
Requirements Eng (1997) 2:102-113
�9 1997 Springer-Verlag London Limited Requirements

Engineering

Ten Steps Towards Systematic Requirements Reuse
W. Lam a, J.A. McDermid b and A.J. Vickers b
aDepartment of Computer Science, University of. Hertfordshire, Hatfield, Herts, and, bRoils-Royce University Technology Centre, Department of Computer Science, The
University of York, York, UK

Reusability is widely suggested to be a key to improving
software development productivity and quality [1,2]. It
has been further argued that reuse at the requirements
level can significantly increase reuse at the later stages of
development [3,4]. However, there is little evidence in the
literature to suggest that requirements reuse is widely
practised. This paper describes ten practical steps
towards systematic requirements reuse based on work at
the Rolls-Royce Systems and Software University Tech-
nology Centre (UTC) for Rolls-Smiths Engine Controls
Ltd (RoSEC) in the domain of aero-engine control
systems. We believe these steps have made a significant
overall contribution to the 50% reuse figure quoted by
the management at RoSEC for current projects within
the BR700 family of engine controllers.

Keywords: Aero-engines; Case study; Practical;
Requirements; Reuse

1. Introduction

Reusability is widely suggested to be a key to improv-
ing software development productivity and quality
[1,2]. It has been further argued that reuse at the
requirements level can significantly increase reuse at
the later stages of development [3,4]. However, while
there have been successful cases of reuse in companies
such as Digital, Motorola and Hewlett Packard [5,6],
there is little evidence in the literature of requirements
reuse as part of the normal systems development
process.

Correspondence and offprint requests to: W. Lam, Department of
Computer Science, University of Hertfordshire, College Lane,
Hatfield, Herts ALl0 9AB, UK. E-mail: w.lam@herts.ac.uk

This paper describes ten practical steps towards
systematic requirements reuse, based on work at the
Rolls-Royce UTC which has been involved in institu-
tionalising reuse within Rolls-Royce since 1993 [7-11].
Our experience is largely drawn from the close working
relationship we have with RoSEC, a company jointly
owned by Rolls-Royce and Smiths Industries Ltd,
which was set up to develop and market aero-engine
controllers.

2. A Brief History of Requirements Reuse

Why should one attempt to reuse requirements?
Although the argument has no documented empirical
foundation, it would seem logical that the reuse of
requirements in functionally similar systems will bring
economic savings. Certainly in the domain of aero-
engine control systems, which the UTC has been
involved in, where development costs are high, even a
small amount of reuse may convert into large financial
savings. It can also be argued that by reusing the same
set of requirements again and again, one is likely to
'trust' them more than requirements written 'from
scratch'.

Requirements reuse has been examined from a
number of different perspectives: analogy [12,13], case-
based reasoning [14] and generic modelling [15-18].
Unfortunately, the above ideas have been restricted to
small-scale academic examples, and remain largely
untested in a genuine industrial or commercial capacity.
More recently, however, the reuse community has
reported success in the use of domain-specific
approaches to reuse within certain organisations
[19,20]. Central to these domain-specific approaches is
the use of domain analysis, which Prieto-Diaz [21]
defines as 'a process by which information used in
developing software systems is identified, captured, and

Ten Steps Towards Systematic Requirements Reuse 103

organised with the purpose of making it reusable ~hen
creating new systems'. Although early domain analysis
work appeared more relevant to code reuse [22], there
is evidence that domain analysis techniques are now
being used during earlier stages of development
[23-25].

In sum, the notion of reuse at the requirements stage
is accepted by many within the community as a
desirable aim. However, what appears to be missing
from the literature is pragmatic advice on achieving
requirements reuse as part of regular project practice.
This paper addresses this concern.

3. Ten Steps Towards Systematic
Requirements Reuse

The theme of the 4th annual workshop on Software
Reuse Education and Training was 'Making Reuse
Happen - Factors for Success' [26], emphasising the
need for the reuse community to consider the practical
implications of their ideas. Such a theme accords with
the technology transfer goals of the UTC [27,28] which
has been involved in the reuse of requirements for
FADECs (Full Authority Digital Engine Controllers) at
Rolls-Royce and RoSEC.

A FADEC is a control system for an aero-engine,
taking inputs from sensors located on the engine and
aircraft, and producing output in the form of electrical
signals to actuators such as fuel valves and igniters. The
FADEC is embedded and safety-critical.

In the following, we describe ten practical steps
which we feel have brought RoSEC towards systematic
requirements reuse, backed up with examples from our
experiences. The steps we describe are not meant to be
carried out in a fixed sequence - each step represents
an idea that can be taken onboard and implemented
within an organisation separately in its own right. We
have classified the steps into one of two categories:
orthodox and nonconformist. Orthodox refers to a step
which conforms with generally accepted reuse princi-
ples (but which may not have much empirical founda-
tion). Nonconformist refers to a step which suggests
revisions or new openings to the current way the
community thinks about reuse.

3.1 'Beware of Seductive Generalisations'
(nonconformist)

examine the usefulness of generalisations more criti-
cally (a point also raised in [29]).

To illustrate, in one study of the functional require-
ments for three different aero-engine starting systems,
we calculated (on the basis of a simple count) that only
about 30% of requirements could be considered
reusable, despite the systems having comparable func-
tionality. The reason why the reuse figure is lower than
expected is probably because the high level require-
ments between systems were similar, giving an overall
impression of similarity. In fact, most of the require-
ments were low-level requirements, often tied in with
design, more detailed in nature, and therefore difficult
to reuse.

Our point here is that a view of reuse based solely on
generalisations can be deceptive, and need to be
examined more closely to reach a more realistic
estimation of the true amount of reuse that is possible.
Within RoSEC, the UTC has encouraged a broader
view of reuse beyond that of generalisations, for
example, the use of 'pluggable' requirement parts
described in step 3.9 promotes the use of optional and
configurable requirements as well as generic ones.

Contribution to RoSEC: A realistic view of require-
ments reuse is taken at all levels of management within
the company. Reuse education via the UTC has helped
ensure that manageable but progressive reuse targets
have been set for new projects within the BR700 family
of engine controllers.

3.2. 'Identity System Families to Maximise Reuse'
(orthodox)

Code libraries were once the mainstay of efforts to
promote and achieve reuse, and indeed, many have
achieved significant success, e.g. those identified in [44].
Unlike code, however, requirements are context sensi-
tive and are specific to a problem or set of problems. In
addition, requirements are often 'knitted' together as
part of an overall model, unlike code fragments which
can be more modular and 'stand-alone' in nature. A
library of individual requirements, therefore, is likely to
be difficult to construct and use.

A more promising organisation for requirements
from a reuse point of view is that of system 'families' as
proposed in [23]. Within a system family, it may be
possible to:

Generic modelling, in one form or another, is often the
cornerstone technique of most approaches to reuse.
While we do not dispute that generalisations are
important in reuse, we do feel that there is a need to

�9 Identify commonalties between the 'parent' system
and 'child' system.

�9 Impose a common or standard requirements engi-
neering process within the organisation.

104 W. Lam et al

Basic \

FAOEC / X FADEC~Mafk 2 �9

�9 rllnl 2

Fig. 1. System families for the FADEC.

�9 Anticipate certain kinds of change and
specialisations.

�9 Reuse domain knowledge.

�9 Recognise working patterns which aid project
planning.

A simple tree diagram can be used to depict a family
of systems, and help identify sub-families where the
requirements between family members may be even
more closely aligned. Figure 1 shows the family
structures for FADECs which is composed of marks
and variants.

A mark is a FADEC for a specific engine within a
series, such as the medium thrust BR710 within the
BR700 series. Clearly, there is reuse potential between
the 'basic' (or parent) FADEC and its marks (or
children). A variant is a mark that is produced to the
specific requirements of an airframer (such as Boeing
or Airbus). Again, there is further reuse potential
between a mark and its variants.

Contribution to RoSEC: The development o f a reuse
programme which maximises reuse based upon a
'parent' and 'child' view o f engine controllers. This is
best shown in the document structure used by RoSEC
for the BR7OO family o f engine controllers. Here, a set o f
generic requirements documents currently exists for the
BR710 engine controller which are referenced by vari-
ants o f the BR710 engine controller.

3.3 'Evaluate Reuse Technology in Terms of
Process Change, not Just on Reuse Potential'
(nonconformist)

Numerous reuse technologies - application generators,
patterns, high-level languages and cookbooks - have
been described in the literature (see [4] and [30] for
more details). However, rather than 'leaping into' the
technology, it is important to assess the likely impact of
the technology. This involves being clear about:

* Current Practice - how requirements are currently
engineered.

�9 Reuse Strategy - how one envisages reuse will be
' implemented' in the current requirements engineer-
ing process.

�9 Effects on Current Practice - how the reuse strategy
will change current practice in terms of methods,
organisation structure, finance and other facets.

We have identified a number of evaluation criteria
within each of these three areas, and used these as the
basis for assessing different reuse technologies
(described in Table 3 at the end of the paper). The
framework acts as a 'checklist', encouraging one to
think more deeply about the way in which require-
ments reuse is to be achieved and sustained in a
commercial setting, emphasising the mix of technical,
organisational and financial issues. It should be noted,
however, that the technology offering the highest reuse
potential is not necessarily the most suitable for the
organisation (it may be seen as too costly or risky for
example).

Contribution to RoSEC: the UTC has produced an
assessment document for RoSEC which prescribes a set
procedure for evahtating different kinds o f reuse tech-
nologies, which takes into account both technical and
non-technical concerns.

3.4. 'Domain Issues Act as Requirements
Focal-points, and Can be Used to Organise and
Structure Reuse Products and Processes'
(nonconformist)

The process of creating reusable requirements is aided
by having a road-map for structuring the domain and
organising reusable requirements knowledge. In this
respect, we have found the notion of 'issues' a useful
structuring mechanism. We view an issue as an area
where requirements, in a particular domain, are typi-
cally focused. Table 1 describes issues for thrust
reverser systems and the key questions, which we call
trigger questions, pertaining to each issue.

Issues can be compared to the notion of 'touchstones'
proposed in [31] as a way of structuring and controlling
the process of knowledge elicitation. The trigger ques-
tions in an issue hint or point to individual require-
ments, for which there may be a corresponding tem-
plate requirement. At RoSEC, we have explicitly
recorded issues and trigger questions, and used them as
a basis for developing reusable, domain-specific
requirements engineering processes (described in more
detail in sub-section 3.8).

Ten Steps Towards Systematic Requirements Reuse

,Table 1. Issues for thrust reverser systems

105

Issue Trigger questions

Deploy thrust reverser

Stow thrust reverser

Thrust reverser maintenance

Thrust reverser interlock

How does a pilot activate the thrust reverser system? Is the activation related to the position of the
thrust reverser doors? What safety provisions are made if the doors are jammed or inhibited (such
as automatic thrust limitation)?

How does a pilot deactivate the thrust reverser system? Is the deactivation related to the position of
the thrust reverser doors? What. safety provisions are made if the doors are jammed or inhibited?

How is the thrust reverser deployed and stowed under aircraft maintenance? What safety measures
are in place with respect to the operation of the thrust reverser under maintenance?

Is interlock provided to give the pilot a tactile indication of thrust deployment? If so, during which
period does the interlock take place, and at what point is it released?

Contribution to RoSEC: For the domain of aero-
engine starting, we have identified 16 different issues and
their associated questions. These are recorded in a
'Domain issues' document forming part o f a wider
reusable document set which the UTC is developing
aimed primarily for the BR700 engine family.

3.5. 'Reasoned Abstraction is Effective for
Developing Template Requirements' (orthodox)

Template (or parameter ised) requirements encourage
reuse by factoring out system-specific details as param-
eters of the requirement. We have found that template
requirements provide a quick and cost-effective route
to reuse - the notion of a template is easy to
comprehend and does not require a change in the way
requirements are described. The method for creating
template requirements is one of reasoned abstraction,
and is described as:

�9 Identify commonly re-occurring issues and trigger
questions between similar projects.

�9 Use the trigger questions to locate equivalent 'con-
crete ' requirements in each project.

�9 Use the similarity between concrete requirements to
formalise the 'constant ' part of the template
requirement.

�9 Use the differences between concrete requirements
to formalise the 'var iable ' part of the template
requirement as parameters.

�9 Validate the template requirement with an expert.

�9 Re-use the template requirement in future projects,
and refine it as necessary

Table 4 shows an example of the results of this
process with respect to a developing template require-
ments for dry cranking an engine (rotation of the
engine without ignition or fuel). Note that the abstrac-

tion process is a reasoned one; in any abstraction
process, we need to ask a number of important
questions:

�9 Do we have 'equivalent ' exemplar requirements?

�9 What part of the requirement is constant, what part is
variable, and how can the two be separated?

�9 What is the explanation for the separat ion?

�9 Is the resulting template requirement meaningful and
sufficiently flexible that it can be considered reus-
able? Is it possible to test this by applying the
template requirement to a separate exemplar?

�9 Do other requirements engineers understand the
template requirement and the abstraction process
from which is has been derived?

Answering such questions is not straight-forward,
which is why we believe abstraction of this nature will
be difficult to automate, despite recent work in the area
of computat ional matching [32]. Abstract ion is clearly
important in reuse, and the ideas here can be compared
to work in artificial intelligence - [33] for example,
describes the formation of general plans and heuristics
from exemplars. However , some decision must be made
as to the most appropr ia te level of abstraction. Over-
abstraction will strip away essential parts of a require-
ment, while under-abstraction will retain system-spe-
cific details which will reduce overall reusability. There
is a balance here where the most optimal level of
abstraction is ultimately the one which requires the
minimum amount of effort to re-use the abstract
artifact (template requirements) . It is likely that this
balance will be reached with usage over t ime rather
than as something we can 'calculate ' beforehand.

Contribution to RoSEC." The UTC has created 30
template requirements in the domain o f aero-engine
starting based on the functional requirements documents
(FRDs) from four different engine controllers. We
believe these 30 template requirements represent the cor~

106 W. Lam et al

30% of a typical FRD. As well as the ongoing work of
refining these, the UTC is also involved in the process of
developing template requirements in the domain of
thrust reverse.

3.6. 'Requirements Patterns Often Emerge After
Working in a Particular Domain' (nonconformist)

Domain analysis is based on the idea that if one studies
the systems in a particular domain, patterns can be
identified. Substantial interest in patterns at the levels
of design and code has been shown by those in the
object-oriented community [34]. However, patterns can
be found much earlier in the development process. An
analysis of different requirements documents for aero-
engine starting systems and signal validation systems
revealed patterns of requirements. For example, we
noticed a pattern of requirements for engine relight, a
common feature of modern FADECs (Fig. 2).

In short, engine relight refers to the relighting of the
engine when a flameout condition occurs (such as in the
case of severe water ingestion). The pattern depicts five
different kinds of requirements, which are often found
together. For example, the requirements for engine
relight will always include a requirement for how
flameouts will be detected. The arrows shown in Fig. 2
provide additional information about the pattern, and
indicate the order in which the requirements are
usually addressed. For example, an expert in starting
will usually ask questions about the operation of the
ignition system before considering any associated
timing requirements.

By capturing patterns, we have moved closer to
formalising the structures of requirements knowledge
in a particular domain. In doing so, there are a number
of issues which need to be addressed:

arflP_,oul; "
-'~i . : ~ r 1 6 2 1 6 2 '

�9 .:: �9 . : ;~. / ,

~ . . ~ : : . : re , c l ' t , . f o r ~ : ~ : ~ , .
�9 �9 " : . :: . a r m i n g ~ i : ; : ' r c q ' t , . f o r

i . : =i~
, : ~ . . : , ' . : : ~ . i : ' :

: =a'~.eor ~ i :~
: ~ ignition

' o p c r a l ; I o . " ' ; ' : " " : ' " ! "
�9 , . : ' , t : l r a l n g r e , q ' l ; . ~

~ lu ra t ; ton :

Fig. 2. A requirement pattern for engine relight.

�9 Pattern content. What knowledge does a pattern
impart? For example, the pattern in Fig. 2 tells us about
'expected' requirements in a particular area, and
something about the order in which they are to be
elicited. However, we have often found the existence of
dependencies between requirements along the lines of
'requirement B is possible only if requirement A is
true'. It is possible therefore that other kinds of
patterns might capture this type of knowledge.

�9 Representing patterns. How are patterns represented?
In some respects, this is dependent upon the pattern
content. However, we have found the use of simple
diagrams (as in Fig. 2) supplemented with more
detailed explanations in natural English, sufficient for
our purposes here. It should be noted it is not the
formality of the pattern representation which is impor-
tant, but the knowledge which the pattern commu-
nicates to the pattern reader.

�9 Dealing with exceptions. Are there exceptions to the
pattern? Encountering exceptions may indicate the
need to revise a pattern, or to further delineate the
context in which the pattern can be applied.

In practice, recognising a pattern is the most difficult
part of the process, which will only bepossible after
studying several similar systems. The important point,
however, is to aware that patterns exist and to
document them so that they can reuse to guide future
systems.

Contribution to RoSEC: A Windows-based prototype
tool known as COMPASS (COMPonent ASSistant) [8],
has been developed which records patterns in the area of
aero-engine starting and links them with template
requirements stored in a local reuse database. Using
COMPASS, a user (RoSEC engineer) is able to browse
and select patterns and instantiate template requirements
into project requirements. At present, COMPASS has 13
patterns including patterns for cranking, various starting
modes, continuous ignition and engine relight. RoSEC is
currently evaluating COMPASS.

3.7. 'Making Explicit the Context of Reuse to
Prevent Misuse' (nonconformist)

One of the most striking cases of reuse misuse, reported
by [35], concerned the traffic control system used by the
Civil Aviation Authority (CAA) in the UK. The
software, designed by IBM.'s Federal Systems Division,
contained a model of the airspace it controls. However,
the software was designed for air traffic control centres
in the US, and the CAA had not taken account of a
zero longitude when reusing the software in the UK.

Ten Steps Towards Systematic Requirements Reuse

This oversight caused the computer to fold its map of
Britain in two at the Greenwich meridian.

The case clearly demonstrates the need to reuse with
care, especially in the case of high-integrity systems.
Work at the UTC suggests that the explicit documenta-
tion of context is a step towards the prevention of reuse
misuse. In doing so, one is forced to think about the
(often hidden) assumptions behind a reuse artefact. For
example, in the domain of aero-engine starting systems,
we have explicitly defined three typical contexts, shown
in Fig. 3.

Each context depicts an abstract design model of the
(often physical) components in a starting system. Civil
aircraft often have an air turbine starter, which pro-
vides a high torque-to-weight ratio. Military aircraft on
the other hand, will usually have a solid propellant
starter which provides rapid starting. Small, light
aircraft finds the electric motor starter more suitable
because of the ease of maintenance.

We argue that it is important to associate reusable
requirements with a particular context, i.e. a particular
abstract design model, and to ensure that the intended
context that a set of reusable requirements is created
for matches the actual context in which they are going
to be reused. For example, requirements which concern
the ignition of a solid propellant cartridge are only
'valid' or meant to be reused in the context of a solid
propellant starter - attempting to reuse them in the
context of an air turbine starter or electric motor starter

Air Turbine St Ire er
Air VIIYII ASr SOUrCe

I ~ ~uol Source

conl tel

m

m

Solid Propellant Slcrtcr
C~/Itldge Solid Proplllanl Ignqt or ~lrltldge

control ~ Fuel Sou~r

Elect ric M Ot Or S I a rt er

pow~

toni r o ~

~11 Fuel Seul~m
n
m

Fig. 3. Three different contexts for aero-engine starting.

107

is inappropriate, potentially dangerous and is likely to
lead to poor levels of reuse.

To help record the differing types of context, we
make use of five separate levels of description based on
the physical organisation of these types of system. We
recognise descriptions at the generic level of Environ-
ment, Platform, System, Subsystem, and Unit. Within
the domain of aero-engines (and in particular towards
FADECs) these correspond to Airplane, Engine,
FADEC, EEC, and Software. From RoSEC doc-
umentation we have been able to identify design and
requirements descriptions, at each of these levels of
abstraction. Requirements for a low-level component
are in part derived from design descriptions at the
higher levels, and these in turn are presented in
response to higher level requirements. We are seeking
to establish reuse libraries, for requirements and
context, at each of these different levels of
abstraction.

Contribution to RoSEC: There is now raised aware-
ness within RoSEC with respect to the problems o f
inappropriate reuse. The UTC is currently in the process
o f writing a 'safe reuse' guidebook for RoSEC which
includes a description o f safe reuse guidelines.

3.8. 'Parts of the Requirements Engineering
Process is Also Reusable' (nonconformist)

It was Osterweil [36] who first suggested that 'processes
are programs too'. Since then, there has been an
increasing interest in the explicit modelling of software
processes [37,38]. In the context of requirements
engineering at RoSEC, we observed similar sequences
of questions and routines being followed by domain
experts working on the requirements of systems in the
same domain. We believe that if parts of this process is
modelled in an abstract manner, it can be reused to
guide future requirements engineering exercises. For
example, we have modelled the process by which
requirements are elicited for 'aborting a start' (Fig. 4)
using our own variant of Role Activity Diagrams
(RAD) [39].

In short, an aircraft engine in the process of being
started can be aborted for safety reasons such as engine
overheating. In our process description, a square box
represents a questioning or elicitation activity,
described as a set of trigger questions for the RoSEC
requirements engineer to consider. For example, the
questioning activity labelled 'Manual fuel shutoff'
includes the trigger question: 'is there a facility in the
cockpit for the pilot to abort the start by switching off
the fuel supply to the engine?'. A circle represents a
checking activity, i.e. some analysis of the information

1 0 8

, :~' ::1 [~ 'Manual ":+' . ~ "~'+':~;" :

:~>,., '-~, ~ ::~ :,-'i i: :~. ~j".~;: ,, ' ~': ~,, ",~;:::~'.,~ ...,"

requ r ement, s ' f ' ~ ' ~ i ~ ~i : ~ - - " ~ : ,.L; "? " : : nrarzer for manual(~ I Protmf lon :: start abort i0n~N,._.+,/:~:,~ ''1 I !+ :~.+ +.+ :: :is
:: ~ / ; + | . . englne:~'+

:+iL::': ~:: abort,+.+ I ~ I "
~ + : s e q u ~ r m e L _ .__J . + I I

+. : . . i ;.+.. :" :. + . - . e r l O i n e h a n 0
- . , . : i : . . s , : �9 + i O ~ s t a l l ' :

I l ~ .] ' Seq uence+
" - "1 " - - - cons st~ent w~ h

�9 " ~ , i i:cockl;l|'!des|9 n

] J Fait l0 reach ": ~:
L___=_J .ioletlmer :" :- ,

F ig . 4 . The r e q u i r e m e n t s p r o c e s s fo r ' abo r t i ng a s tar t ' .

gathered from a questioning activity. For example, the
checking activity labelled 'Check safety requirements
for manual start abortion' involves following a proce-
dure for finding out the safety and certification require-
ments for safe manual start aborting and ensuring that
they are met in this case. The arrows in our process
description suggest a logical order for elicitation.

Our experience shows that process modelling in the
manner shown here has a number of benefits:

�9 A reused process will facilitate a reused product (in
this case, a reusable requirement specification).

�9 The process model can act as a checklist for ensuring
all the requirements for a particular area are
elicited.

�9 The 'dynamic nature' of requirements information
can often be more clearly seen in the context of a
process model (for example, a process model can
indicate at what point in requirements engineering a
particular piece of information should be elicited,
cross-checked with other information, expanded
upon etc.).

�9 Process models can be matured and refined to a point
where they become key educational aids for novice
engineers leaming new areas.

Preliminary process models can be developed by
'watching' the expert at work first, and then refining the
model with the expert as a form of validation. In
addition, a relationship was often observed between
requirement patterns (cf. Section 3.6) and process
reuse: as patterns 'matured' it became possible to
derive the associated process. The UTC is currently

W. L a m e t a l

investigating the use of process modelling in establish-
ing domain-specific requirements guide-books for
RoSEC engineers. More details of our work on process
reuse can be found in [40].

Contribution to RoSEC: So far the UTC has infor-
mally modelled 7 domain-specific requirements engi-
neering processes in the domain of aero-engine starting
using the RAD notation. We have documented these
processes as a kind of 'workplan' that an engineer can
pickup and follow. These processes are documented in a
requirements guide-book for the aero-engine starting
domain.

3.9. 'Factor Requirements Variance into
Pluggable Requirement Parts' (nonconformist)

Generalisation is often used to capture the common-
ality between all systems in a domain. As such, there is
always a danger that the resulting generalisation is so
devoid of detail that it becomes of little practical value
(cf. Section 3.1: 'Beware of seductive generalisations').
However, reuse can be increased if we consider the
isolation of requirements which, although are not
common to all systems in a domain, re-occur on a
frequent basis.

One approach we have used at RoSEC is that of the
'pluggable' requirement part. To illustrate, consider the
following template requirement:

Fuel and Ignition Template Requirement:
'Fuel and ignition will only be switched on when a start
has been requested by the pilot and [fuel and ignition
conditions] are true.'

The square brackets indicate the variable part of the
generic requirement. However, although the fuel and
ignition conditions for different aircraft systems may
differ, it is likely that the same conditions will re-occur
across many different aircraft. Therefore, we captured
the variability of the generic requirements in the form
of pluggable requirement parts (this is something we
feel that the domain expert should do because actually
recognising variability can be difficult). Table 2 shows a
list of six pluggable requirement parts for our generic
requirement.

The use of pluggable requirement parts enables
engineers to construct requirements quickly, with a
degree of flexibility, by choosing relevant requirement
parts and plugging them into the generic requirement.
The requirement below illustrates this:

'Fuel and ignition will only be switched on when a start
has been requested by the pilot and the engine speed >

Ten Steps Towards Systematic Requirements Reuse 109

Table 2. A list of pluggable requirement parts

Pluggable requirement part

1. Engine speed > preferred fuel-on speed

2. Engine speed > minimum fuel-on speed

3. Engine acceleration < maximum engine acceleration

4. Turbine gas temperature (TGT) < starting TGT

5. TGT < on-ground pre-start TGT

6. Fuel-on timer has not expired

m i n i m u m fuel-on speed and the tu rb ine gas tem-

pera tu re < s tar t ing T G T and the fuel -on t imer has no t
expired. '

Here, we have two reuse concepts working together.
The first is that of the t empla te r e q u i r e m e n t m e n t i o n e d

earl ier in the paper. The second is the formal i sa t ion of

typical pa rame te r values associated with a t empla te

r equ i remen t , i.e. a set of p luggable r e q u i r e m e n t parts.
More generally, we are seeking to ex tend this no t ion

of p luggable r equ i r emen t s to characterise more funda-

men ta l aspects of r equ i remen t s specification. In partic-
ular we are seeking to ident ify formats, based on

control led na tu ra l language, that recognise pre-condi-

t ion, action, and post -condi t ion. We are using keywords

Table 3. Framework for evaluating reuse technology

Evaluation criteria Description RoSEC-related examples

Current practice
�9 Document
�9 Document content

.Notation
�9 Methods used

Reuse strategy
�9 Coverage

�9 Reuse artefacts
�9 Scope
�9 Reuse frequency

�9 Envisaged process

�9 Startup actions

�9 Critical success factors

Effects on current practice
�9 Notation

�9 Methods used

�9 Organisation

�9 Financial

�9 Other

The type of report
The type of requirements included
in the document
The representation of the requirements
Any particular methods or techniques
used during the requirements
engineering process

An estimate of how much reuse is
possible
The form of what is to be reused
Any limitations of the reuse artefacts
How often the reusable artefact would
be used
If reuse was adopted, how the process
would look from an engineer's point of
view

What is needed in order to make reuse
possible

What are seen to be the most important
factors in order for the reuse strategy to
succeed

How a reuse strategy is likely to affect
the way in which requirements are
represented
How a reuse strategy is likely to affect
the methods and techniques already in
use
The organisational impact that a reuse
strategy will have
The financial consequence that a reuse
strategy is likely to entail
Other consequences a reuse strategy is
likely to bring

Functional requirements doc., System concept doc.
System, FADEC, hardware design or aircraft interface
requirements
Structured English and statecharts
Statecharts

20% of a typical functional requirements document

Generalised structured English requirement statements
Only applicable to systems in the BR700 engine series
On all engine projects, or just on BR710-related engine
projects
The engineer logs onto the reuse library, which is based
around a World Wide Web browser. Requirements given
as textual statements are cut and pasted into a require-
ments document. Other requirements not taken from the
reuse library can be directly added to the document
A domain analysis of the thrust reverser domain,
followed by the setting up a reuse library and its
population with generic requirements
Engineers actively involved in the domain analysis; the
reuse library to be accessible via the engineer's PCs and
project manager providing 1 extra week in the project
budget to allow engineers familiarisation

None

Engineers will be able to select requirements from the
reuse database and automatically import them into a
RoSEC document
The assignment of a person to maintain a reuse library
and to perform a domain analysis
Initial up-front costs in producing a reusable require-
ments library
General training for engineers on how to use the reuse
library

110

Table 4. Creating a template requirement using abstraction

W. Lam et al

Element in abstraction process Example

Concrete requirement from system A

Equivalent concrete requirement
from system B
Constant requirement part

Variable requirement part
Abstraction reasoning

"Template requirement

When engine not in process of being started, cranked or run, if fuel switch in OFF position
and master crank switch in ON position, and engine start switch then turned to ON position
then dry crank will be initiated
When engine not in process of being started, cranked or run, if fuel switch in OFF position
and engine start switch turned to CRANK position, then dry crank will be initiated
When engine not in process of being started, cranked or run, if (X) and then (Y), dry crank will
be initiated
X and Y are cockpit-specific signals
Cockpits are specific to a particular system, and not all systems will have the same cockpit
layout. Hence, this aspect is a variable requirement part and must be factored out of the generic
requirement
When the engine is not in the process of being started, cranked or run, if (cockpit signal 1) and
then (cockpit signal 2), a dry crank will be initiated

such as 'when', 'while', 'if', 'generate' , and 'sustain' to
characterise the differing roles of events and conditions
in the specification of individual functional require-
ments. Our work shares some similarity with that of
[43], and our intention is to develop these formats as
aides for systems engineers in producing quality
requirements more quickly.

Contribution to RoSEC: As mentioned earlier, we
have developed a tool called COMPASS which enables
R oSE C engineers to select template requirements from a
reuse database and 'instantiate' them to form project
requirements. For many instantiations, the user can select
from a parts database which has been built into
COMPASS.

3.10. 'Assess Beforehand the Impact of
Requirements Reuse on the Development 'Food
Chain" (orthodox)

It is fallacious to think of requirements engineering as
a process which is performed in a vacuum. In truth, it is
impractical to take a 'purist' view of requirements
engineering, as external circumstances such as costs,
design implications and even politics will inevitably
affect the way in which requirements are shaped. In this
respect, an analogy can be made with the food chain -
changing a requirement is likely to have profound
repercussions down the chain, causing reassessment of
the original design, and forcing significant re-testing.

Under the same analogy, changing the way in which
requirements engineering is performed by increasing
levels of reuse is likely to induce repercussions, good
and bad, along the development chain. We need to
assess the impact, taking into account a number of
viewpoints.

�9 Design Options. Do reusable requirements 'home in'
on a standard design or set of designs? Would it be
acceptable and worthwhile formalising standard
designs based around the reusable requirements?
(Work on the A D - A G E project [24] seems to have
adopted a reusable design approach)

�9 Testing Strategies. Does reusing requirements lead to
more economical testing? If not, can the existing testing
strategy be changed to reap such benefits? Does the
introduction of novel requirements nullify the potential
savings possible with reuse?

�9 Certification Pitfalls. Certification is a crucial hurdle
in the development of safety-critical systems such as
those often found in avionics. We therefore need to
make some honest judgements: is re'use likely to affect
the quality of the delivered system? If so, in what way
and will this lead to pitfalls during certification? Is the
integrity of the delivered system in any way comprised,
and if not, how sure can we be?

Attempting to localise reuse, without examining
changes along the development food chain, can at best
only lead to localised benefits. Our advice here is to
establish a small working group, consisting of individ-
uals representing different areas of the software devel-
opment process. The objective of the working group
should be to critically examine the impact of reuse on
other aspects of systems development, and to explore
potentially advantageous and/or harmful reuse 'spin-
offs'.

Contribution to RoSEC: Under the guidance o f the
UTC, Ro S EC has established a 4 man reuse group
within the company comprised o f individuals from
different engine projects. The objective o f the reuse
group is to identify and exploit opportunities for reuse
across the different projects. One achievement o f the
group has been recent work on the reuse and automatic
generation o f test scripts.

Ten Steps Towards Systematic Requirements Reuse 111

4." Lessons for Others

In this paper we have described a number of steps that
we have used to help facilitate requirements reuse
within RoSEC. These steps have been identified
through industrial collaboration and they are therefore
expressed in terms of the industry involved with that
collaboration - aerospace. Although the actual patterns
we have identified are specific to RoSEC, we feel it is
very possible that they apply to other aero-engine
control manufacturers outside of Rolls-Royce. In
theory, this could lead to standardisation within the
industry as discussed in [46]. However, given the
extremely competitive nature of the industry, there are
serious commercial barriers here.

Perhaps to be of real use and value to the community,
it should be possible to see their application in other
domains. We believe that the lessons described in this
paper can be generalised and that there is nothing
within this paper that is inherently aerospace-oriented.
We believe that in all domains it should be possible
to identify useful and appropriate generalisations
and abstractions (steps 1 and 5), identify families
(step2), consider evaluation more broadly than
just the product alone (steps 3 and 10), identify patterns
and context (steps 6 and 7), reuse processes (step 8),
and identify focal points and variance (steps 4 and 9).
These are general concepts which we believe are
generally applicable. After all, whilst in Section 2 we
said that there was little published in the way of
industrial-scale requirements reuse, our steps clearly
draw on the general work of the patterns community,
analogical reasoning, case-based reasoning, and generic
modelling.

5. Conclusions

The main contribution of this paper is a description of
ten practical steps towards systematic requirements
reuse, distilled from three years work at the UTC in
institutionalising reuse within RoSEC. These ten steps
have helped considerably in taking RoSEC to a point
where they are able to begin populating a requirements
reuse library, and where requirements reuse is becom-
ing an integral part of their development process. An
overall figure of 50% reuse between engine controllers
within the BR700 family has been quoted by the senior
management at RoSEC (even though the exact break-
down of this figure for requirements reuse is not yet
available to the UTC, we expect it to be close to the
50% mark). Although most of our steps have a distinct
technical focus, we cannot over-emphasize the impor-

tance of organisational and managerial factors in
institutionalising reuse [41, 42].

Perhaps the most encouraging lesson from our work
is that an increase in the level of requirements reuse
can be achieved using a number of relatively cheap and
simple measures which do not require radical organisa-
tional changes. While we believe that each of the steps
described in this paper can stand alone in its own right,
it is the synergy between steps working in parallel
which is likely to bring the most significant benefits of
reuse.

6. Future Work

The work presented in this paper has been of the
'action-based' or 'case-study' style and therefore may
appear ad-hoc. This was necessitated by the exploratory
nature of our investigation into this area. Having
undertaken this exploratory work, we are now in a
position to undertake the investigation of large-scale
reuse in a much stronger and more methodical
position.

In the future, we intend to build upon our existing
models of requirements and code reuse and consider,
from an industrial perspective, the role of domain-
specific architectures [45] (systems and software) in the
facilitation of reusable systems. We intend to identify a
reusable architecture for our domain and then inves-
tigate the relationships between our reusable require-
ments and our reusable code.

Finally, we observe that our overall aim is to help
RoSEC define technology that will enable them to
maintain the high quality of their product, but at a
fraction of the cost. We gratefully observe that the
enthusiasm shown by the managers and the many
engineers at RoSEC towards reuse has played a critical
role in our work. Without them, our ideas would remain
unused on the academic bookshelf.

Acknowledgements

We are grateful for the support of our sponsors, RoSEC and
Rolls-Royce, in funding our work. We would also particularly
like to acknowledge the technical support of Mike Bardill,
Paul Essam, and Graham Tanner, as well as past and present
colleagues of the UTC; all of whom have helped shape o u r

ideas.

112 W. Lam et al

References

1. Lim WC. Effects of Reuse on Quality, Productivity, and
Economics, IEEE Software, 19941 11(5): 23-30.

2. Sommerville I. Software Engineering (5th Edition),
Addison Wesley, ISBN 0-201-42765-6. 1996

3. SPC (1992) Software Productivity Consortium Reuse
Adoption Guidebook, Version 01.00.03, SPC-
92051-CMC, November, 1992

4. Biggerstaff T, Ritcher C. Reusability framework, assess-
ment and directions, IEEE Software, 1987; 41(3): 41-49
March

5. Guerrieri E. Case study: Digital's application generator,
IEEE Software, 1994; 11(5): 95-96

6. Joos R. Software reuse at Motorola, IEEE Software,
11(5): 42-47

7. Kelly TP, Lain W, Whittle BR. Diary of a domain analyst:
a domain analysis case-study from avionics, In Proceed-
ings of IFIP Working Groups 8.1/13.2 Conference,
Domain Knowledge for Interactive System Design, Gen-
eva, May 8-10, 1996

8. Lam W, Whittle BR, McDermid J, Wilson S. An integrated
Approach to Domain Analysis and Reuse for Engineer-
ing Complex Systems, In Proceedings of International
IEEE Symposium and Workshop on Engineering of
Computer-Based Systems (ECBS '96), Friedrichshafen,
Germany, March 11-15, 1996

9. Lam W, Whittle BR. A Taxonomy of Domain-Specific
Reuse Problems and their Resolution - Version 1.0,
Software Engineering Notes 21(5): 72-77 1996

10. Whittle BR, Lam W, Kelly TP. A Pragmatic Approach to
Reuse Introduction in an Industrial-Setting, In Proceed-
ings of the International Workshop on Systemmatic
Reuse, Liverpool John-Moores University, Springer-Ver-
lag, 1996

11. Whittle BR, Vickers AJ, Lam W, McDermid J, Hill JA,
Rimmer R, Essam P. Structuring Requirements Specifica-
tions for Reuse, International Journal on Applied Soft-
ware Technology 1(3-4), 1995

12. Finkelstein A. Reuse of formatted requirements specifica-
tions, Software Engineering Journal, 1988; 3(5): 186--197

13. Maiden N, Sutcliffe A. Exploiting reusable specification
through analogy, Communications of the ACM, 1993;
35(4): 55-64

14. Lain W. Reasoning about requirements from past cases,
PhD thesis, Kings College, University of London, 1994

15. Bolton D, Jones S, Til D, Furber D, Green S. Using
domain knowledge in requirements capture and formal
specification construction, In Jirotka, M. and Goguen J.
(Eds.), Requirements Engineering: Social and Technical
Issues, Academic Press, London, 1994

16. Reubenstein HB. Automated Acquisition of Evolving
Informal Descriptions, Report No. AI-TR 1205, Artificial
Intelligence Laboratory, Massachusetts Institute of Tech-
nology, 545 Technology Square, Cambridge, MA 02139,
1990

17. Miriyala K, Harandi TH. Automatic derivation of formal
software specifications from informal descriptions, IEEE
Transactions on Software Engineering, 1991; 17(10):
1126-1142

18. Ryan K, Mathews B. Matching conceptual graphs as an
aid to requirements reuse, In Proceedings of the IEEE
International Symposium on Requirements Engineering,
ISBN 0-8186-3120-1, page 112-120, 1993

19. Griss ML, Favaro J, Walton E Managerial and Organisa-
tional Issues - Starting and Running a Software Reuse
Program, In Software Reusability, eds W. Schaefer, R.
Prieto-Diaz and M. Matsumoto, Ellis Horwood, Chiches-
ter, GB, 1994; pp.51-78

20. WISR. Proceedings of the 7th Annual Workshop on
Software Reuse, St. Charles Illinois, August 28--30, 1995

21. Prieto-Diaz R. (1990) Domain analysis: an introduction,
ACM Software Engineering Notes, 1990; 15(2): 47-54

22. Wartik S, Prieto-Diaz P. Criteria for comparing reuse-
oriented domain analysis approaches, International Jour-
nal of Software Engineering and Knowledge Engineering,
1992; 2(3): 403--431

23. Gomaa H. Reusable software requirements and archi-
tectures for families of systems, Journal of Systems and
Software, 1995; 28:189-202

24. Tracz W. DSSA (Domain-Specific Software Architecture)
pedagogical example, ACM SIGSOFT Software Engi-
neering Notes, 1995; 20(3): 49-62

25. Tracz W, Coglianese L, Young E A domain-specific
software architecture engineering process outline, ACM
SIGSOFT Software Engineering Notes, 1993; 18(2):
40--49

26. WSRET. Proceedings of the 4th International Workshop
on Software Reuse Education and Training, Morgantown,
West Virginia, 14-18th August, 1995

27. Bate IJ et al. Technology Transfer: An Integrated 'Cul-
ture-Friendly' Approach, In Proceedings of Workshop on
Technology Transfer, 18th International Conference on
Software Engineering, Berlin, Germany, 25-29 March,
1996

28. Vickers A J, Whittle BR, McDermid JA. Technology
Transfer by Case Study; An Experience Report, Pre-
sented at 3rd International Conference on Concurrent
Engineering & Electronic Design Automation, Poole,
1996

29. Kramer J. Generalisations are false?, In Proceedings of
the IEEE International Symposium on Requirements
Engineering, ISBN 0-8186-3221-1, IEEE Computer Soci-
ety Press, Los Alamitus, CA 1993

30. Mili H, Mili F, Mili A. Reusing Software: issues and
research directions, IEEE Transactions on Software
Engineering, 1995; 21(6): 528-561

31. Littman DC. Modeling human expertise in knowledge
engineering: some preliminary observations, Interna-
tional Journal of Man-machine Studies, 1997; 26:81-92

32. Spanoudakis G, Constantopoulos E Analogical Reuse of
Requirements Specifications: A Computational Model,
Applied Artificial Intelligence (to appear) 1996

33. Carbonell JG. Learning by analogy: Formulating and
generalising plans from past experience, In Michalski RS,
Carboneli JG, Mitchell TM (Eds.) Machine Learning: an
Artificial Intelligence approach, Los Altos, CA, Kauf-
mann, 1983

34. Coplien JO, Schmidt DC. Eds. Pattern Languages of
Program Design, Addison-Wesley, ISBN 0-201-6073-4,
1995

35. Wray T. The everyday risks of playing it safe New
Scientist, September 8, pp. 61-65, 1988

36. Osterweil L. Software processes are software too, In
Proceedings of the Intemational Conference on Software
Engineering, IEEE Computer Society Press, Los Aiami-
tus, CA 1987

Ten Steps Towards Systematic Requirements Reuse 113

37., Curtis B, Kellner MI, Over J. Process modelling, Commtl-
nications of the ACM, 35(9): 91-100, 1992

38. McChesney IR. Towards a classification scheme for
software process modeling approaches Information and
Software Technology, 1995; 37(7): 363-374

39. Holt AW, Ramsey HR, Grimes JD. Co-ordination System
Technology as the Basis for a programming environment,
Electrical Communication, 1983; 57(4): 307-314

40. Lam W. Process reuse using a template approach: a case-
study from Avionics, Software Engineering Notes 22(2):
35-38, 1997

41. Fafchamps D. Organisational factors and reuse, IEEE
Software, 1994; 11(5): 31-41

42. Frakes WB, Isoda S. Success Factors for systematic reuse,
IEEE Software, 1994; 11(5): 15-19

43. Fuchs NE, Schwitter R. Attempt to Controlled English
(ACE), CLAW 96, First International Workshop on
Controlled Language Applications, University of Leuven,
Belgium, March 1996

44. Software Reuse Success Stories prepared by: Reuse
Acquisition Action Team (RAAT), Association for Com-
puting Machinery (ACM) SIG on Ada Reuse Working
Group, 1994

45. Tracz W. DSSA (Domain-Specific Software Architecture)
pedagogical example ACM SIGSOFT Software Engi-
neering Notes, 1995; 20(3): 49--62

46. Lam W, McDermid JA, Vickers AJ. Reuse Through
Standardisation: Towards Industry-Standard Engine Con-
trol Software, In Proceedings of the 1996 Avionics
Conference, Ramada Hotel Heathrow, UK, 20-21st
November, 1996. (Publication available from ERA Tech-
nology, Cleeve Road, Leatherhead, Surrey, KT22 7SA,
UK), 1996

