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By 

K U R T  S T R E B E L  

I n t r o d u c t i o n  

1. Let R and S be compact Riemann surfaces and let f be an extremal 

quasiconformal mapping of R onto S. Let f be a quasiconformal mapping of the 

universal covering surface/~ of R onto the universal covering surface S of S which 

is a lift of f. If the genus g of R is one, which means that /~ = S = C, an extremal 

quasiconformal mapping of /~ onto S is conformal. Therefore the lift f of f is 

extremal if and only if f is conformal. It has been an open problem what the 

situation is for g => 2. Here,  the universal covering surface is the disk, and a lift f of f 

induces a boundary homeomorphism which is invariant under simultaneous cover 

transformations. Is f extremal for its boundary values (without the group relation in 

the interior of the disk)? The question was asked by I. Kra (in a letter to E. Reich, 

Nov. 1973) and others. O. Lehto proved*: If the extremal problem on the disk, for 

the induced boundary homeomorphism, has a unique solution, then it actually is 

the lifted mapping; but there is no proof of uniqueness. In fact, the problem already 

came up in E. Blums thesis*: He was able to prove tht the lift of a horizontal 

stretching of a doubly connected domain to its universal covering surface is 

extremal for its boundary values. His proof failed for triply connected domains. 

I believe that, for compact surfaces, the lift is never extremal except for the trivial 

case of a conformal mapping. In this paper, an extremal mapping of a compact 

surface of genus two is constructed and it is shown that its lift is not extremal for its 

boundary values. We work with a special two sheeted model of the surface R, with 

certain identifications, and with an extremal mapping f which is a horizontal 

stretching. This mapping is lifted to a planar covering surface /~ of infinite 
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192 K. STREBEL 

connectivity. The lift is called fi A piecewise linear variation fl of f is now 

constructed with a maximal dilatation/(~ < / (  = K. Lifting both mappings, f and f~, 

to the universal covering surface of /~,  which is the same as /~, gives the desired 

counterexample. A similar construction is possibIe for any genus g => 2. 

2. Somehow the simplest example of a lift which is not extremal for its boundary 

values is provided by the once punctured torus/~. One can work with the universal 

covering surface of the torus R, which is the plane. The puncture of R is lifted into 

a lattice consisting of the vertices of a fundamental polygon and their translates. 

The universal covering surface of /~ is represented by the universal covering 

surface of the plane punctured at the points of the lattice. Here, the construction of 

a piecewise linear variation f of f becomes particularly simple and transparent. We 

therefore start with this example of a non compact surface. 

First  e x a m p l e :  o n c e  p u n c t u r e d  t o r u s  

3. Let R and S be tori. To simplify the construction we assume that R can be 

represented by the unit square R0:0-< x < 1, 0_-< y < 1, in the z = x + iy plane 

with opposite sides identified. Similarly, let S be represented by a rectangle 

S o : 0 -  < u < K (K > 1), 0_- < v < 1 in the w = u + i v  plane. The once punctured tori 

are denoted by /~, S resp., and the punctures are supposed to correspond to the 

four vertices of Ro resp. So. The horizontal stretching f of Ro by the factor K 

evidently is an extremal quasiconformal mapping of /~  onto S, since it is extremal 

for the torus and maps /~ onto S. 

The universal covering surface /~ o f /~  is constructed in the following way: To 

each side of the square Ro is attached a new square. Each of the four new squares 

has three free sides, and to every one of these sides we attach a new square, a.s.f. It 

is important that we always use new squares: We get a simply connected relatively 

unbounded and unbranched covering surface of the plane punctured at the points 

I.t + iv,  p., v E Z. A similar construction leads to the universal covering surface 

of S. 

The lift f of the extremal mapping f is again the horizontal stretching f (of /~  

onto S). We now construct a variation f of f in the following way: We start with any 

one of the squares and its image, say Ro, So. Instead of mapping R0 onto So, we map 

it onto a polygon arising from So by attaching two triangles along the horizontal 

sides and cutting out two triangles along the vertical sides (see F i g .  1, dotted lines). 

The boundary correspondence on every side is made linear. Both types of 

changes will have the same effect, namely a lowering of the dilatation. 

Let now R~, R2 be attached squares, along a vertical resp. horizontal side, with S~ 

and $2 the corresponding rectangles. The change we have made causes a bad 

heritage: S1, which is attached to So along a vertical side, is stretched a little bit 
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more, whereas $2, which is attached to So along a horizontal side, is pressed from 

the side a little bit. Both changes have a magnifying effect for the maximal 

dilatation. But we have three sides left to make up for it. Therefore,  apart from the 

first rectangle So, we evidently have to consider the following two cases: 

A) Make worse on one vertical side, improve on the three other sides (Fig. 1, SJ. 

B) Make worse on a horizontal side, improve on the three other sides (Fig. 1, $2). 

Each of the rectangles attached to one of the three free sides now inherits a loss 

( =  increase of the maximal dilatation, namely on the attached side) but can 

compensate it on the three remaining sides, with new rectangles attached. 

We only consider mappings of type A) and B), leaving the case Ro---, So aside, 

which of course follows along the same lines. But it is in fact not necessary to 

construct this mapping, as with a slight change of the construction we can as well 

start with a mapping of type R~---~ $1. Only some of the symmetry is lost. 

We have to show that the mappings induced by f and f on the unit disk have the r 
same boundary values. Let h : S---~I ~'1 < 1 be the conformal mapping of the 

universal covering surface onto the unit disk. The rectangle So, taken half open 

without the four vertices (or likewise any other rectangle of the lattice) covers the 

surface S exactly once. It is mapped onto a fundamental domain h (S) of the group 

of cover transformations. Such a fundamental domain is bounded by four circles 

orthogonal to the circumference ] ~'1 = 1. The Euclidean diameters of any sequence 

of pairwise different fndamental domains evidently tend to zero. 

Let now ~'. ---, ~'o (I ~'01 = 1) be a convergent sequence of points of the unit disk, 

with ~. their variations. Let P., /5 be the corresponding points on S./5. lies in the 

same rectangle as P,, or else in one of the four rectangles att.ached to it along its 

sides. One concludes: 

If a certain fundamental domain, say h (So), contains infinitely many points ~',, the 

points ~, corresponding to this subsequence evidently tends to the same boundary 
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point ~',,. But then this must be true for  the whole sequence  (~,), as the 

cor respondence  is quasiconformal .  If every fundamenta l  domain  contains only a 

finite number  of points  ~',, the d iameter  of  the fundamenta l  domains  h(S,,)~ ~, 
tends to zero. The  same is true for the d iamete r  of  the sets consisting of h(S,,) and 

the fundamenta l  domains  at tached to its four  sides. Thus  ~, ~ ~'0, q.e.d. 

In the second example  below the surface S is compact ,  and the same is true for 

the closure of any fundamenta l  domain .  Therefore  only the second  of  the above  

two cases can happen.  Again  the two mappings  coincide on I srl = 1. 

4. In order  to get piecewise affine mappings  we will subdivide the polygons  into 

quadrangles  and these into triangles. The  triangles can be m a p p e d  by affine 

mappings 

w=pz+q~ .+c ,  

which gives a complex  dilatation of the fo rm 

q 1 + 8a 
K = = k ; = k(1 + tS(a - b ) +  0 (82) ) .  

p �9 + 8b 

Here,  a and b are constants  depending  only on K and some fixed pa ramete r  of the 

construct ion,  while 8 is a small positive parameter .  If we can show that A = 

R e ( a  - b ) <  0, the ray k (t + ~5(a - b ) ) cu t s  the circle I z I = k, and there fore [  K I <  k 

for all sufficiently small tS > 0. 

5.  M a p p i n g  o f  a s q u a r e  o n t o  a p o l y g o n  o f  t y p e  A 

The heights of  the triangles are chosen to be ~ > 0 resp. r/ = ~/K. We claim that 

for  every sufficiently small 8 there is a piecewise affine mapping  of  the unit square 

on to  the polygon S~ (Fig. 2, dot ted  line) with a maximal dilatation /~ < K. 
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Fig. 2 
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P r o o f .  Because of  the symmet ry  of the configurat ion we only have to consider 

the two upper  quadrangles .  

a) Upper left quadrangle (magnified by 2): 

_ - - T K + i ( l +  R) 

i +i i - -  . . . . . . . . .  / 

o o 8 K K+8 
Fig. 3 

As new center  ( c om m on  vertex of the four  triangles) we choose  the point 

� 8 9  0 < e < l .  The  complex dilatations and the crucial 

numbers  A now b e c o m e  in turn 

K - 1 - e8 - i6(1 - 1/2K) A = 
I )  K = 

K + 1 - e8 + i6(1 + 1 / 2 K ) '  
2e 

K 2 -  1 

K - 1 - 8 / 2 K - i 6 ( l + e )  A=  - - -  
II)  r = 

K +  1+ 6 /2K + i6(1 + e ) '  K 2 -  1 

K -  1 + 8(e - 1 / K ) -  i 6 ( 1 -  1/2K)  A = - 2 ( 1 -  e)  
I I I )  r = 

K + 1 + 6(e + l / K ) +  i6(1 + 1 / 2 K ) '  K 2 -  1 

K -  1 -  6 / 2 K +  i S ( 1 / K -  1 + e) A = - -  
IV)  K = 

K +  1 + 6 / 2 K +  i6(1/K + 1 -  e ) '  g 2- 1" 

b) Upper right quadrangle (magnified by factor  2): 

0 

I+i 

i(l+R)~-~ 

I ', / z / - - . .  
/ /  

K 

K+i 

\ 

K§ 
Fig. 4 
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The new center is chosen to be �89 + �89 8(1 + e ) +  i(�89 + ~ 7/). We now get for the 

different triangles 

K - l + a ( e - 1 / K ) - i S ( l + l / 2 K )  A = _ 2 ( 1 -  e)  
I) r =  

K + 1 + 8(e  + 1 /K)  + i8(1 - 1 / 2 K ) '  K 2 -  1 

K -  1 -  a / 2 K -  i 8 ( 1 -  e)  - 1 
II) x = K + 1 + 8 / 2 K + i S ( 1 - e ) '  A = K2----~ 

III) 
K -  1 -  e ~ -  ia(1 + 1/2K) - 1 

K = A = - -  
K +  1 -  e6 + i 8 ( 1 -  1/2K) '  K 2 -  1 

K - 1 - ~5/2K - i8(1 + e + 1 / K )  A = - -  
IV) r = K + l + 8 / 2 K + i S ( l + e _ l / K ) ,  

- 1  
g 2 -  1 " 

o 

i 

0 

M a p p i n g  of  a s q u a r e  o n t o  a p o l y g o n  of  t y p e  B 
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In this case we have a vertical line of symmetry and thus only have to consider the 

two left hand quadrangles. 

a) Upper left quadrangle  (magnified): 
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T h e  n e w  c e n t e r  is �89 + ~`5(1 - e ) +  i ( � 8 9  W e  t h e n  ge t :  

K - 1 - e`5 - i8(1 + 3 / 2 K )  - 2 e  

I) K = K + 1 - e`5 + i8(1 - 3 / 2 K ) '  A = K 2 _  1 

g - 1 - ` 5 ( 1 -  
I I )  r = 

K + 1 - ` 5 ( 1  + 
1 / 2 K ) -  i S ( e  + 1 / K )  A = - 1 

1 / 2 K )  + i S ( e  - 1 / K ) '  K 2 -  1 

III )  x = 

K - 1 - `5(1 - e ) -  i ` 5 / 2 K  A = 1 

K + 1 -  8 ( 1 -  e ) -  i ` 5 / 2 K '  K 2 -  1 

I V )  K = 
K - 1 - ` 5 / 2 K  - i`5(1 - e + 1 / K )  A = - -  

K + 1 + ` 5 / 2 K  + i 8 ( 1 -  e - l / K ) '  

- 1  
K 2 -  1" 

b) L o w e r  l e f t  q u a d r a n g l e  (magn i f i ed ) :  

I§ 
8§ 

i 

/ - -%, /_ . - -  

Fig. 7 -: 

K+i 

K+i(l-q) 

K 

K-iq 
i / l  I T h e  n e w  c e n t e r  i s � 8 9 1 8 9  U - ~ 7 / ) .  W e  t h e n  ge t :  

K - 1 - e`5 + i`5(1 - 1 / 2 K )  - 1 
I) r = K + 1 - e`5 - i`5(1 + 1 / 2 K ) '  A = K 2 _------~ 

K - 1 - ` 5 / 2 K  + i 8 ( I  - e - 1 / K )  - 1 
I I )  r = K + 1 +  8 / 2 K -  i ` 5 ( 1 -  e + l / K ) '  A = K2 - 1 

K - 1 - ,5(1 - e ) -  i ` 5 3 / 2 K  - 1 
I I I )  r = K + 1 - `5(1 - e )  - i 8 3 / 2 K '  A = K2--- -~  

K -  1 -  8 ( 1 -  1 / 2 K ) +  i S ( e  - 1 / K )  - 1 

I V )  r = K + 1 -  8 ( 1 +  1 / 2 K ) - i ` 5 ( e  + l / K ) "  A = K S  - 1" 

C h o o s i n g  e = {, we  ge t  A = - 1 / ( K  2 - 1) in all  cases .  Thus ,  fo r  all  suf f ic ient ly  smal l  

v a l u e s  o f  8 we  h a v e  c o n s t r u c t e d  a v a r i a t i o n  o f  t h e  lift w i th  a s m a l l e r  m a x i m a l  

d i l a t a t i on .  
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S e c o n d  e x a m p l e :  c o m p a c t  s u r f a c e  o f  g e n u s  t w o  

7. D e s c r i p t i o n  o f  t h e  m o d e l .  We start with the rectangle 0_-< x < 3, - 1 _--< 

y _-< 1, slit along the real axis by two cuts of length one (see Fig. 8). This slit 

rectangle is sewn along its horizontal edges to another  replica lying underneath:  We 

thus get a flat tube, which splits into two tubes on both ends. These ends are then 

identified by a horizontal translation to get the desired surface R of genus 2. Of 

course one can introduce local conformal parameters.  For interior points of the 

upper  sheet the local homeomorphisms are projections to the underlying complex 

plane. At interior points of the lower sheet we take the projection with a 

subsequent reflection. At  interior points of the horizontal edges we have to reflect 

the lower sheet on the edge and then use projection. Finally, at the two endpoints 

of the slits we first take the square root and then apply the same procedure.  

I 

. ' 0 0 
Fig. 8 

In order to get the desired Schottky covering surface S we attach, instead of 

identification, new replicas of the model to its four vertical boundaries.  Each of the 

four added pieces has three free vertical boundary curves, to each of which we 

attach a new replica a.s.f. The resulting surface evidently is a planar covering 

surface of R, since the whole construction can be performed in the plane if we start 

with the Riemann sphere with four circular holes. 

A horizontal stretching of the rectangular surface R by a factor K > 1 onto a 

surface R '  of the same kind is an extremal quasiconformal mapping of R onto R ' .  

This can be shown in the usual way by the length area method.  But it is also a 

consequence of the general uniqueness theorem and the fact that the constant 

~0 = 1 is a hoiomorphic quadratic differential on R : The two endpoints  of the slits 

are second order  zeroes, as four horizontal trajectories are ending at these points; 

all the other points are non-critical. 

8. C o n s t r u c t i o n  o f  a m a p p i n g .  We are now going to construct a piecewise 

affine mapping f of the covering surface S onto the corresponding Schottky 

covering surface S '  of R ' ,  which has a maximal d i l a t a t ion / (  < K. The basic idea is 

the same as in the first example:  Let R0 be the first rectangular piece of which S is 

composed. Instead of stretching it by the factor K onto the first rectangular piece 

R~ of S',  we map it onto  a rectangular subsurface/~o of R~ by pushing in each of its 
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four boundary curves. Each of the four rectangular pieces RI , .  �9 -, R4 attached to Ro 

along its four boundary curves has to be streched more at this particular boundary.  

But it has three other boundary  curves to make  up for it. It is evidently enough to 

construct a mapping fo for the following situation (Fig. 9): 

O 
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26,,l-e) 
I / 

I '*' 

/ D / 
/ / 

/ / 
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\ C / \ / 
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28(t-~) 25(I-E) 

26(1.~,) 8 

B 

A 

Fig. 9 

I 
I 
I 
I 
L 

(In fact, a mapping of S onto S '  can be composed by mappings of this kind, as is 

easily seen, but this construction is less symmetric.)  The rectangle 0_-< x < 3, 

- 1 _-< y _-< 1 of Fig. 8 is mapped  onto the hexagon "of Fig. 9, bounded, at its two 

vertical ends, by the dotted lines. At the upper  right end we have an extension by 

the quantity 8, whereas the three other ends are shrinked by the same amount.  By 

the symmetry of the surface, the same construction can be applied to the lower 

sheet. 

We now have to find mappings of the unit square onto quadrangles and 

pentagons of the four different types indicated in Fig. 9. 

9 .  M a p p i n g  o f  a s q u a r e  o n t o  a q u a d r a n g l e  o f  t y p e  A 

(Figs. 9 and 10): 
We claim: For every K > 1 and 0 < e < 1 there exists a number  6o > 0 such that 

for 0 < 8 < 60 the square can be mapped onto the quadrangle of Fig. 10 (dotted 

line) by a piecewise affine mapping with a dilatation / (  < K. 

I~'i i / 

\ 

/ / " "  
I "%,~/  / 

o6 
Fig. 10 
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K+26(I- s 
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P r o o f .  W e  choose  the  new cen te r  ( c o m m o n  ver tex  of the  fou r  t r iangles)  to  be  

�89 + 6(1 - �89 + i(�89 - rt),  where  r t > 0 will  be  d e t e r m i n e d  la ter .  N o w  the  mapp ings  

of  the  four  t r iangles  have  the  fo l lowing c omple x  d i l a t a t ions  x and  var ia t iona l  

coefficients A: 

K - 1 -  e6 - 2i71 A = K2e__ l 
I) x ---- K + 1 - e6 - 2i~7 ' 

K -  1 -  8 + 2~7 + i6(1 + e )  4K71 - 2 6  
I I )  K = K + l _ 6 _ 2 r l _ i 6 ( l + e ) ,  A 6 =  K 2 _ l  

K - 1 - 6e + i2('q + 6(1 - e ) )  A = - 2-----C-e 
I I I )  x = 

K + 1 -  6e + i 2 ( r / -  6 ( 1 -  e ) ) '  K 2 -  1 

K -  1 + 6 - 2 e a - 2 r / -  i a ( 1 -  e )  
IV)  x = 

K + 1 + 6 - 2 e 6  +271 - i 6 ( 1 -  e ) '  
A6 = - 4 K ' q  + 2 6 ( 1 - 2 e )  

K 2 -  1 

Choos ing  77 = ~ 8, we get  A = K-~ 2 e  
- 1  

for  all four  t r iangles .  

10 .  M a p p i n g  o f  a s q u a r e  o n t o  a r e c t a n g l e  o f  t y p e  B 

(Figs. 9 and 11): 

i 28(I+(.)+i 

0 

I+i .-.~K+6+i 

I ~ ".. 

Y "_-.l 
o K K+6 

Fig. 11 

' -K Wi th  the new c e n t e r  2 + a (1 + �89 e )  + i(�89 + r/)  the  mapp ings  of  the  four  t r iangles  

have  the fo l lowing complex  d i l a ta t ions  and  va r i a t iona l  coeff icients  A: 

K - l - e B + i 2 ( 6 ( l + e ) + T 1 )  A =  - K 2 - - ~  e_ 
I) K = K + 1 -  e B -  i2(6(1  + e ) -  ~ ) '  - 1 

- 4 K ~ / +  28 K -  1 + 8 - 2 7 + i8(1 + e )  A8 = K 2 -  1 
I I )  x = K +  1 + 8 +271 - i6(1 + e ) '  

K - 1 - eB - i2r/  2e 
I I I )  x = K + 1 - eB - i 2 r / '  A = - K2 _---------~ 
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K - 1 - 8 - 2 e 8  + 2,1 + i8 (1  + e )  4K71 - 2 6  - 4 e 8  
IV) K = K + l - 8 - 2 e S  - 271 - i S ( l  + e ) '  A S =  K 2 _ l  

1 + e 2e for all four triangles. We have proved that Putting r / =  ~ 8, we get A = -- K2 _----~ 

for all sufficiently small 8 the complex dilatation of the mapping in Fig. 11 will have 

an absolute value smaller than k. 

11. M a p p i n g  of  a s q u a r e  o n t o  a p e n t a g o n  of  t y p e  C 

(Figs. 9 and 12): The configuration has a vertical axis of symmetry.  We therefore 

only have to construct a mapping of the half square onto the left half of the 

pentagon.  

',, + i ( t -2X)  

\ / 

Y 
0 o 26(1-~.) K 

Fig. 12 

�9 1 I As new center we choose � 8 8  We claim: With A = 

2 8 ( 1 - 3 e ) / K ,  '1 = 2 8 ( 1 - 2 e ) / K  there is, for all sufficiently small 8, a piecewise 

affine mapping with a maximal dilatation /~ < K. 

P r o o f .  The complex dilatations of the four affine mappings and their varia- 

tional coefficients are as follows: 

K - 1 - 4 e S - i 2 ( 8 ( 1 - e ) - 2 * l )  A -  
I) r = K + 1 - 4 e 8  + i 2 ( 8 ( 1 -  e ) - 2 r / ) '  

8 e  
g 2 -  1 

K - 1 - 4 6 ( 1 - e ) + 2 7 1 - i 2 6 e  A 6  4 K T 1 - 8 8 ( 1 - e )  
II)  r = K + l _ 4 6 ( l  _ e ) _  2~7 + i 2 8 e  , = K 2 _  l 

K - 1 - 4 6 ( 1 - 2 e ) + 2 A + i 4 Q 1 - A I ,  A6 4KA - 8 6 ( 1 -  2e)  
III)  r = K + l _ 4 6 ( l _ 2 e ) _ 2 A + i 4 ( T l _  A = K 2 _ l  

K -  1 - 2 r / + 2 A  + i 2 ( 6 ( 1 - 2 e ) - 2 A )  A6 = - 4 K r / + 4 K A  
IV) r = 

K + 1 + 2 r / - 2 A  - i 2 ( 6 ( 1 - 2 e ) + 2 A ) '  K = -  1 

With the given choices of A and 7/we get A = - 8 e / ( K  2 - 1) for all four triangles. 
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12 .  M a p p i n g  o f  a s q u a r e  o n t o  a p e n t a g o n  o f  t y p e  D 

(Figs. 9 and 13): 

0 l 

1+i  

K 
2 6{I-~.)+i "E +28"~i 

�9 /Ix,"/", ,,I ----~ K+ 25 (1~-f,)*i 

/",~/', . L,~,",, /I.,': 
'/"I ,'\',/.:'[ / i \ y ,  

i / / ' \  
4t.," 

o . . . . . . . . . .  '.~:' - 
K 

K-i2X 
2 

Fig. 13 

The pentagon is split into two quadrangles. For the first part we choose the new 

center equal to �88 K + 8(1 - 2 e ) +  i(�89 7/). With this, we get the following complex 

dilatations and variational coefficients: 

K - 1 - 4 8 e + i 2 ( 8 ( 1 - e ) - 2 r l )  A =  8e 
I) r= K + 1 - 4 8 e  - i 2 ( 8 ( 1 -  e ) - 2 7 / ) '  K 2 -  1 

K -  1 + 2 , / - 2 A  + i 2 ( 6 ( 1 - 2 e ) - 2 A )  A8 = 4 K * / - 4 K A  
II) r = 

K +  1 - 2 . 1  +2A - i 2 ( 8 ( 1 -  2e )+  2A )'  K z -  1 

K - l + 8 e S - 2 A  + i 2 ( 8 + 2 7 1 - 2 A )  A S =  - 4 K A  +8e8 
III)  K = K + 1 +8e8 +2A - i 2 ( 8 - 2 . / + 2 A ) '  K z -  1 

) - 4K,  1 + 8e8 K - l + 4 e S - 2 r l + i 2 8 ( 1 + e ) ,  A S =  K 2 1 
IV) r = K + l + 4 e S + 2 r / _ i 2 6 ( 1 + e  

With A = 28(1 - 3 e ) / K  as before, 7 /=  3,/2 = 8(1 - 3e ) /K  we get the following four 

variational coefficients: 

8e - 4 ( 1 - 3 e )  - 8 ( 1 - 2 e )  - 4 ( 1 - 5 e )  
K z - l '  K 2 - 1  ' K 2 - 1  ' K 2 - 1  

For the second half of Fig. 13 we choose as new center the point ~K + 8(1 + 2e)  + 

i (�89 The complex dilatations and variational coefficients then become: 

K - 1 +  8eS - 2A + i2(8 - 2rl + 2A ) A S =  
I) K =  

K + 1 + 8e6 +2A - i2(8 +2,1 - 2 A ) '  
- 4 K A  + 16e8 

K 2 -  1 
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II) r = 
K -  1 + 2 , / - 2 A  + i2 (6( l+2e)+2A)  
K +  1 - 2 . 1  +2A - i 2 ( 6 ( l + 2 e ) - 2 A ) '  

A 6 =  - 4 K ( A - 7 7 )  
K 2 -  1 

K - 1 - 4 e 6 + i 2 ( 6 ( l + e ) + 2 r l )  A =  - 8 e  
III) r = 

K + 1 - 4 e 6 -  i2(6(1 + e ) - 2 ~ / ) '  K ~-  1 

K -  1 + 4 e 6 -  2r I + i6(2-  e) - 4 K ,  1 +8e6 
IV) r = K + l + 4 e 6 + 2 r l - i 6 ( 2 - e ) '  A 6 =  K Z _ l  

Choosing r / =  26(1 - 4 e ) / ( K  z -  1) we get, with the earlier value A = 26(1 - 3e)/K, 

for the variational coefficients the values 

_ 8 ( 1 - 5 e )  - 8 e  - 8 e  - 8 ( 1 - 5 e )  
K 2 _ l  , K 2 _ l  , K 2 _ l  , K 2 - 1  

Therefore, for e < !J5, we have constructed a piecewise affine mapping of the 

square onto the pentagon D with a maximal dilatation /(  which is smaller than K 

for all sufficiently small 6. 
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