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Snmmary. - -  Conformal covariant Green's functions and operator-product 
expansions for more than two operators are discussed. Analyticity prop- 
erties are investigated and asymptotic expressions derived. Extension 
in D-dimensional space-time is studied and the peculiar role of D ~ 2, 
both group-theoretically and as connected to infinite-momentum frames, 
is pointed out. The role of shadow singularities in relation to Euclidean 
metrics is discussed. 

l ,  - In~oduetlon.  

The possible role of conformal covariance in the description of asymptot ic  

properties of renormalizable field theories has recently at t racted much attention. 

Recent  work has used conformal eovariance in connection with skeleton graph 

expansions in renormalizable field theories (1). Such an approach has revealed 

(1) ~.  1V[ACK and K. SYMANZIK: ~ O ~ b m .  Math. Phi8., 27, 247 (1972); G. MACK: in 
Scale and Con]ormal Symmetry  in  Hadron Physics (New York, 1973). 
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itself of great success as it  in principle allows for calculations of scale dimen- 
sions und coupling constants (3). A different, bu t  perhaps related, approach uses 
conformal covariance in conjunct ion with the hypothesis of operator-product  
expansion at short distance (3). Such an approach has a direct relationship 
to measurable quantit ies which are known to be connected to matr ix  elements 
of operators occurring in Wilson expansions, or in its extension over the entire 
light-cone (~). Conformal covariance, applied to operator-product  expansions, 
appears as a powerful constraint,  fixing the relative strengths of infinite chains 
of operators (5). Conformal eovariant  Wilson expunsions allow for the con- 
struction of conformal eovariant  Green's functions. Par t icular  examples are 
the two- and three-point  functions, directly connected to  the operator-product  
expansion for two operators (disconnected and connected par t  respectively), 
and the four-point  function. For  the la t ter  it is possible to derive an expansion 
into a sequence of irreducible graphs, where each graph corresponds to the 
exchange of infinite towers of local operators, i.e. to exchange of infinite-di- 
mensional representat ions of conformal ~lgebra (e). Such sequences ~re l~belled 
by  two conformal quan tum numbers,  the spin and the dimension of the ex- 
changed local operator of lowest dimensionality. In  relativistic field theory,  
the natural  f rame of reference for an unders tanding of conformal invariance 
is obviously offered by  the Ward  identities for the conformal currents. This 
approach leads to the Callan-Symanzik equations (7). To be specific, let us 
consider a definite model, namely the gr self-interacting theory.  The Ward  
identities (7.8) read 

and 

~ [ x ~  Jr l(g)](O[T(q~(x~) ... ~0(x,))[0 > :fd4z(O[T(O(z)qD(Xl) ... ~(x.))]0) 

,~[2x~,x'~,--x~+21(g)]<O[T(q)(x,) ... q~(x,,))[0> ~--fd'zz~,<O [T(O(z)q~(Xl) ... ~(x~))[0>, 

where O(x):--~?(g)cp~(x)--~(g)q~'(x). Here  /(g), ~(g) and fi(g) are functions 
of the coupling constant  g. These functions summarize the breaking of the  naive 

(2) G. ~kCK : Lectures Notes i~ Physics, Vol. 17 (Berlin,  1972) ; G. PARISI and  L. PELITI : 
Lett. Nuovo Cimcnto, 2, 627 (1971). 
(3) K. WILSON: Phys.  Roy., 179, 1499 (1969). 
(4) R .A .  BRANDT and G. P~EP~,RATA: Nucl. Phys., 27B, 541 (1971); Y. FRISHMAN: 
Phys. Rev. Lctt., 25, 960 (1970). 
(5) S. F:~RRARA, R. CrATTO and A. F. GRILLO: NucL Phys., 34B, 349 (1971). 
(e) S. FERRARA, R. GATTO, A. F. GRILLO and G. PA•ISI: Nuvl. Phys., 49 B, 77 (1972). 
(7) C. CALLAN: Phys.  ReV. D, 2, 1541 (1970); K. SYMANZIK: Comm. Math. Phys., 
18, 227 (1970). 
(s) B. SeHROER: Lett. Nuovo Cimento, 2, 867 (1971); G. PARISI: Phys. Lett., 3 9 B ,  
643 (1972). 
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classical symmet ry  f rom mass and renormalization effects. Such Ward  identities, 
as is well known, do not generally admit  of powerlike solutions. However,  asymp- 
totically the (( soft ~) ~ t e rm in O(x) may be neglected; if fi(g) then happens 
to vanish (identically as in the Thirring model or due to the fact  tha t  g is such 
as to make it  zero), one sees t h a t  the only difference from , n a i v e ,  application 
of scale and conformal symmet ry  would lie in the possible deviation of l(g), 
the  coupling-dependent scale dimension, f rom its canonical value. However,  
i t  is also known (.7.9) tha t ,  under  general assumptions, the mere existence of 
a zero of fi(g) (besides the trivial per turbat ion theory  zero) can ensure asymptot ic  
scale and conformal symmet ry  for the solutions of the  homogeneous Ward  
identities (masses neglected). In  this paper  we shall directly consider a situation 
for which f l (g)~ 0 at  least for  the physical value of g. In  the light of the 
general results we have just  recalled, this might  be too a strong condition and 
in fact  most  of the results are presumably extendible,  under  some restrictions, 
to  the more general case. However,  under  such an assumption we can deal with 
conformal symmet ry  algebraically and derive, in a sense, a maximal  set of im- 
plications, whose extension to more general situations m ay  then  be rediscussed 
with the help of Callan-Symanzik techniques. I t  will generally be useful to 
deal with a D-dimensional space-time. In  fact  most  of the results exhibit  simple 
analyt ic i ty  properties in D. The value D ~ 2 turns out  to be of particular interest 
because of the simpler group-theoretical  s tructure and also, from a physical 
viewpoint,  because of its connection to asymptot ic  limits. 

In  Sect. 2 we present  a general discussion of operator  expansion. In  Sect. 3 we 
turn  to the four-point function and establish its conformal properties. Section 4 
is devoted to the s tudy of the analyt ici ty  properties. In  Sect. 5 we examine the 
various light-cone limits and introduce the collinear conformal group. Section 6 
summarizes some constraints on normalizations. In  Appendix A we report  
some rarely used properties of double hypergeometric functions. In  Appendix B 
we give the momentum-space representat ion of conformal covariant  vertices. 
In  Appendix C we examine the inclusion of a larger class of representations of 
possible interest .  

2. - Operator expansion in a D-dimensional  space-time. 

Let  us start  with the formulation of a conformal covariant Wilson expansion 
in a D-dimensional space-time; the corresponding Lorentz group is isomorphic 
to 0D_I. 1. One has g ~ =  D. The conformal group is isomorphic to the 

pseudorthogonal group OD, ~ in 2 ~ - D  dimensions. 

(9) S. COLEMAN: Read'coati S.I.F., Course LIV, edited by R. GATTO (New York, 
1973), p. 280. 
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Let  us consider three local operators A(x), B(x), O(x) which for simplicity 
we assume to be conformal scalars (i.e. they  are Lorentz  scalars and moreover 
they  satisfy [A(0), K , ]  ~ 0 and [A(0), D] = iIAA(O), where Kg is the vector gen- 
erator of special conformal transformations) (*). The only nonvanishing Casimir 
operator  of the conformal group is for these representations Cx, C z ~ L(D-- l). 
We call l* = D -- l the (~ shadow d imens ion ,  of the dimension l (~o). Note tha t  
Ci-~ ll* and I-4-~*----D. The coupling of local operators of the type  {0.}'- 
�9 Fq-0(x), where { ~ } ' =  ~ . . .  ~ . ,  to the operator  product  A(x)B(O) turns out 
to  be of the following form (tx): 

{ ]/(~- -~'' r(t) c~,B. 
(2.1) A(x)B(O) = \ ~ l  F((I + AAB)I2)F((I--A~B)/2) 

1 

f ( o_x  .) �9 d~.,~(zl~+~l/2-z(1 -)l)-czl"~+z)/~-lo-F 1 l + 1 - - ~ - ;  ~ - ; t ( 1 - - ~ l ) [ - ' l  O()lx) -t- -.. 

0 

where ZAs ---- l~ ~- l s and A~s = l~ --  1 B respectively. 
The light-cone restriction turns  out to be 

(2.2) z ;  o(0)+ ; 

it  is interesting to observe tha t ,  apar t  f rom the  dynamical  coefficient ~ B ,  
(2.2) is D-independent.  

Generalization to conformal group representations with nonzero spin can 
be given. 

The general way to obtain the  operator-product  expansion (OPE) is to 
s tar t  with the ver tex-graph ident i ty  for T*-ordered products  

(2.3) r (  (z$ + 3.~B)/2 ) r (  (z* - 3.B)/2)r(z) 
<01T*(A (x)B(O)O(z))I0> = F((1 + A~B)/2) F((l  - -  AA~)/2) F(D/2 -- 1)" 

which can be rewrit ten as 

<OIT*(A(x) B(O)O(z)) 10> oc f d  D t<OIT*(A(x) B(O) O*(t))I0> <O1T*(O(t) O(z))10> . 

(*) D is the dilatation operator; note that the same letter is used also for the number 
of dimensions, but there should be no confusion. 
(lo) 8. FERRARA, R. GATTO, A. F.  GRILLO a n d  G. PARISI: LetL Y u o v o  C i m e ~ o ,  4, 115 

(1972) .  
(zz) N o t a t i o n s  are  t h e  s a m e  as  in ref .  (5). 
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I f  we per form a Wick ro ta t ion  xo-->iXo, the  T* product  is just  equivalent  to 

the  Schwinger 's  funct ion and so one can write 

(2.4) A(x)B(O) ~:fd ~ t < 0 1 A ( x ) B ( 0 ) 0 * ( z ) 1 0 >  O(t) -4- .... 

For  the  correct prescript ion in pseudo-Eucl idean space see ref. (~). 
To obta in  (2.1) f rom (2.4)we insert  a Riemann-Liouvi l le  fractional  t ransform 

into (2.4) 

(2.5) A(x)B(O) = F((1-4- zlAB)/2)F((1-- AztB)/2)F(D/2 - - l )  ~ ]  " 

1 

0 
�9 [x '~(1 - -  ~)]D/~-z exp  [t. 0 ]0(x) ,  

and  use the  relation 

(2.6) f d~t exp [t-~][t 2 -~- x~X(1 - -  ~t)]-t*-- - 

oo 

l f i  - r ( z * )  d ~  o~'-  d ' t  e x p  [ - -  ~( t  ~- + ,~(1 - -  ~)~'-) + t .  a]  = 

0 

0 

0 

1 

The prescript ion in Minkowski space is obta ined according to the subst i tut ion 

K,_. ,~( (--  ~(~ - -  X )x~ [])~) -~ s in~( t - -  D/2 ) 

we obta in  eq. (2.1) b y  recalling the  relation 

(2.7) 

(12) S, FERRARA, A. F. GRILLO and G. PARISI: Lett. NUovo Cimento, 5, 147 (1972). 
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We note  tha t  the K -function is even in its index. Therefore it would include 
in the Wilson expansion the (~ shadow,  singularity 

[ i' 1 r(z) 
(2.8) A(x)B(O) = [ ~ ]  F((1 3- a~s ) /2 )_P( ( l -  AAs)/2)" 

1 

- -  x2 D~) 3- .fd~(,+~,,,,,2_l(l_~)(,_~,12_loFi(13- I_D; ~ ~(1--~) . l+--~l*]O(,~x) I 

0 

This clearly would violate the Wilson dimensional rule for the coefficient sin- 
gulari ty whenever  1 > D/2. 

Generalization to  higher-spin representations is straightforward. I t  is suf- 
ficient to consider the ver tex-graph ident i ty  in the general form 

(2.9) <O]T*(A.(x)Bm(O)Oflz))lO > = 

=fd "t <o IT* (A.(x)B.,(O)O~,(t))10> <OIT* (OAt)Oj(z))10> 

and the  Wick-rota ted  version in 0~ 

(2.10) <O[A,(x)B~(O)Oj(z)]O > =fd~'t<OlA,(x)BAO)O~,,(t)lO> <OlOAt)O~(z)lO>. 

The OP E  in 0 D becomes 

(2.11) A,(x)nm(o) =fdDt<OJA,(x)S,,(O)O*,(t)]O> Ox(t)3- 

Clearly expression (2.11) is symmetric  under  l+--~l*, but  such a symmet ry  in 
the  pseudo-Euclidean space can be removed as in the scalar case. 

For  A, B scalars, the kernel in (2.11) becomes 

(2.12) <OIA(x)B(O)O~,(I)[O> = ( 2 - � 8 9  ( 2 -�89 

1 

where Ij J, and it is unders tood t h a t  the traces are subtracted.  v j = D - -  -- 

3. - Covariant expansion o f  the 4-point function.  

As is well known, conformal symmet ry  puts  strong constraints on the various 
Green's functions of the theory.  In  general, for an n-point Green's function 
one has an arbi t rary  funct ion of n ( n -  3)/2 parameters  if 

n ( n - - 3 )  ( D 3 - 2 ) ( D 3 - 1 )  
- - < n D  

2 2 
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and  

nD 
(D + 2)(D ~- 1) 

2 

otherwise. I t  follows tha t  ~he functional form of two- and throe-point  functions 
is completely fixed, while the four-point  function depends on an arbi t rary  
funct ion of two conformal invariant  parameters  (D ~ 1). In  particular the 
most general form of the four-point  function for arbi t rary  conformal scalars 
has r following form:  

(3.1) (OIA(x)B(y)  C(z)D(t)lO) : [ (x--  y ) ~ ] - ~ - ~ ) "  

�9 [ ( x -  z)~]-~(~+~o)[(x-  t )2]-~(~-~~ t)2] -~(~~ fie, ~), 

where 

(x - -  t)~(z - -  y)2 (x - -  z)~(y - -  t)~ 
Q =  ( x _ y ) 2 ( z _ t ) 2  , ~ :  ( x _ y ) ~ ( z _ t ) 2 "  

Insert ion of the  Wilson expansion in the operator  product  A ( x ) B ( y )  allows for 
a generalized conformal covariant  partial-wave analysis of the scattering am- 
plitude. Each  te rm of this expansion corresponds to the exchange of a con- 
formal tensor operator 0~,...~(x) together with the infinite set of local tensors 
(~}~V7 ~ O~1...~(x ) of an infinite-dimensional representat ion of conformal algebra. 

Let  us first consider the exchange of a local scalar operator  O(x) of dimension 1. 
One has simply to insert the ansatz (2.1) into the left-hand side of eq. (3.1). 
Using the same procedure as in r d .  (8) one finds 

F(1) 
(3.2) /o(e, 7 ) =  v ~c4~+~oo' F((z + A~B)/2)F((Z--A~,)/2) 

1 
~-t('Jcn+|) 

�9 ~d(~a�89 a)-t(Aaa+Aco)-l( ~- -F 1 - - ~ ]  
j \ a  
0 

�9 ~N1 ~ ( I - - A c D ) , - ~ ( I + A e D ) ; / + 1 - - ~ - ;  + = 

(1 ; o ,)] 
�9 /~4 ~ ( l + A c ~ ) ,  ( l + A ~ B ) ; l + l - - g ; l + g ( A A ~ + A o ~ ) ; - ~ ;  0 + 

[ ~\�89 Aco) 

where Fa(a , fi; ~; ~'; x; y) is a double hypergeometric  flmction. For  details 
see Appendix A. The previous formula simplifies in the special case of D ~ 2. 
In  fact  for this case 0~,~----02.~ Q 0~,1 and the two factor  groups 02,~ act as 
projective transformations on the light-cone variables x ~ =  x ~  x 3 (x~ ~ 0). 
Using a general formula for the double hypergeometric function, valid for 
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~ + ~ = r + r ' +  1, 

(3.3) F4(~,fl;7;7';x(1--y);y(1--x))=~F,(a, fl;r;x)~Fx(a, fl;7';y), 

one obtains that  the te rm in the curly bracket on the right-hand side of eq. (3.2) 
simplifies into 

(3.4) {[ r ( - ~ ( ~ , + / 1 ~ ) )  . 

1 1 (x---y-)(t---z-)~. 
"~/~1 ~ (l + AAB), ~ (l A- LIED); l; (x---t-)(y---z-)] 

/~ (1 1 1 (x + --  z+)(y + -- t+)~] 
"2 1 ~ (l ~- AAB), ~ (l A- AvD); 1 A- ~ (A~B + Ac9) ; (x + _  t+)(y + _  z+)/j + 

+ ~ ~ ~ ~ ~ / [ ( x +  - t+)(y+ - ~+)(x- - t - )(y-  - z - ) ~ r  + ~oo~ [ / j ~  ~ _ / ,  ~ ,  / '  o~ - ~  - / '  o~]}  �9 

The factorization of (3.4) obviously reflects the factorized form of the con- 
formal group for D ~ 2. We will re turn to the two-dimensional conformal 
group, in connection to light-cone limits, in the next Sections. In  order to 
generalize formula {3.2) to the case of an exchanged tensor, O~,...~,(x), of ar- 
bi t rary order n it is useful to work with the Wick-rotated version of eq. (3.2). 
This is obtained with the  OPE (2.4) instead of (2.1) inserted into eq. (3.1). 
Using the results of ref. (l~) one obtains 

(3.5)  
Fq)F(( t*- -  A~,.)/2)/~((Z * + Ai,)/2) 

]VCR(o, 7) = F( (l + Aw)/2 )F( (I-- AcD)/2 ) I'(D/2 --I)F(D/2)" 
1 

0 

"2-F1 -~(I*--ZJ.tB), ( l - - z l t s ) ;  ~- ;1  ~ -~ 1 ff " 

Formula  (3.5) can be rewrit ten using the decomposition 

(3.6) F ( 1 I ( / - - A ~ B } ; D ; 1  ~ Q ) 
2 1 ~ ( I * - - A A B ) , ~  ~ 1 - ~  = 

F(D/2)I~(D/2-1) (~ e '~tcA~-~ 
= r ( q * - A ~ , ) / 2 ) r ( q ,  + ~ , ) / 2 )  ,v  + V--~/  

2 ' 2 ; / + 1 - - ~ ;  + 1 ~ - - ~  + 

I'(D/2)F(1--D/2) (~ ~ ~"~-~') 
+ / ' ( q -  ~,,~)/2)r((z + ~ ) / 2 )  ._  + i----- ~! " 

"~:F1 (l*--A,4~),~(l*+ AIAB); / + 1 - - ~ - ;  + ~ - - ~  ~ �9 
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The relation between the Wick-rotated and the pseudo-Euclidean version is 
simply obtained by  considering the first term in the decomposition (3.6) and 
observing the overall symmetry  in the substitution a.-+ 1 --  (~, AaB~-~-- A w ,  
x~-+t, z+-~y (~+-~ Q, ~ , ~ ) .  The important  point is that ,  for the Wick-rotated 
form, generalization to arbitrary tensors is trivial. 

In  fact  in this case one simply considers the ansatz (2.11) with n = m---- 0 
and arbitrary J ,  for which the kernel of the integral is given by eq. (2.12). 

Using the vertex-graph identi ty one gets 

(3.7) <OlA(x)B(y)C(z)D(t)lO>.= 

----fdD~<O IA  (x)B(y) 0 ....... (~) IO> <o IO*~,...~,(~) C ( z ) D ( t ) I 0 >  = 

[ 1 ] (,~,B-~,,),'2 r 1 1 (,~c~,-,:)/~ l" f I- / 1 \ 1 

1 -f- 1 1 ~, 1 ~ 1 + 
�9 "" L \ ~ _ z ]  - 

Collecting together the various terms one can write (3.7) in the following form: 

(3.s) 

where 

(3.9) 

and 

(3.10) 

< O ] A ( x ) B ( y ) C ( z ) D ( t ) I O > ' = [ ~ ]  [ ( z - - t f J  " 

f ~ ' [ ( ~ J  [ ~ J  A~"(xy, zt)CD"'~-I( - ~ r  

1 A 
- -  Q~(xy, zt) = cos X Y  = 

2[(x --  y)2(z - -  t)2] �89 

�9 { x ~ , ~ ( x  - z)~ + x ~ , , q y  - t ) ~ -  x ~ , , ~ ( y  - z)~ - x p ~ ( x  - t)~} 

[ ( ~ -  x3 )q~-  x,)2J 

A d x y ,  zt) ---- [ (~ - -  z)2(~ ~ t)~(x - -  Y)~]t 
[(2--  x)~(~ - y ) q z - -  t)~l 

( z _ t ) 2  ]~/2 
d~f~(~zt) = [ ( } _ ~ - _ t )  2] dD}, 

1 

and C2/2-1 is the spherical harmonic of the homogeneous Lorentz group 0 n 
in D dimensions. 
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Expression (3.8) is manifestly eonformal covariant. In fact it is manifestly 
inversion covariant: under x~-->xJx 2, A~(x~) transforms into (1/~)t 'Adl/x~). 
On the right-hand side of eq. (3.8) A~, Qe and d~/x are inversion invariant and 
covariant respectively and the other factors transform as the left-hand side. 
Moreover from the property 

(3.11) 1112-- 1 n DI2-1 c~ (x)=(-1)  c. (-x) 

one obtains the reflection properties 

(3.12) W,(~yztlAABAa~) = (-- 1)'* W,(yxz t  I - -  A~,BAvD) = 

----- (-- 1)" W~(xytz[A4 B -- Av~ ) = W,(yxtz[ ~ A ~ B -  At1)). 

This in particular implies that, if A and B and (or) C and D are equal, only 
even tensors are present in the operator-product expansions. 

The general form (3.8) for the conformal covariant expansion of the four- 
point function in a Euclidean D-dimensional space allows us to perform a 
generalized expansion of the scattering amplitude. Each term corresponds to a 
graph in which an irreducible representation of the conformal group is exchanged. 
This representation is labelled by a Lorentz quantum number n and by the 
dilatation quantum number l~. So one can write in general, as a consequence 
of the Wilson expansion, 

_ [  1 ]z~,2[ 1 lzo  . 
<OIA(x)B(Y)C(z)D(t)]O> -- t ( x - - - ~ j  t ~ -~-~ j  

. - -  - -  i " o - , .  A (xy. - ~ , ( x y ,  z t ) )  b~in BGD �9 

Summation over n, I. suggests an integral representation for the four-point 
flmetion 

_ f  1 i Voo,.. 
(3.13) < O ] A ( x ) B ( y ) C ( z ) D ( t ) ] O >  - -  [ ~ j  t ~ J  

/" I 15" - -  q1121 ,~.4./2 F U :  - -  t l 2 1  ,~v~12 
�9 / d D . ( ~ ' z t / I  ' "  ~ '  / / ' "  " / 

where g is an arbitrary function of the two variables A~, [2~. 
In order to give a meaning to eq. (3.8) in the physical pseudo-Euclidean 

space 01)_1,1 it is sufficient to recall that, according to ref. (6), eq. (3.8) is 
equivalent to a finite sum of terms having the same structure of the scalar 
contribution. One introduces the shift operators A~s, A ~  with the property 
of shifting A~s, AcD of ~: 1 respectively and satisfying 

(3.14) [ ~ ,  �9 
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One has 

(3.15) < O l A ( x ) B ( y  ) C(z)D(t)]O>, = C212-S(T)<OIA(x)B(y)  C(z)D(t)lO>o, 

where ~)/2- C~ (T) is an operator-valued function of the operator  

(3.16) T :  
1 

2[(x - -  y)~(z - -  t)~]�89 [(y - -  z)2 A74BA~z) + (x - -  t)~ A~BA~I)  - -  

- -  (x  - -  z)2 A+BA~I) - -  (y - -  t)2 A ~ B A  ~D] �9 

4.  - Ana ly t i e i ty  propert ies .  

In  this Section we discuss the analyt ic i ty  properties of the contribution to 
the four-point  funct ion from a single conformal eovari~nt partial  wave in 
momentum space. Properties in configuration space will be derived as conse- 
quences. 

We s t a r t  f rom formula (4.1) for the Wightman function which is valid in 
Minkowski space; we perform a Wick rotat ion and we consider the Wightman 
s for imaginary t ime arguments,  which coincides with the  so-called 
Schwinger function in Euclidean space (23). I t  is w~I1 known tha t  the Fourier  
t ransform of the Schwinger function in Euclidean space coincides at  imaginary 
t ime arguments with the Fourier  t ransform of the s tandard t ime-ordered prod- 
ucts in Minkowski space (14). We are then able to write the explicit expression 
for the t ime-ordered product  which corresponds to the Wightman function. 

The final formula for the t ime-ordered product  is an analytic function of 
the external  momenta  with cuts only in the forward and backward tubes. We 
will use a theorem (15) which (~) states that ,  if the t ime-ordered product  has 
the correct analyt ic i ty  properties,  there always exists a unique Wightman 
function, which corresponds to the t ime-ordered product  and has the r ight  
analyt ie i ty  properties. 

The contribution of a scalar can be wri t ten as 

(4.1) 

c o  1 1 
F F f Impel 2- 

Wo(xy t z  ) ~ - / d i n  ~' Ida./dr/--/ JE1)/2_ z(mQ) �9 j j j \o/ 
o o o 

�9 JZ-D/2(mA ) J , - l ) a ( ~ B )  l~Bo(~) f0D0(V), 

(23) j .  SC~WNa~.R: Pror Nat. Acad. 8ci.,  44, 956 (1958); T. NAKANO: Progr. Theor. 
Phys. (Kyoto), 21, 241 (1959). 
(14) K. SYMANZIK: Journ. Math. Phys. ,  7, 510 (1966). 
(is) 0 .  ST]~IN~AN: Helv. Phys�9 Acta, 33, 257 (1960). 
(10) D. RUELLE: N~ovo C~e~Lo, 19, 356 (I961). 

4 3  - I I  N u o v o  C i m e n t o  A .  
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where 

A ~ = u ( 1  - -  u ) ( x - -  y ) ~ ,  

B ~ = v ( 1  - -  v ) ( z - -  t) ~ , 

Q2 = [ux ~- (1 --  u)y  -- v(z -~ (1 --  v) t)] 2 , 

f A B O ( U )  ~ u � 8 9  U) i ( le - l .~+ l } - I  . 

The function in (4.1) depends only on the invariant  scalar products and 
its expression is valid when all distances are spacelike. As discussed above 
it coincides with the corresponding Schwinger function in Euclidean space, 
provided we use the metric p ~ >  0 for spacelike vectors. 

I t  can be shown tha t  the  Green's  funct ion eq. (4.1) has singularities for space- 
like distances. This follows f rom the  representa t ion in terms of the double 
hypergeometr ic  funct ion (eq. (3.2)) and its s ingulari ty s t ruc ture  (17). In  fact  
the funct ion F4(~ , fl; ~; ~';  x, y) has singularities on the  line x�89 - y�89 1, which 
correspond to spacelike points in the  expression of the  four-point  function.  

A par t icular  case in which this phenomenon is clear can be explicit ly 
worked out  by  fixing l ~ = l v ,  I v = l ~ ,  l = 2  and  D----4 (~8). 

Consider new the  Fourier  t rans form of eq. (4.1): 

(4.2) 

where 

jZ)(p + p,  + q, + q)G(p~, q~, p,~, q,~, s ~, k ~) = 

(l)of = - ~  d D x d l ) y d ~ z d ~ t e x p [ i ( p x +  q y + p ' z +  q ' t ) lWo(x ,y ,  z, t ) ,  

k2=  (p -~ q)~= (p' + q') ~ , s2= (p -- p ' )~= ( t - -  t') ~ . 

With  the aid of the  convolut ion theorem such t ransform can be wri t ten  as 

(4.3) 

where 

(4.4) 

oo 

dm~ 
. Ira  2 - -  k 2 F ~ l ( P  ~, q~, k ~, - - m  ~) Fe~t(p '2, q'~, k ~, --m~)(m~)D/~-t , 
0 

f 1 1 \ ~(|~'t'|B-/)- 1 FA~,(f, q~, ,"-, - -~)  = (~)i,,-~) d~x exp[~p~]~) 
1 

�9 f d u  exp [--  iur.  x] ]~,(u)J,_~/2{(u(1 - -  u)m2x2) t} [r ~-- p ~- q]. 

0 

(xT) Bateman Manuscript Project, Vol. l ,  Chap. V (New York), p. 227. 
(18) S. FERRARA, R. GATTO, A. F. GRILLO and G. PARISI: ill Scale and Con/ormal Sym- 
metry in Hadrons Physics (~Tew York, 1973). 
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An explici t  computa t ion  shows t ha t  the  function _P is described b y  two 
different  ana ly t ic  funct ions in the  regions 

[ ( f ) t ~ -  ( q ~ ) t ] ~ - - ( p - - q ) ~ m ~ .  

As a consequence the ampl i tude  eq. (4.3) is not  an analyt ic  funct ion of k S 
and this  momentum-space  s t ructure  reflects the  presence of spacelike sin- 
gularit ies in the  co-ordinate space. 

However  a new ampl i tude  can be defined as the  dispersive integral  of the 
imaginary par t  of eq. (4.3). In  fact  the  _P is a real  funct ion of k ~ so t h a t  the  
only contr ibut ion to the  imaginary par t  comes from the  denominator .  

We obtain therefore  the  new ampl i tude  

(4.5) ~ ( f ,  q~, p'~, q'~, s ~, k ~) = 
co 

f din2 m~I?  I~'~ q,2,_m2)(m~)~12-1 
- - , , 

0 

where we have used the relat ion 

and F is defined as (12) 

(~.6) F.4B~(p 2, q", m 2) = V ( f  , q~, m ~ ~ ie) --  V(p 2, q~, m s -- i t ) ,  

where V is the Fourier  t ransform of the vertex.  The properties of the function F 
are discussed in Appendix B. The Fourier  t ransform of the Schwinger function 
or of the t ime-ordered product  does not  factorize in momentum space. Only 
its discontinuity in k s factorizes. Another  interesting propery  of eq. (4.5) is 
tha t  it is finite at  p2__ p,2 =/:0, qS= q ,2~  0, kS-= 0 if l ~  D[2. 

I t  may  be interesting to  compare this result  with tha t  obtained b y  using 
a Wilson expansion where the shadow singularities are not  subtracted. The 
t ime-ordered function would factorize at  all momenta  in the  product  of vertices 
and propagators and the funct ion would never be finite in the forward direction. 

We now quote a theorem (6.15), which allows us to derive the properties 
of the Wightman funct ion f rom those of the  t ime-ordered product  G(p) in 
momentum space: 

1) if G(p) is invariant  under  the  inhomogeneous Lorentz  group; 

2) if the only singularities of G(p) are located at  

Im  [ X ' p  ~ = 0 ,  (X ,p , )2 > /~z ,  

X' where the  sum is res t r ic ted to any  subset of momenta ;  
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3) if the  boundary  values of G(p) at  reM p are tempered distributions; 

t hen  the funct ion G(p) uniquely determines a Wightman  function W(z) such 
tha t  the  Fourier  t ransform of the t ime-ordered product,  constructed from 
w(z), is ~(p). 

The funct ion W is invariant  under  the inhomogeneous Lorentz group, the 
boundary  values of W are tempered distributions, and W is singular only if 
two of its arguments x~=  (zl,_xl), x~= (z~,x~), are such tha t  Re(z1--z2)----0 
and x~--x2 is not  spaeelike. 

This theorem is valid only in a theory where there exists a mass gap p. How- 
ever this difficulty can be easily solved, following MACK and TODOROV (19), by  
introducing a regulating mass /~, proving all the properties in the presence of 
this regulating mass, and afterwards sending the mass to zero. As long as 
no infra-red divergences appear  in this limit the zero-mass limit of the 
Wightmau funct ion will satisfy the analyt ie i ty  properties and coincide with 
the zero-mass Wightman  function. 

Provided  the dispersive integral in (4.5) converges it is easy to show tha t  
the properties of the ver tex proven in Appendix B imply tha t  the function 
in (4.5) satisfies the  condition of the above-mentioned theorem. 

I f  we denote by  i~ the rain (l~, * /a), the  asymptot ic  behaviour of the ver tex 
in the  region of large momenta  implies tha t  the integral in (4.5) converges for 
large m if i~ + l~ + i c + 19 > D irrespectively of the  internal  dimension. 

Convergence for small m is present only if l > D[2 -- 1, which is the bound 
on the  dimensions coming f rom positivity of the Hilber t  space. For  values 
of the  dimensions in this range no problem arises; however for general values 
of the dimensions an analytic continuation in the dimensions can be performed, 
without  loosing any  desired proper ty ,  at  least for ~a + iB + ic + I~ :/: D -- N, where 
_~r is a nonnegative integer. 

These results concern the scalar contr ibution;  the functions coming from 
the exchange of a higher-spin tensor can be wri t ten as sums of scalar con- 
tr ibutions multiplied by  distances t aken  at  some integer power. 

5. - Light-cone limits and the eollinear conformal group 0~.1; 

The light-cone (LC) limit of the eovariant expansion can now be obtained. 
Let  us consider for example the scalar contribution given by  eq. (3.2). In  the 
light-cone limit (x--y)~-->0,  1 /~ ->0 .  Using the reduction formula of the 

double hypergeometrie  function 

(5.]) F,(~lfl; r ;  r ' ;  0; y) ---- ~Fl(a~fl; ~'; y) ,  

(19) CT. MACK and I. T. TODOROV: Phys. Rev. (to be published). 
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one obtains in the limit @-+ 0% ~]/~ fixed, 

r ( -  ~ ( a . .  + ~ . ) )  (5.2) ]o(e, ~) -~ r(0~(~+~oo'e -jc'+~oo~/,(q_ ~) /2 ) ,v (q-  ~c~)/2) 
(1 1 1 ~) 

�9 ~F~ (I+A~B),  ( I + A o ~ ) ; ~ ( A ~ + A e . ) + I ;  + 

+ (~)'(~.-+~-) F(}(A~.  + A. . ) )  
r (q  + A~.)/~)r(q+ A~.)/u) 

�9 F(1  1 1 , ) ~  

1 
_~ ,/~(~-~) ~F, (1 + Ac~), ~ ( I - - A ~ ) ;  l; 

So the LC limit of the scalar contribution is 

(5,3) r 1 1 1 (~'~-~)P- 
<OIA(x)B(y)C(z)D(t)[O}(.-~"-~[(~--Y) ~] t ~ - ~ J  " 

�9 [ 1""~176 1'"-"" 
L(x-~z)~J L ~ J  L(~-O'J " 

t~ l 1 1 (X --  t)"(y -- z)2~ 
"~ 1~ (I--A~B),~ (l + Ae~); l; 1--(x__z)2(y__t)~ ] �9 

Note that the functional form of (3.3) is D-independent. In  the same limit the 
contribution of an exchanged tensor of Lorentz spin n is 

(5.4) <O[A(x)B(y) C(z)D(t)]O> : [ ~ . ]  (z~-"~l~ 

(1 ( x -  t)~(y--z)~ 
�9 ~F1 ( a . -  A~.), ~ (a. + 4v.); a.; 1 ~ _ ~ 1 ,  

where ~.(d.) ---- l~ T n respectively. 
The fact that the LC contribution in (5.3), (5.4) is D-independent has a 

simple geometrical meaning. 
In fact the regular part of the four-point function (as wen as the Wilson 

expansion) is restricted in the limit by covariance under that subgroup of 
0D. ~ which corresponds to collinear transformations on the light-cone. This 
subgroup is O2.1cOj0.2 independently of D (D>>.2). In  fact only the number 
of transverse co-ordinates x~, which is D - - 2 ,  is D-dependent, but it does 
not affect the light-cone structure. A general D-dimensional vector can be 
written in terms of (x+, x_, %). Performing a Lorentz transformation we can 
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set x r -+ O, so in the  LC limit x_-+ O, and only the x+-dependence is relevant  
for the finite par t  of the Green's functions. 

Conformal t ransformations become projective (SLy.R) t ransformations on 
the straight line x_ = 0. We consider in more detail the properties of the col- 
Linear algebra 02.~. We will see tha t  such an algebra is sufficient to determine 
the behaviour  (finite part)  of the various Green's functions of the theory  when 
all points lie on the same straight line on the light-cone. Conformal invarianee 
will correspond to projective invarianee on the co-ordinate x+. 

We consider a eonformal irreducible tensor (n/2, n[2)0~,...~(x), i.e. 

(5.5) [O~ ...... (0), Kx] ---- 0 ,  [O,,...~(0), D] ---- il, O~,..~.(O) 

(see Appendix C for a more general situation). 
Consider now the subgroup 02. ~ c 0v. 2 generated by  

(5.6) P•  �89 (Pc • P~), K• = �89 (K' • K~), D• = �89 (D -t- Mo~). 

B y making the identification L~ ---- P •  L ~_ = K •  Z~ = D• one obtains two 
commuting 0~.~ subgroups. I t  is convenient  to consider components of the type  
O++...__...TT...(O ). Then under L~ one has 

[0+ +...--...r~,...(O), L• = 0 ,  

i d = o§ 
. 1 , •  A . . . .  

[O++ ........ rr...(0), L~]---- ~ ~ u++...--. . .rr. . . tuj,  

where A is the difference between the  number  of -4- and -- components. In  
particular 

[0++...+(0), L ~ ] =  i ( ~ - ~ )  O+ +...+(0), 

(5.8) 
[0__..._ (0), E ~ ] =  i ( l ~ ) o _ _ . . . _ ( O ) .  

Consider now the LC expansion of two operators:  l im {O{~}(x)O6~(0)}. I f  one 
x'-*o 

fixes xT---- 0, then  x 2 ---- x+x_ (x• t ~ z) and the LC limit is x_ --> 0, x+ fixed, 
i.e. one obtains a short-distance expansion in x .  If  one calls v, d the two quan- 
t um numbers associated to the two O~.1, then  for a given representat ion one 
gets 

(5.9) O"r ~o (X-)-~"~+~B-~)(X+)-~(d~+d~-d~) 0~" 

1 

�9 fd) t2  (a~-dB+~)rz-1 (1 - -  ,~)(ds-d~+~)12-1Or~(]tX+, O) . 
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For  A, B scalars one has v~ = d~ ----- l a ,  vn = dB = lB, z~ = In -- n,  d, = l~ + n 

(5.1o) O~(x+x_) OB(0) ~ (x_)-~(~-+~--'-)(x+)-~',+~--d-) ~7~- 
tr 

1 

�9 fdX]ttt.-tn+a.'t'Z-l(i - -  )t)('n-L,+a,,)l~-xO+ +...+ (2x+, O) 
o 

and one recovers the usual conformal covariant  LC expansion. We note tha t  
the  algebraic moaning of the twist ~. is therefore tha t  of the  quantum number  
associated to project ive t ransformations along x_, while d,  refers to project ive 
transformations along x+. In  part icular  the expansion (5.10) is universal, i.e. 
it  is independent  (apart  f rom ~ B )  of the dimension D of the space-time. This 
implies tha t  also the behaviour of the generalized partial  waves of the  various 
Green's functions is D-independent  (up to normalization) when all points lie 
on the  some straight line along the light-cone. For  example one simply recovers 
(5.4) by  using project ive covariance. By  making use of (5.10) one gets 

(5.11) A(x+x_)B(O) z~o (x-)-�89 

1 

�9 fd2).t"~8+~,)tz-a(1 - -  ).)-(a~+a")12-10.(~tx+, O) 
0 

(where O~ stands for 0++...+). 
The contr ibut ion to the 4-point function is 

(5.12) 

and 

<0 IA(x+x_)B(O) C(z+z_)D(t+t_)I0> ~ (x+)-~(z~-a")(x_) -�89 �9 

�9 fdX2(z~+a')lz-l(1 - -  ).) i-Ama+d")/2-1 <0 ]On(2x+ 0)  C(z+z_)D(t+t_)10> 
0 

( 5 . 1 3 )  <010~(2x+ 0 ) C(z+ z_) D(t+ t_)lO > 

�9 ( L v + -  z+)-�89176 t+)-�89 t+) -�89 �9 

We have performed the sequence of limits 

x7 - -  x;+ a x_ z_ 
+0  , i . e .  - -  -->0, +0 , 

x~+ ~ - -  x~_~ z_ t _ - -  z_ 

such as to prescribe an order. 
Insert ing (5.13) into (5.12) and using the fundamental  integral represen- 



~ S. FERRARA, A. F. GRILLO, R. GATTO a n d  G. PARISI 

t a t i o n  for  hype rgeome t r i c  funct ions  one has 

(5.14) ( O ] A ( x + x _ ) B ( O )  C(z+z_)D(t+t_)]O)~ ~-- 

~_ ( x + ) - � 8 9 1 6 2  - ~ - -  ~ ) ( z _  - -  t _ ) - ~ ( ~ - ~ )  �9 

0 

\ Z+l \ ~+l  = 

= (x_)- t(x~- ' - )(z_)-~zo-+'-~(t  _) -�89 zoo)(z_ - -  t_)-~cxo--'-~. 

�9 (z+ - -  t+)- t (~.-~.)( t+)- �89 - -  x + ) - � 8 9  - -  t+)-�89 

, (X+) _�89 2F111 d 1 z+(t§ 
( . - - A ~ B ) , ~  (d.- t-  A w ) ;  d . ;  1 t + ( z + - - x + ) ] "  

One jus t  recovers  (5.4) b y  obse rv ing  t h a t  in the  previous  sequences of l imits 
one has z _ ( t _ - -  x ) / t_(z ~- x_)  ~ 1. 

Multiple O P E  can be ob ta ined  at  shor t  and  l ight  line distances.  The con- 
t r i bu t ion  of a single opera to r  in the  O P E  in the  sequence of l imits 

( ~ .  - -  X~.+I)/(X~*+, - -  Xi-+2 ) ---)" 0 i s  

(5.15) A , ( x , )  ... A . ( x . )  
~--:*O 

l 1 \t,+l,-Z,,[ 1 ~t,,+~,-Z. 

�9 : : 4 t x , - x   lx -x " 

1 ~l.,-z+~-z 
]X._z - -  X .] !  O ,(X.) , 

where  11~... 11._ 1 is a sequence of n - - 2  opera tors  which add  up  to  a eonformal  

par t ia l  wave  in the  { n +  1)-point  func t ion  <01A~(x~ ) ... A.(x . )Ot(O)]O> in the  

shor t -d is tance  limit.  (5.15) is a s imple consequence  of d i l a ta t ion  invar iance  
a t  shor t  distances�9 

The  same analysis  can  be  carr ied ou t  when  all points  lie a long a s t ra igh t  

line on the  l ight-cone. I f  we pu t  x~ = (x~+, x~_, xr~ = 0), t h e n  in t he  l imit  

X i  ---~ O 

and  fixed xi+, one obta ins  

X i _ - - X i + z _  

X i + l _  - -  X i + ~ _  
- ~ 0  

(5.16) A l ( x l + x l _ )  ... A~(x=+x._)  
xt_--)'o, z~+~zn-z+...~ z~.+>~O 

----- (xl+ - -  x~+)J(el,-e,-e,)(x~_ - -  x~_)~(~,,-~l-~,) �9 
1 

~ - 1  [ ' n - 1  n - 2  
�9 II (xJ)dJ I I~ d~JJt,~J-i( I -- ~j)bj-Z II 2~01n((9") , 
J=2 J J=l k=l 

0 
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where we have pu t  

(5.~7) 

a ,  = �89 (d~,--  a,+s + d1,+1), 
b: = 1 ( d : + l - -  d l :  + d1:+1) , 

x d e., = ~ (d1 :+1- -  1 . , - -  d:+l)  , 

f t - - 1 / n - - 1  \ 

X n  ~ o ) n - 1  - -  X n +  �9 

Xn+ 9 

Here (d, z) are the quantum numbers associated to 0~., c 0v.~ of the several 
operators involved in the expansion. (5.16) can be rewri t ten in more compact  

form which turns out  to be manifestly causal: 

(5.18) 

whore 

A,(x ,+  x,_) ... A,,(x,,+ x,,_) = 
Xn+ 

= v . ( ~ l + -  ~+,  ~ _  - x~_, {~_})~d~ ~({~, {~+}) 0 ~ . ( ~ ) ,  

F . ( x l + -  x2+,  ~ -  - ~2-, {~-)) = 

= ( x l + -  x~+)-~(a'+a'-d")(Xx_- x~_)-~(~'+~'-~"~l-[ x2- ~''J+'~*~- .. . .  ), 
J = 2  

and 
1 1 

n--1 i--1 ~ n--1 f 

0 (oJ--z~c+)/(oJ~-x - zt+) 
1 

f ~t--1 n--2 r/C--1 k--1 ] 
: d ~ n - - l j ~ l ~ a J J - - i ( 1 - - ~ J ) b j - - 1 H [ ~ ( X i + - - X i + l + ) J ~ l ~ J k ~ l  j--1 -- (~(( .0-- ( .0 . ) .  

0 

Note tha t  the function L(eg{x}) is a sort of ordered product  on the light line 
x_ ~ 0 and its appearance ensures the  causal support  properties of the right- 

hand side of eq. (5.18). 

6 .  - C o n s t r a i n t s  o n  n o r m a l i z a t i o n s .  

A useful consequence of conformal symmet ry  is tha t  it relates the overall 
normalizations of Green's functions and the coefficients of OPEs. For  example, 

using the OPE one gets the  relation 

(6.1) C ~  o = CoB Coo , 
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where C~Bo, Coo are the normalizations of the three- and two-point functions 
(ABO), (00) respectively and COs is the coefficient which couples 0 to the OP 
A(x) B(O). 

In the case of the four-point function one obtains, in exactly the same way, 
that the overall normalization of the partial wave (OIABCD]O),~ is given by 

(6.2) 

where C~B , C~D are the coefficients of O. in the OPEs A(x)B(O), C(x)D(O), 
and ( 0 . 0 . )  its propagator normalization. Of course similar relations can be 
obtained from higher-order Green's functions. 

7 .  - C o n c l u s i o n s .  

The conformally irreducible contributions to the generalized partial-wave 
expansion have been shown to separately exhibit the correct analyticity proper- 
ties. The expansion, which obtains on the explicit assumption of Wilson op- 
erator-product expansion, is different, though in principle related, to the 
field-theoretic skeleton expansions, which more directly must exhibit explicit 
analyticity properties. 

We have worked in a general D-dimensional space-time and found analytic 
properties in D and in the Lorentz spin n (lowest spin of local operators ex- 
changed in a conformally irreducible graph}. The value D ~ 2 has physical 
importance and exhibits mathematical peculiarities. On the light-cone the 
projective group 02.1 summarizes the relevant algebraic restrictions, inde- 
pendently of the dimensions D of the space-time from which one has started 
(irrelevance of the number of transverse dimensions). In D-dimensional space- 
time the ~ shadow ~> dimension of l is t* ~ D -  1 corresponding to the symmetry 
of the Casimir operator. We have discussed the mechanism which eliminates in 
pseudo-Euclidean spaces the ~ shadow ~ singularities in the Wilson expansion. 

The four-point function has been constructed by explicit assumption of 
operator-product expansions. The central role is summarized in the appearance 
of the double hypergeometric function. 

The peculiar role of D ~ 2 is here exhibited through a factorization prop- 
erty of F4, in that  case, into a product of two ~Fl-functions. Group-theoreti- 
cally this property corresponds to the factorization iof 0~.2 into 02.1 Q 02.1. 
Each of the two factor groups acts projectively on the light-cone variables 
x+, ~_. General integral representations can be given for the four-point func- 
tion and again the different role of shadow symmetry in Euclidean and pseudo- 
Euclidean spaces is exhibited. The formal discussion of covariance and 
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the deduced partial-wave expansion allows for a direct verification of the 
analyticity properties. This is obtained by introducing a suitable amplitude. 
In discussing light-cone limits we have taken advantage of the singular 
structure of the 0~.1 algebra. In particular this has allowed us to construct 
operator-product expansions for more than two operators and to verify 
explicitly their causality properties. We have thus extended the known result 
on the causal properties of the conformal eovariant light-cone expansion for 
the product of two operators, which appears to be an important consequence 
of approximate conformal covarianee. Useful consequences of conformal eova- 
riance are also the relations among normalizations of Green's functions and 
coefficients in operator expansions, which in some cases are directly connected 
to physical processes. As a by-product of our investigation we have also derived 
momentum-space representations of conformal covariant vertices and dis- 
cussed their analyticity and support properties. 

A P P E N D I X  A 

Representation in terms of double hypergeometric functions. 

In  this Appendix we briefly derive an expression for the scalar contribu- 
tion of dimension 1 to the Wightman function (OIA(x)B(y)C(z)D(t)IO) in 
terms of double hypergeometric functions. 

We start from the integral representation obtained by insertion of the con- 
formal covariant Wilson expansion (see eq. (3.3)) 

1 

F(z) f (A.1) F((1 q- A~B)/2)F((1-- Axe)/2) daa�89 -- a)t'a~+ar 
0 

�9 + ~ ' l  ~ ( l - - d o ~ ) ) , 5 ( l + d c . ) ; l - - ~ + l ;  +~--~-~ �9 

Expanding in power series the hypergeometric function 

(A.2) 
~ 

2 1 ~ ( l - - d C D ) , ~ ( I + d c D ) ; l - - - ~ + l ;  +~--~-~ = 

_ I'(1 + D/2  + 1) ~ ~ .  + . 
- v ( � 8 9  + &,,)) ._o 

�9 r(~ q - & . ) + , ~ ) r ( ~  q + ~o,0)+ ,~ ) / r ( , - r  + 1 + n) ,  
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we get from (A.1) 
1 

(A.3) j-daa�89 -- a)~c-a,~+~)+"-1 (1 -- az) -"-�89 
0 

_ r(�89 + z) + ~)r( �89 A~. + t)+ ~) 
- -  F(I + 2~)  

) "2N1 ~ + ~ ( l +  e~),-~(l+A~B)+n;l+2n;z = 

_ r(�89 + A ~ )  + n)r( �89 + Z) + n) 
-- F(I + 2 ~ )  

[ r(~ + 2 ~ ) r ( -  ~(Am. + ~o~)) 

( 1 1 1 ) "~'x n + ~ ( l +  Ae~),-~(l+ AaB) + n;-~(A.an+ AcD); 1--z + 

r(t + 2n)r(�89 + A t . ) )  
+ (1--z)-i(n~ +a~o) F(n q- �89 3- Ao.))r(n + �89 + A~))" 

_ r(�89 + A ~ ) +  ~ ) r ( -  � 8 9  + Ao~)) 
- r(�89 + n) 

( 1  1 1 z) "2~ ~+~( I+Ae~) ,n+-~ ( I+A~) ; I+-2 (A~+Ae~) ) ; I~  + 

+ (1 -~)-~,~+~oo, r ( � 8 9  A~) + ~)r(~(A~ + A~)). 
/ '(~ + �89 + zlc.)) 

(2 1 l ( A a . + A c v ) ; l _ z )  �9 2~x  ( l - -Ae . )  + n, ~ (la~-- A) + n; 1 - -~  

where 
z = 1 - n / e .  

If we expand the two hypergeometrie functions in power series (A.1) becomes 

F(l--D/2 + 1)/'(1) w 1 1 
(A.4) F( (1-- A aB)/2 )l'( (l + A a~)/2 )F( (I-- AeD)/2 )F( (I + /Iol))/2 ) ~ n! 7 n  ! " 

r(-- �89 (A~B + A~))r(~ (A~B + Ac~) + 1)r( .  + m + �89 (t + AcD)). 
l'(l--D/2 + 1 + nil'(�89 (A.aB + Ave) + 1 + m) 

1 1 1 
- F ( ~ + m + ~ ( l +  A~B)) (1 -- z)~o--+�89 + ~ . T  ~-~. v �9 

.F(�89 + A~))P(1 -- �89 +Ac~))F(n + m + lq_AaB)) 
1~(l--D/2 + 1 + n)F(--�89 + AeD) + 1 + m) 

1 �9 F(n +m +2 (I--AvD)) (l-z)''(1-z)-''a~+'~''O-'-'''+'~c'," 
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I t  is easy to see that  the two double series are nothing but the power series 
which define the fourth double hypergeometric functions. One obtains the 
final result 

(A.5) 

where 

r(~)e_+,,+:oo, [ r ( -+ (~ : :  + ~ ) )  

C 1 ~ "~4 ~ ( I + A v ~ ) ) , - ~ ( I + A ~ B ) ; ~ ( A . ~ B + A e D ) + I ; I + I - - ~ ; 1 - - z ;  + 

+ (1 --z)-i(A~+zo:)F((1 -~- A~.) /2)F(( /+  AcD)/2)" 

(1 ~ 1 1) 
..F~ ~ (I--Acl))  , (I--LJ~);  1 - - 2  (ZJAB+ ACD); l + 1  D l - - z ,  ~ , 

3 _  ( x - - y ) ~ ( z - - t )  ~ 3--z---- ~ (x- -z )~(Y-- t )~  
0 ( x - - t )~ ( z - - y )  ' ' Q (x - - t )2 (Y- -Z)  ~ 

are coaformal iuvariant quantities. 

APPENDIX B 

M o m e n t u m - s p a c e  representat ion  o f  a conforma]  covar iant  vertex .  

In  this Appendix we study the properties of the eonformal covariant vertex 
of three scalars in momentum space. 

We consider the vertex function for three operators A(x),  B(y), C(z) of dimen- 
sions l~, lB, lv respectively in a D-dimensional space-time. 

Conformal invariance fixes the vertex to be 

(B.1) (OIT(A(x)B(y)  V(z))10} = 

1 1 1 1 
F(D - -  Z )  F(D/2 + lA - -  Z)  F(D/2 + lB - -  Z)  F(D/2 + lo - -  ~)  

1 1 1 1 
[ (x_y) :_ ie] : :_~c  [ ( x _ z ) ~  ie]x_~: [(Y--Z)2 - is]z_z:, Z----- ~ (l~ + lB + lc). 

Its Fourier transform is 

(B.2) 1,. fd~xd~)y dD z (o IT(A (x)B(y) C(z))[0) exp [ipx § iqy + itz] = zxc )~l) j 

1 
- -  (2~)~/~ (fl)(p + q + t) VA~c(p 2, q~, t ~) . 
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The function V,~Ba can be computed directly in Euclidean space by perform- 
ing a Wick rotation. The following integral rappresentation is used: 

oo 

(B.3) 1 1 ~ da (f)= = ~ j ~  ~ exp [ -  =p']. 
0 

The final result is 

1 1 1 

~f d~ (de f d~ (B.4) V~.a(f,q2, t2)= j ~ - j ~ - j - ~ -  (~(~ + fl + y - -  1) �9 

0 0 0 

�9 tzD/2+|~-2 :~D/2+Ia- '~yD/2§ t2 JI- ~)o~q 2 Jr- y~]39") ~ ' -D  

where 

(B.5) C, = ~ D I 2 2 2 2 : - t l ) F - l ( ~ F .  - -  /A )  F - I ( Z  - / B ) / ~ - I ( ~  v ' -  l a )  " 

An elegant formula for V~a can be obtained by noting that  (B.4) can be 
rewritten as 

(B.6) 

co r o0 r 

c f ~  (de (d, (d~ 
VABa(p2, q2, $u)= F(D--,,V,)]-'(D/2--.F,)J g J fl J'-~-J'-~" 

0 0 0 0 

The above integral factorizes into the product of three functions of ~, fl, y .  

Using the integral representation 

(B.7) 

oo 

r - - a ~ e x p  -- - - ~  = 2 K~[2(p~)l) ~], 
J ~ 
0 

we obtain the nearly factorized form 

(B.8) 
8C 

v . ~ d f  , q", t~)= F ( D -  .Y,)F(D/2 --.Y,) 

.] ~ ]t~14.F(Z~, f ,  ~)F(1B, q2, ~t)F(la, t 2, ,t) 
0 
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where 

(B.9) .~(l~., p2, ~.) --- (pU)~/2-/YaKh_/)/212 (~.p2)�89 . 

The integrat ion in (B.8) can be explicit ly done b y  recalling the relation 
among the  K and J Bessel functions 

(B.IO) (0-'J,(~z)] K, ( z ) -~  2 s in~z  [ ( i ) ' J - ' ( i z ) -  

~nd the  integral  representat ion for the  double hypergeometr ic  funct ion /~  

(B.11) 

o o  

xX-~J (~zx)J ( f lx)K (Tx)dx 

0 

F(tt + 1)F(~ + 1) F / '  2 

�9 F~ ~t+/~+~,--~ ~ t+p+~+~ ;  + 1  - . �9 
2 ' 2 p + l ; ~  ; y~ , y~ ] 

The  final answer is 

(B.12) 
2C x 1 

VA~c(P2' q~' t2) ---- F(D --  Z,)I '(D/2 - -  2:) ~_x ~-1 hk(p2)((k+l)/2)a~-D/~)" 
hr k ~ o  

�9 (q2)((k+l)/~)a~-~/2)(t2)-~/2+~/4-k{ZA/2-~/4)-a(z~/2-~/~. 

7f 2 

sin z~k(~ - -  D/2) sin ~h(lB - -  D/2) 

l~[lv/2 - -  D/4 -~ h(1B/2 - -  D/4) + k(1A/2 - -  ])/4) - -  D/4] (i)--hCZA-V/2)--k(tB--D//2). 
F [ k ( l ~ - - D / 2 )  --k 1 ] F[ h ( l r - -D /2 )  + 1] 

�9 + 

l~ D 

F r o m  the  above integral  representat ion one can derive the following prop- 
erties of V.~Bc. 

I f  the integral  in (B.8) is convergent,  V~Bc is a real analyt ic  function 
of q~, pg, t ~. 

Dispersion relations of the type  

---- l din2 
(B.13) V.4~e(p ~, q~, t ~) .1 m2 + t2 F~Bv(p ~ q~, - -  m ~) 

0 
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are valid, where F.~Bc itself is a real analyt ic  funct ion of p2 and q2 and satisfies 
dispersion relations in p2, q% There exists the relation 

(B.14) 

where 

FABC(p2, q2, t2) J 4 4D/4F(I~' p~' 4)F(IB, q2, 4 ) G ( / C  ' t2, 4 ) 0 ( _ _ t 2 )  , 

0 

(B.15) G(le, t 2, 4) oc t2a~/2)-~/aJ,~_D/212 (-- 4t2)�89 oc 

oc 41)/4-'d2 g2(lc-1)12} o.Fi ( D - - l c +  1 ; 4t2). 

The integrals (B.8) and (B.14) are always convergent  in the large-4 region 
whenever some momentum is different from zero, due to the exponential  damp- 
ing of K Bessel functions at  infinity. The only troubles m a y  arise f rom the 
small-4 region. (B.2) and (B.8) are indeed divergent if l~ d- 1B d- lc ~ 2D. How- 
ever V~Bv can be defined for 1A Jr IB ~-Iv > 2D by  analyt ic  cont inuat ion from 
the other  region. The process of analyt ic  continuations in the dimensions can- 
not  ruin the (~ good ,~ analyt ic i ty  properties in momentum space: eqs. (B.13)- 
(B.15) are still valid apar t  from possible subtract ion in the dispersion integral. 

I f  we send the momen tum t 2 to infinity the arguments of the /v4-func- 
t ion in (B.12) goes to zero: the behaviour  at  large t ~ is rnled by  the explicit  
powers of t 2 (/v4(a, fl; ~; ~; 0, 0 ) ~  1); the leading te rm of V~Bc is proport ional  
to (t2) -~, where 

(B.16) 
l ~ =  min (l~, D- - l~ )  = min (l~, 1.4) �9 

F r om (B.12) the funct ion VAsc in the small-t s region is the sum of two contri- 
butions, one regular, the second one proport ional  to (t2)~c -v/~. 

APPENDIX C 

Indecomposable representations of the eonformal algebra. 

Throughout  the previous Sections we have considered only the simplest 
representat ions of the conformal group, namely singlets of local operators 
with fixed dimensions and annihi lated by  Ka. 

Both  the above assumptions can be relaxed:  for what  concerns dilatations 
we obtain the so-called (~ dilatat ion multiplets ,) which have been studied to 
some extent .  

A second case corresponds to indecomposable representat ions of the con- 
formal  algebra and will be studied here in some detail  using the 02.1 formalism. 

For  definiteness, let  us consider the • project ion of a set of h r tensor 
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operators O~,...~.(x) 

(C.1) O,(x+, x_) = O+...+(z+, x_) 

with t ransformat ion properties under  02.1+ 

(c.2) [L +, O.(x+, x_)]= ~+o,(x+, x_), 

(C.3) [L +, O.(x+, x_)] ---- [�89 (d.-4- n) + x+b+]O.(x+, x_) ,  

(C.4) [L+~, O.(x+, x_)] ---- [x~_O+ + x+(d. § n)]O.(x+, x_) + k,,_lO._,(x+, x_). 

In  writing eq. (C.4) we have made a definite choice, namely tha t  L+I lowers 
the spin n as well as the dimension, this choice being the only  one physical ly 
interest ing since i t  leads to correlated dimensions 

l . : l + n ,  

as can be easily verified by  inspection. The other  possible choice would have 
implied increasing (~ twist  ~) within the mult iple t  giving nonleading terms on 
the light-cone. 

Obviously we must  have at  least k_~---- 0 so tha t  in such a case Oo(x+, x_) 
is the lowest element of the mult iplet ,  i.e. has dimension l and spin zero, 
however  in general the mnltipIet  can begin also at  a higher spin and in tha t  
case we would have k.----0 for n less than  some fixed n' .  

T o t e  again tha t  every  subset of the O's, star t ing with the lowest one (say Oo) 
is by  itself a representat ion of the same kind (i.e. t ransforms as in eqs. (C.2)- 
(C.4)): this is the origin of the name of these representat ion since they  are 
reducible (there exists a hierarchy of invar iant  subspaees each spanned b y  a 
subset of O's) bu t  not  completely reducible. 

The l ight-cone expansion can easily be derived for such multiplets.  
First ly,  one notes tha t  for every  O. new operators can be defined tha t  are 

annihi lated by  Z_+~ 

(c.5) O.(x+x_) = y. c~_,(~+).-,O,(x+x_) , 
i = 1  

[L_I, 0.(0)] = 0 ,  (C.6) + 

The constants e~_~ are recursively fixed by  eq. (C.6): 

. (-- 1)"- '  F(2d.)  K(n, i), 
(C.7) e,_~ = ( n - -  i ) ! / ' ( 2 d ,  + n - -  i) 

(c.8) K(n, i) = I I  k , .  

Equa t ion  (C.7) follows from the defining commuta tors  with the help of the 
formula 

(c.9) [L_+I, (~+)~o.(0)] = h(2d. + h--1)(~+?-10.(0) + k._d~+)~O.(0), 

which can be proved by  induction.  

4 4  - I 1  N ~ o  C i m e n t o  A .  
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0n is t h e n  an  ope ra to r  of  the  same k ind  as t h a t  for  which  the  expans ion  
has  been  der ived,  so tha t ,  if A and  B are (~ n o r m a l  ~) (irreducible),  one  has  

(c.10) 

1 

A(x+x_) B ( 0 ) ~ o  (x+)-J(a~+a.-d*'(x_)-~(~.+*.-*.'fd4/(4)On(;tx+, o), 
0 

f ( 4 )  ~ -  4 ~(d'a-dB'bdn) -1(1 - -  4 )  � 8 9 2 4 7  �9 

B y  par t i a l  i n t eg ra t ion  the  der iva t ives  in On can be t rans fe r red  to  ac t  o n / ( 4 )  ; 
t h e  (( surface ~ t e rms  do no t  con t r ibu te  since 

/(0) = / ( 1 )  ~/'(0) ----/'(1) . . . . .  O. 

The  expl ic i t  ca lcu la t ion  is l e n g t h y  b u t  s t r a igh t fo rward  and  gives  

(C.11) 

where  

A(x+x_)B(O) ~ (X+)-J(d'4+da-~")(x_) -�89 
~,,..-'-'*'0 

1 

�9 ,ffi~on_,x+ F((  
O 

(C.12) V'~(~) = 4 �89 - -  4)t(dB-dA+~)+~-~-I �9 

"2F1 i - - n ,  1 - - ~  (dA--dB + dn); ~ (d~--d~ + dn) + i - - n ;  - -  = 

= (1 - -  4)~(d~ -d~+~)+~-~-~" 

�9 ~F1 ~ (d~- -d~ -~d~) , l - -  ( d ~ - - d B ~ - d n ) ; - ~ ( d B - - d ~ - d ~ ) - ~ i - - n ; 1 - - 4 ) .  

The first f o r m  in  eq. (C.12) exhibi ts  the  fac t  t h a t  the  2Fl - funct ion  is rea l ly  
a p o l y n o m i a l  in  ( 4 - 1 ) / 2 ,  while the  second f o r m  can poss ib ly  be used to  con-  
t i nue  in n ( inf in i te-dimensional  represen ta t ions) .  

Note added in proo]s. 

A similar amplitude as tha t  discussed in Sect. 4 has been introduced by  A. M. 
POLYAKOV in a recent preprint  (A. M. POLYAKOV, Chernogolovka, 1973). 

�9 R I A S S U N T O  

Si diseutono le funzioai di Green eovariauti conformi e gli sviluppi operatoriali per 
pifi di due operatori. Si studiano te propriet~ di analiticit~ e si danno espressioni asia- 
totiehe. Si costruisce la generalizzazione per spazio-tempo a D dimensioni, mettendo 
eosl in luee il ruolo peeuliare di D = 2, sia da un punto di vista gruppale sia in rela- 
zione a sistemi di riferimento di impulso infinito. Si discute il ruolo delle singolarit~ 
ombra in relazione alla metrica euelidea. 
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AHa.~rrw~ec~e cao~c'rBa ~ acm~rOTW~CF.He p a ~ o x e m m  l ~ O ~ K O B a l m a R r m , l x .  

~ .m,i Ppmm. 

PeamMe (*). - -  O 6 c y ~ a m T c ~  KOHtl)opMHo-xoBapHaHTH~Ie ~ y n x t u m  Fpana H p a 3 n o x e H n ~  
onepaTopH~X n p o n 3 s e ~ e r m ~  6 o n e e  qeM ~ByX onepaTopoB.  I/IccJ/e~ylOTC~I aHannTnqec~ne 
CBO~CTBa H BbIBO~IlTC~I acmanToTnqecKne B bIpa~eHl~ .  I/IccJIe~yeTC~ p a c m n p e a n e  B 
D-MepHOM npOCTpaHCTBe-BpeMeHn n OTMeqaeTC~l o c 0 6 a R  poJIb D ~  2, KaK C TO~ffl  

3perma T e o p ~  r p y n n ,  TaK ~ B CHCTeMax 6ecKone~Horo mvmynbca.  O6cy~naeTca  p o n h  
TeHeBI, IX CHHFy~pHOCTe~ B CB$13H C 9BIs MeTp~O~.  

(*) 1-1epeseOeuo pe~)aKque~. 


