stress state of o-2/o-~ = 0.5 (the plane strain condition for 
R = 1) such that the plastic strain increment vector which 
lies normal to the yield surface can rotate to the plane strain 
condition more rapidly during plastic straining (see Fig- 
ure l(b)). As shown in Figure 1, the Drucker yield surface 
exhibits a rather extended region at whicb the plane strain 
condition is approximately satisfied. The consequence is 
that localized necking of sheets under equi-biaxial tension 
is predicted to occur at lower limit strains than that based 
on the quadratic Hill's yield function and, more importantly, 
the predicted FLC results are in good agreement with the 
experimental data of steels (see Figure 8 and Figure 9). 

METALLURGICAL TRANSACTIONS A 

Experimental support for the use of Drucker's yield func- 
tion for steels can be found in a recent study by Chan, 
Lindholm, and Wise 19 which shows that by a proper experi- 
mental determination of the C-value, the Drucker's yield 
function describes well the biaxial yield surfaces including 
normality and the plastic strain ratios of HYS0 steel and that 
these yield surfaces are practically identical to the Bishop- 
Hill {ll0}<lT1) yield locus calculated by Bassani m for iso- 
tropic bcc metals. The C-value was determined to be 1.75 
for HY80 steel. Comparing the pencile-glide yield surface to 
the {110}(1]-1) Bishop-Hill yield surface, Chan et al. also 
noted that the shape of the yield locus would vary with the 
crystallography of slip and in particular depends on whether 
deformation occurs by pencile-glide or {ll0}<lZl) slip. 26 
Recalling that upon a proper choice of the C-value, the 
Drucker yield function can represent both the pencile-glide 
and the Bishop-Hill {110} (111) yield surfaces, it seems log- 
ically that the C-value would also vary with the crystal- 
lography of slip and affect the FLC calculation through its 
influence on the shape of the yield locus. The present FLC 
calculation is based on a C-value of 2.25. A reduction in the 
C-value would increase the limit strain in the biaxial region 
(e2 > 0) because of a reduction in the sharpness of the yield 
surface curvature. It should also be noted that the Drucker 
yield function is applicable for isotropic materials only. In 
principle, it could be extended to anisotropic materials; the 
general form of the yield function and the associated flow 
laws remain to be developed, however. 

According to Storen and Rice, 9 the use of deformation 
theory of plasticity in localized necking analysis can be 
rationalized on the basis that the yield surface develops a 
pointed vertex during plastic straining. At the vertex the 
incremental plastic strain vector is free to be directed any- 
where between the two outward norlnals; the result is that 
the plane strain condition (de2 = 0) required for the onset of 
localized necking can be readily attained. The formation of 
such a vertex on the yield surface would explain the FLC 
overpredictions in the e2 > 0 regime by the ttow theory, and 
the reasonably good predictions by the deformation theory, 
for the low R-value (R < 1) sheets under biaxial straining 
(see Figures 3, 4, and 5). However, it should also be noted 
that even though yield vertex formation has been observed 
experimentally in certain cases 37 and shown to be a natural 
consequence of simultaneous slip on multiple slip sys- 
tems) ~'39 the question of whether yield vertices develop 
during plastic straining is still a controversial one. In most 
cases, the pertinent yield surface and incremental plastic 
strain vector data required for resolving the issue are gener- 
ally not available at immediate or large strain. Such are the 
cases for many of the aluminum and HSLA steel sheet alloys 
considered here (e .g . ,  2036-T4 aluminum). The work- 
hardening rate of 2036-T4 aluminum has been found to vary 
with the stress state, 4~ but the yield surface has been shown 
to change with plastic strain by inferring from plane strain 
tensile test data. 4~ The incremental plastic strain vectors, 
however, were not measured as a function of stress state; it 
is thus not possible to determine whether or not a yield 
vertex develops during plastic straining nor is it possible to 
determine the shape of the yield surface in the biaxial ten- 
sion region. 

The available experimental data 41 also suggest that 
2036-T4 aluminum might not work-harden isotropically as 
assumed. Recent theoretical computations reveal that FLCs 
obtained on the basis of kinematic or anisotropic hardening 
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Fig. 10 - -  A comparison of the FLCs of a moderately high R-value CP-Ti 
and a weak-textured, low R-value Ti-6AI-4V. 

models generally differ from those calculated by assuming 
isotropic hardening and in certain cases yield better agree- 
ment with experimental r e s u l t s .  42"43 Thus, it appears that the 
stretchability behavior of the low R-value sheets (R < 1) 
can be rationalized on the basis of the vertex theory, but it 
is not the only rationale. Other possible rationales include 
anisotropic hardening 4~'42 and smooth yield surfaces contain- 
ing a sharp curvature in the biaxial tension region. TM The 
mechanism responsible for the stretchability behavior ob- 
served in the low R-value sheets remains to be verified 
experimentally and might vary among the sheet alloys. 

Figure 8 also indicates that the limit strain at the strain 
state of plane strain (e2 = 0) is independent of the yield 
function or the plasticity theory. At plane strain, the strain 
ratio within the imperfection is identical to that outside 
the imperfection (Pa = P8 = 0). Under these conditions, 
O'IA/-~ A is equal to o'~e/-~8 and Eq. [11] is reduced to be a 
function of n, rn, f ,  the effective strains and their in- 
crements. As a result, the limit strains depend only on the 
n, m, and f  values but not the yield function or the plasticity 
theory. 7 It is thus apparent that the influence of the yield 
function and the plasticity theory on the limit strain is im- 
portant only for biaxiat stretching involving positive minor 
strain (e2 > 0) .  

The question of whether a low R-value improves the 
biaxial stretchability of sheet metals still remains. Fig- 
ure 10 compares the FLC of CP-Ti with that of a low R- 
value Ti-6A1-4V sheet. 3' In the e2 > 0 region, the forming 
limit strains of the Ti-6-4 sheet (n = 0.018, m = 0.020, 
R = 1.0) are expected to be smaller than that of CP Ti 
(n = 0.14, rn = 0.023, R = 3.7) on the basis of lower n 
and m values. The Ti-6-4 FLC curve, however, lies above 
the CP-Ti curve, indicating superior forming limit strains. It 
thus led the author to conclude that the lower R-value of the 

Ti-6-4 sheet is responsible for the increase in the forming 
limit strains observed in the s2 > 0 regime, and the en- 
hancement is likely the consequence of the less sharp curva- 
ture of the initial yield surface. In contrast, it has been 
shown previously that e* increases with the R-value in the 
e2 < 0 region but is independent of the R-value at plane 
strain (s2 = 0). According to Chan, Koss, and Ghosh, 5 this 
can be rationalized on the basis of increasing difficulties of 
attaining a critical thickness strain for localized necking at 
a higher R-value. These strain-state dependent effects of the 
R-value are generally observed in Figure 10, The influence 
of the R-value, however, appears to be more pronounced in 
the e2 < 0 than in the 82 > 0 region. 

It should also be noted that the R-value can affect FLCs 
through its influence on fracture, as evidenced in Figure 7. 
Figure 8 shows that the FLC calculated using the Drucker 
yield function is quantitatively similar to Ghosh's fracture 
modified F L C ]  especially at and near equi-biaxial tension. 
Hence, the present result raises the possibility that localized 
necking and fracture might occur at approximately the same 
limit strain in A-K steel. 

V. CONCLUSIONS 

1. The FLCs calculated on the basis of the Marciniak- 
Kuczynski analysis are sensitive to the choices of yield 
function and plasticity theory when e2 > 0. None of the 
yield functions nor the plasticity theories examined can 
predict with confidence the stretchability of a variety of 
sheet alloys in the e2 > 0 regime. 

2. When used in conjunction with the quadratic Hill yield 
function, the flow theory gives good FLC predictions for 
sheets with high R-value (R -> 3.7) while the defor- 
mation theory yields good FLC predictions for sheets 
with low R-values (R < 1). 

3. The effects of plastic anisotropy on the biaxial stretch- 
ability of thin sheets appear to be mixed and strain-state 
dependent. The forming limit strains are enhanced by a 
low R-value in the e2 > 0 region of an FLC but increase 
with the R-value in the e2 < 0 region and are indepen- 
dent of the R-value at plane strain (e2 = 0). 

4. The enhancement of e* by a high R-value in e2 < 0 
region is the result of increasing difficulties in attain- 
ing a critical thickness strain. The increase of e* with 
decreasing R-values in the e2 > 0 region is the con- 
sequence of a less sharp curvature in the initial yield 
surface. 

APPENDIX I 

The quadratic Hill yield function, f ' ,  for plane stress and 
the associated flow laws are obtained from Reference 15. 

f '  = (G + H ) G  2 - 2Ho',cr2 + (F + H)o-~ = 1 [A1] 

de ,  = dA[H(o-i - 0"2) -}- G O ' I ]  

de2 = dAEFo'2 + H(o'2 - o-,)] [A2] 

d e 3  = d A [ - G O ' l  - Fo ' 2 ]  

where F, G, and H are anisotropy coefficients, and dA is a 
deformation-history-dependent parameter. According to 
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Hill, the appropriate effective stress and the incremental 
effective plastic strain would be 

~ =  ~7@-[ ( G +  H)GOZ-2HOr'GO2+(F+F+G+H G)GO~] 1/2 

[A3] 

_ [ -~  (F + G + H)  v2 

~3 Q 

where 

[F(Gde2 - Hde3) 2 

+ G(Hde3 - Fde , )  2 

+ H ( F d e l  -- Gde2)2] I/2 

[A4] 

Q = FG + GH + H F  

For material exhibiting normal anisotropy, F, G, and H 
are related to the R-value which is the ratio of the width 
strain to thickness strain in a uniaxial tensile test. 

H H 
- - n [ A 5 ]  

F G 

and 

F = G 4 = H  

Equations [A3], [A4], and [A2] can be expressed in terms 
of the R-value through Eq. [A5]. The resulting equations are 
shown in Eqs. [2], [3], and [4], respectively. For uniaxial 
tension, Eqs. [2] and [3a] can be reduced to give the follow- 
ing relationship: 

and 

[A6] 

~d~ = Go lde l 

Therefore, the effective stress and the incremental effective 
plastic strain are related to Go, and de~ on the basis of equiv- 
alent plastic work. 

The associated flow laws for the Drucker yield function 
(Eq. [6]) can be obtained on the basis of the incremental 
(flow) theory of plasticity. 

Og 
deij = d A - -  [A7] 

0Goij 

Using Eq. [A7], the incremental plastic strains in the 1 and 
2 principal directions are derived as follows: 

de~ = ZdA[9(2o', - Goz)J~ - 2C(2Go~ - 2Go,Goz - Go~)J3] 

[AS] 

de2 = ZdA[9(ZGO2 - Go,)j2 _ 2C(2GO 2 _ 2Go,Go2 - Go~)J3] 

[A9] 

3 
Z - -  - -  

27 - 4C 

where 

The plastic strain ratio, p, is readily obtained by dividing 
Eq. [A9] by Eq. [A8] to give the expression shown in 
Eq. [8]. Assuming constancy of volume during plastic de- 
formation, the incremental thickness strain can be written in 
terms of O and de l by substituting Eq. [3c] into Eq. [9] 

de3 = - (1  + p)de,  [A10] 

A P P E N D I X  I I  

(i) M-K analysis using the quadratic Hill yield function and 
the f low theory of  plasticity. 

Eq. [11] can be rearranged to yield the following form: 

( O'IA/-'O'A)X m 
- f T  . . . .  (o'm/GoB) exp[e3B e3a] [A 11] 

where 

~A 
X = d ~  A/d-{B, T = =- 

EB 

From the associated flow laws in Eq. [4], we obtain 

de1 3 R d e z  
- [A12] 

1 + R~ 2(2 -t- R)-~a 
--T-JGo A - GO2A 

After substituting Eq. [3a] and rearranging terms, GOIA/-O-A 
has been found to be 

where 

q = 

GoIA B'  
_ = q X / 1  - [A13] 
O" a 

~ /  (2 + R)(1 + R) 
1 + 2 R  

(1 + 2R)p 2 
B' = [A14] 

(1 + R) 2 1 + 1 +~---RP + p2 

Following the procedures of Marciniak et al.,16 Go,B/~8 is 
given by the following expression: 

GoJ = q[1 - B'X2] ~/2 [A15] 
Go B 

Using Eqs. [3a] and [A10], e3a is expressed in terms of pa 
and ~A to give 

e3A = - C ~  A 

where 

1 +RA 
ial6  

q 1 +  ~ - ~ p A + P l  

Eqs. [A13], [A15], and [A16] are then substituted into 
Eq. [A 11], yielding 

~ / I  - B ' X  m 
- f T  -n exp[e3e + CeA] [A17] 

~/1 - B ' X  2 

Following the lengthy mathematical procedures outlined in 
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Reference 16, which involve both the flow laws (Eq. [4]) 
and the constraint equation (Eq. [12]), the thickness strain 
within the imperfection can be expressed in terms of d 8  a 
and d-eB as follows: 

de3B = -{a ' [1  - B'X2] '/2 + DX}d-~B [Algl 

where 

(2 + R)(1 + R) [A19] 

ahA 
O = [A20] 

(1 + R) 1 + PA + p2 

and B'  is given by Eq. [A14]. For a given PA, d~B(d-{B is 
prescribed) and e , ,  Eqs. [17] and [A18] can be solved simul- 
taneously using the 4th order Runge-Kutta method to obtain 
d eA. 6A and ~B are then updated by adding dSa  and d-{, to 
their previous values, respectively. The incremental solution 
procedure is repeated until d-Ea is less than 1 x 10 -4. 

(ii) M-K analysis using the quadratic Hill yield function and 
the deformation theory of plasticity. 

Eq. [11] remains valid when the deformation theory is 
used in the M-K analysis instead of the flow theory. Fol- 
lowing the procedures outlined in Section (i) but replacing 
the flows with the deformation laws, Eq. [A17] becomes 

" , / 1  - 8 ' x "  
- f T - "  exp[e3e + C-{A] [A21] 

N / l -  B'T 2 

B' and C are given by Eqs. [A14] and [A16], respectively. 
On the other hand, Eq. [12] is replaced by 

F~ 2A = E 2B 

and Eq. [A181 becomes 

e3B = --P~B [A22] 

where 

P = A'~I - B'T2] t/2 + DT 

A' and D are shown in Eqs. [A19] and [A20], respectively. 
Eq. [A22] is then substituted into Eq. [A21] to give the 
following expression: 

", /1  - B ' X "  
- i T  -n exp[Cea - P~B] [A23] 

~/1 -- B ' T  2 

Eq. [A23] is reduced to Eq. [9] of Reference 10 when 
R = 1. For a given pa, deB (deB is prescribed), eA and ~B, 
Eq. [A23] can be solved using a simple Newton-Raphson 
method to obtain d~A. At each incremental step, ~A and eB 
are updated by adding d~A and des ,  respectively. The in- 
cremental procedure is repeated until d-{A is less than 
1 • 10 -4. 

(iii) M-K analysis using the Drucker yield functions and the 
flow theory of plasticity 

The O'~A/-~A and Cr~B/ge quantities in Eq. [11] are ob- 
tained from Eq. [7] by replacing oe with o/a and aB, respec- 
tively. The thickness strain e3a is obtained using Eq. [A10] 
and Eq. [3A] by substituting R = 1 and the plastic strain 
ratio, Pa 

where 

(1 + PA)-- 
63A -- - -  e A [A24] 

C1 

2 
c~ = ~ ( 1  + PA + O~) 'j2 

Similarly, e3B is obtained as 

- (1  + ps)-e~ 
E 3 B  - -  

C2 

with 

2 
c2 = ~/5(1 + p .  + 0211/2 

[A251 

After substituting the expressions for O'IA/~A, O ' I B / - ~ B ,  E3A 
and e3B, Eq. [11] is expressed in terms of aa, aB, PA, pB, 
Ca, eB, d-Sa, K-EB, and other material constants. Eq. [12] is 
also expressed in terms of d~A and d ~  as follows: 

PA d-Sa PB 
C~ = ~22 d-~B [A26] 

For a given aA, PA is calculated using Eq. [8]. Substituting 
the prescribed values of aa, pa, N-EB, and the current values 
O f ~ a  and d-{B, deA and aB (PB is calculated in terms ofaB 
using Eq. [8]) are obtained by solving Eqs. [11] and [A26] 
simultaneously using the Newton-Raphson method. -~a and 
eB are updated at each solution step by adding d-~a and dTe, 
respectively. The incremental procedure is repeated until 
dSa  is less than 1 x 10 -4. It should be noted that this 
incremental solution procedure is a very general one; it is 
not restricted to a particular yield function and avoids the 
lengthy mathematical manipulations associated with the 
procedures described in Section (i). 
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