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Underaged ,  peak  s t r e n g t h  (T6), and o v e r a g e d  (T73) m i c r o s t r u c t u r e s  were  s tud ied  in 7075 
p la te  m a t e r i a l .  Hydrogen  c h a r g e d  and uncharged  t e n s i l e  s p e c i m e n s  of longi tud ina l  o r i e n -  
t a t ion  were  t e s t e d  be tween - 196~ and r o o m  t e m p e r a t u r e .  The r e s u l t s  c on f i rm  a hydro -  
gen e m b r R t l e m e n t  effect ,  man i f e s t ed  main ly  in the t e m p e r a t u r e  dependence  of the r e d u c -  
t ion of a r e a  loss ;  a c l a s s i c a l  behav io r  of hydrogen  e m b r R t l e m e n t .  The m a x i m u m  
e m b r R t l e m e n t  sh i f ted  to  lower  t e m p e r a t u r e s  with fu r t he r  aging.  The  effect  of hydrogen  
was l a r g e s t  for  the unde raged  condi t ion  and s m a l l e s t  for  the overaged ,  thus following 
the p a t t e r n  found for  the s e n s i t i v i t y  to s t r e s s - c o r r o s i o n  c r ack ing  in high s t r e n g t h  a lu -  
minum a l l o y s .  The  f r a c t u r e  pa th  was p r e domina n t l y  t r a n s g r a n u l a r ,  with minor  amounts  
of i n t e r g r a n u l a r  f r a c t u r e .  

W H I L E  the r e s i s t a n c e  of high s t r e n g t h  a luminum 
a l l oys  to e n v i r o n m e n t a l l y  a s s i s t e d  f r a c t u r e  long has 
been  a sub jec t  of c o n s i d e r a b l e  p r a c t i c a l  concern ,  
fundamenta l  s tud ies  of th is  p r o b l e m  have usua l ly  not 
been  suf f i c ien t ly  de t a i l ed  to ident i fy  the  under ly ing  
p r o c e s s  of f r a c t u r e  (for example ,  whe ther  f r a c t u r e  is  
con t ro l l ed  by anodic  d i s so lu t ion ,  hydrogen  e m b r i t t l e -  
ment ,  o r  some  combina t ion  of both). Even  l e s s  u n d e r -  
s tanding e x i s t s  as  to why th is  type of f r a c t u r e  is  s e n s i -  
t ive  to  m e t a l l u r g i c a l  v a r i a b l e s ,  such  a s  composRion ,  1-3 
m i c r o s t r u c t u r e ,  2,s g r a i n  shape  and t ex tu re ,  2'4,5 and 
t h e r m a l  t r e a t m e n t .  2,3 The  m i c r o s t r u c t u r e  v a r i a b l e  is  
of p a r t i c u l a r  i n t e r e s t ,  s ince  th is  is  the v a r i a b l e  that  
can be man ipu la t ed  in a g iven  a l loy  over  a c o n s i d e r a b l e  
r ange  while main ta in ing  the compos i t i on ,  g r a i n  shape ,  
and t ex tu r e  deve loped  f rom the a l l o y ' s  p r o c e s s i n g  
h i s t o r y .  

The  m i c r o s t r u c t u r a l  v a r i a b l e  that  is  thought to be of 
p r i m a r y  i m p o r t a n c e  in the e n v i r o n m e n t a l  f r a c t u r e  b e -  
hav io r  of a l u m i n u m  a l loys  is  the c h a r a c t e r  (nature  and 
d i s t r i bu t i on )  of the  p r e c i p i t a t e  popula t ion .  6,7 The in-  
f luence of p r e c i p i t a t e s  both in the g r a i n  i n t e r i o r  and at  
g r a i n  bounda r i e s  can be exp la ined  by two b e h a v i o r  
f e a t u r e s :  i) The  c h a r a c t e r  of those  g r a i n  i n t e r i o r  p r e -  
c i p i t a t e s  which con t ro l  s l i p  mode by whe ther  or  not 
they  a r e  s h e a r e d  dur ing  de fo rma t ion ;  when s h e a r e d ,  
p l a n a r  s l ip  r e s u l t s ,  with accompany ing  low r e s i s t a n c e  
to s t r e s s  c o r r o s i o n  c r a c k i n g  (SCC), while  if they a r e  
not s h e a r e d ,  s l i p  is  wavy and SCC r e s i s t a n c e  tends  to 
be higher ;  6,8 i i )  The r e l a t i v e  c o v e r a g e  of g r a i n  bound-  
a r i e s  by the i n t e r g r a n u l a r  p r e c i p i t a t e s .  An i n c r e a s e d  
c o v e r a g e  has been  c o r r e l a t e d  with SCC r e s i s t a n c e .  %9 
Unfor tuna te ly ,  t he se  two b e h a v i o r a l  f e a t u r e s  a r e  d i f f i -  
cul t  to s e p a r a t e  e x p e r i m e n t a l l y  b e c a u s e  t h e r m a l  t r e a t -  
men t s  which change the g r a i n  i n t e r i o r  p r e c i p i t a t e s  
a l s o  in g e n e r a l  a f fec t  g r a i n  bounda ry  p r e c i p i t a t e s .  
M e c h a n i s t i c a l l y ,  it  now a p p e a r s  6,7 that  both  f e a t u r e s  
p lay  a ro l e  in SCC s u s c e p t i b i l i t y .  

It has been  p r o p o s e d  6 that  s l i p  p l a n a r i t y  may  be i m -  
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por t an t  to SCC p r o c e s s e s  b e c a u s e  of i ts  i m p o r t a n c e  to 
hydrogen* t r a n s p o r t ,  ~~ while the g r a i n  bounda ry  p r e c i p -  

* Here we accept the view that hydrogen embrittlement processes contribute 
to SCC of aluminum alloys. 6, 7, 11, 12 

Ra tes  might  be independent ly  i m p o r t a n t  a s  a c c u m u l a -  
t o r s  of hydrogen* and thus po ten t i a l  nuc le i  for  l oca l i z ed  
f r a c t u r e .  6,%~3-15 One way to s e p a r a t e  these  phenomena  
is  to d e l i b e r a t e l y  use  a s p e c i m e n  o r i en t a t i on  which is  
not sub jec t  to s ign i f i can t  i n t e r g r a n u l a r  f r a c t u r e .  In 
SCC t e s t ing ,  the  longi tud ina l  o r i en t a t i on  in p la t e  o r  b a r  
p roduc t s  would be a p p r o p r i a t e  .2 It may  s t i l l  be t rue ,  
however ,  that  the r e l a t i v e  p l a n a r i t y  of s l i p  could af fec t  
both  the p r o c e s s e s  of anodic  d i s so lu t ion  and hydrogen  
e m b r R t l e m e n t .  A way to f u r t he r  s e p a r a t e  these  c o n t r i -  
but ions  is  to s tudy  the ro l e  of p l a n a r R y  in a s ing le  
p r o c e s s ;  i .e.,  under  condi t ions  where  only hydrogen  is 
p r e s e n t .  A c c o r d i n g l y ,  the p r e s e n t  work  has  e m p h a s i z e d  
behav io r  of hydrogen  c h a r g e d  longi tud ina l  s p e c i m e n s .  

We have r e c e n t l y  shown 16 that  7075-T651 b a r  m a t e -  
r i a l  exh ib i t s  s ign i f i can t  l o s s e s  in duc t i l i t y  when ca thod-  
i c a l l y  c ha rge d  with hydrogen;  those  r e s u l t s  r e p r o d u c e d  
f a i r l y  c l o s e l y  those  obta ined by  Ges t  and T r o i a n o .  ~7,~s 
S i m i l a r  e x p e r i m e n t a l  t echniques  were  e m p l o y e d  in the 
work  d e s c r i b e d  h e r e ,  except  that  7075 p la te  m a t e r i a l  
was used  ins t ead  of b a r  m a t e r i a l .  

EXPERIMENTAL PROCEDURE 

The m a t e r i a l  used  was c o m m e r c i a l  7075 p la te  m a t e -  
r i a l ,  63.5 m m  thick,  with the compos i t i on  l i s t ed  in 
Tab le  I .  Th is  p la te  is  p a r t  of a heat  that  has been ex -  
t e n s i v e l y  s tud ied  at  A l c o a  L a b o r a t o r i e s  ( ident i f ica t ion  
no.  420436) and was suppl ied  to us by them.  The g r a i n  
s t r u c t u r e  of the p la te ,  a s  shown in F i g .  I ,  i s t h e  d i sk  
shaped  ( s o m e t i m e s  ca l l ed  " p a n c a k e " ) a r r a n g e m e n t  
t y p i c a l  of c o m m e r c i a l  p roduc t .  2 T e n s i l e  s p e c i m e n s  
with 5.3 m m  d i a m  and 25 m m  gage length  were  cut 
f r o m  the p la te  with the t e n s i l e  ax is  p a r a l l e l  to the long-  
i tud ina l  d i r e c t i o n  (RD in F i g .  1),* and po l i shed  m e -  

*A few specimens were cut at 45 deg to RD with the tensile axis lying in the 
RD-ST plane for special experiments. 

chan i ca l l y  a f t e r  machin ing  to give a un i fo rm s u r f a c e  
f in ish .  Po l i sh ing  was p e r f o r m e d  with 600 g r i t  p a p e r  
fol lowed by  oil  b a s e d  Linde B compound to m i n i m i z e  
e x p o s u r e  to w a t e r .  
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Table I. Composition of 7075 Plate Material*, Wt Pct 

Zn Mg Cu Cr Fe Si Mn Ti Be 

5.68 2.48 1.63 0.19 0.30 0.12 0.07 0.05 0.001 

*Alcoa Laboratories no. 420436; conforms to QQA-250/12d specifications; 
plate center electrical conductivity in T651 condition is 33.2 pct IACS. 

Fig. 1 - G r a i n  morpho logy  of the 7075 plate  mater ia l  ( l ight  micro-  
graph)  re la t ive to  the rol l ing d i rec t ion  (RD) and transverse direct ions.  

Specimens were then given a conventional solution 
t rea tment  in a sal t  bath; 20 min at 465~ followed by 
quenching into ice water .  This solution t rea tment  not 
only dissolved existing prec ip i ta tes ,  but also annealed 
any mechanical ly  deformed surface  l aye r  resul t ing  
f rom machining and polishing. This procedure  is  im- 
portant,  since a high dis locat ion densi ty  in nea r - s u r f a c e  
regions could affect both hydrogen permeabi l i ty  and 
t r anspor t  of hydrogen by mobile dislocations.~9-2~ 

After  quenching, the specimens were p re -aged  for a 
minimum of 50 h at room tempera tu re  to optimize 
mechanical  p roper t i e s  .22 During this t ime,  the samples  
were e lec t ropol i shed  in a pe rch lo r i c -e thano l  solution 
at -30~ The final aging t rea tment  used was one of the 
following: T6 (peak-aged temper ;  24 h at 120~ T73 
temper  (overaged, 24 h at 163~ and an underaging 
t rea tment  cal led UT (24 h at 100~ designed to give 
about the same room tempera tu re  yield s t rength  as the 
T73 t rea tment .  Specimens for hydrogen test ing were 
cathodical ly charged in a hydrochlor ic  acid solution 
(pH = 1), for 10 h under an applied constant potential  
o f -1500  mV v s  s tandard  ca lomel  e lec t rode .  The 10 h 
t ime was chosen for convenience, since hydrogen 
effects did not vary  for t imes  between 5 and 24 h. After  
charging, the specimens  were r insed  with water,  dr ied,  
and s tored  in liquid nitrogen to reduce the loss  of in- 
t e rna l  hydrogen. 

In e a r l i e r  work, ~6 it was found that apprec iable  in te r -  
g ranu la r  co r ros ion  occur red  during hydrogen charging.  
In the presen t  work, two aspects  of specimen p r e p a r a -  
tion were changed in o rde r  to prevent  such at tack.  
Specif ical ly,  the n e a r - s u r f a c e  deformed layer  was an- 
nealed p r io r  to charging,  as desc r ibed  above, and 

chemical  polishing17, ~8 was omitted.  The new procedure  
resul ted  in no detectable cor ros ion  penetrat ion (<1 ~m), 
as observed in longitudinal sect ions  of the charged 
ma te r i a l .  

Tensi le  t es t s  were per formed  at an ini t ia l  s t r a in  ra te  
of ~ = 8.3 • 10 4 s -z. Charged and uncharged (reference)  
specimens  were tes ted  at t empera tu re s  o f -196 ,  -98,  
-50,  and 20~ Tempera tu re  control  during test ing was 
maintained by submerging each tens i le  sample and the 
gr ips  e i ther  in liquid ni trogen or in a suitable two- 
phase bath. Reference mechanical  p rope r t i e s  a re  
shown in Table II. To calculate  the f rac ture  s t ra in ,  
the d iamete r  of the necked region was measured  using 
a measur ing microscope  with a resolut ion of 1 ~m.  
To a s s e s s  exper imenta l  sca t t e r ,  at leas t  three  samples  
were tes ted for each condition. 

T r a ns m i s s i on  e lec t ron  microscopy examination of 
thin foils of each of the mic ros t ruc tu re s  was p e r -  
formed; foils were p repa red  using s tandard e l ec t ro -  
polishing conditions in a 1:2 n i t r ic  ac id-methanol  
electrolyte.Z3 Phase identif ication in these foils was 
accomplished by e lec t ron diffract ion methods.~ F r a c -  
ture  sur faces  of broken tens i le  specimens  were ex- 
amined using a scanning e lec t ron microscope  (SEM). 

RESULTS 

The gra in  s t ruc ture  of the plate ma te r i a l  is shown in 
F ig .  1; it  is  typica l  of ho t - ro l led  aluminum alloy plate,  
with the gra in  s ize approximate ly  400 /zm in the lon- 
gitudinal direct ion,  100 to 200 pm in the long t r a n s -  
v e r s e  direct ion,  and approximate ly  50 ~m in the short  
t r a n s v e r s e  d i rec t ion .  Large inclusions containing the 
impuri ty  e lements  iron and si l icon are  found p r i m a r i l y  
at gra in  boundaries (these appear  as black dots in 
F ig .  1). 

Detai ls  of the mie ros t ruc tu re  ~ for the different  heat 
t r ea tments  a re  shown in F ig .  2. Independent of aging 
conditions,  the ma te r i a l  contains fine, ch romium-r i ch  
in te rmeta l l i e  pa r t i c l e s ,  which are  not d issolved during 
the solution heat t rea tment .  In the 7000 s e r i e s  a l loys ,  
chromium is added to form these in te rmeta l l i e  pa r t i -  
c les ,  mainly for purposes  of gra in  ref inement .  2 The 
size of these incoherent  pa r t i c l e s  is about 0.2 to 0.5 
/ . tm .  

In the underaged or UT condition (Fig. 2(a)) the 
matr ix  contains fine, homogeneously d is t r ibuted  

Table II. Mechanical Properties of Experimental Materials 
(in the absence of hydrogen) 

Yield Ultimate 
Test Strength,* Tensile Strength, Reduction 

Temp., ~ Condition MPa MPa of Area, Pct 

20 UT ' 427 537 27 
T6 489 571 29 
T73 441 517 33 

-98 

-196 

UT 489 600 22 
T6 544 607 23 
T73 482 585 26 

UT 544 655 17 
T6 586 655 19 
T73 517 614 21 

* Flow stress at plastic strain of 0.002. 
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Fig. 2-Transmission electroh micrographs of microstructural details 
of the three heat treatments: (a) underaged, UT, (b) T6, (c) T73. 

coherent  p rec ip i ta tes  (GP zones) with a s ize of 
approximate ly  15 to 20A. In the peak-aged condition 
(T6, F ig .  2(b)) a mixture of GP zones and the s e m i -  
coherent  in termedia te  phase (usually cal led 71') is  

p rec ip i ta ted  within the matr ix .  In addition, the equilib- 
r ium 77 (MgZn2) phase is  p rec ip i ta ted  at the gra in  bound- 
a r i e s  as  incoherent  par t i c les ;  this  is accompanied by 
the formation of a p r e c i p i t a t e - f r e e  zone along the grain 
boundaries  with a width of 250A. 

In the overaged condition (T73, F ig .  2(c)), the mat r ix  
contains r e l a t ive ly  coarse  ~' pa r t i c l es ;  the g ra in  
boundaries  a re  covered by la rge  ~ pa r t i c l e s  as well as 
even l a rge r  T-phase ,  (A1 Zn)49 Mg32, pa r t i c l e s .  The 
width of the p r e c i p i t a t e - f r e e  zone in this condition is 
about 350.~. 

The resu l t s  of tensi le  t es t s  on the above ma te r i a l s  
a re  shown in F ig .  3. Plot ted is  the reduction of a r ea  
(RA) vs tes t  t empera tu re  for both charged and un- 
charged specimens  for the underaged condition (Fig. 
3(a)), for T6 (Fig. 3(b)) and for T73 (Fig. 3(c)). At 
t empera tu res  above -100~ the RA loss* due to hydro-  

* Defined as (RA.RA hydrogen) + RA. 

gen charging is l a rges t  for the underaged condition, 
sma l l e s t  for the overaged mate r ia l ,  and in termedia te  
for the peak-aged T6 condition, while at -196~ no 
significant effect of hydrogen was found for any condi- 
tion. The RA loss  data for the charged spec imens  as 
a function of t empera tu re  are  shown in Fig .  4. They 
exhibit dis t inct  maxima for the overaged ma te r i a l  at 
around -100~ for the T6 t emper  in the range of 
-50~ and for the underaged condition near  room 
t empera tu re .  

Examination of the f rac ture  sur faces  showed that the 
f rac ture  path was mainly t r ansgranu la r ,  independent 
of mic ros t ruc tu re ,  tes t  t empera tu re ,  and charging 
condition. F igure  5 shows deta i l s  of the f rac ture  su r -  
faces for the room tempera tu re  tes t s  for charged and 
uncharged specimens of the UT, T6, and T73 conditions.  
In a l l  cases ,  both smal l  and large dimples  were found. 
The size and dis t r ibut ion of the smal l  d imples  c o r r e -  
sponds to the chromium r ich  d i spe rso ids ,  whereas  the 
large dimples  can be assoc ia ted  with the large impuri ty  
inclusions.  A smal l  amount (less than 10 pct) of in ter -  
g ranular  f rac ture  was found, the extent of which va r ied  
sl ightly with t es t  t empera tu re ,  being g rea t e s t  for the 
T73 t emper .  The pe r s i s t en t  occurrence  of t r ansgranu-  
l a r  f rac ture  is bel ieved due to the disk shaped grain  
s t ruc tu re .  With the tensi le  axis  pa ra l l e l  to the rol l ing 
d i rec t ion ,  the major  par t  of the gra in  boundary a r e a  
is pa ra l l e l  to the load axis .  Even though gra in  boundary 
f rac ture  is favored due to the presence  of soft, p rec ip -  
i t a t e - f r ee  zones in the T6 and T73 tempers ,  the s t r e s s  
on the gra in  boundar ies  for this specimen orientat ion 
is not high enough to f rac ture  the boundar ies .  2 

At low tes t  t empera tu re s  (-50 to -200~ secondary  
c racks  were found. Examples  of these c racks  can be 
seen on the T6 f rac ture  sur faces  at -196~ for both 
the charged and uncharged condition (Fig.  6). The 
effect of secondary  cracking,  however, is not as p ro-  
nounced as in the 7075 bar  ma te r i a l  tes ted previously .  16 
By sectioning f rac tu red  spec imens  pa ra l l e l  to the ten-  
s i le  axis and then polishing and etching (Fig.  7) it was 
shown that these secondary c racks  lie in gra in  bound- 
a r i e s  pa ra l l e l  to the rol l ing d i rec t ion  (see Fig .  1). 

As a tes t  of the foregoing comments,  specimens  with 
tens i le  axes at 45 deg to the RD in the RD-ST plane 
were heat t r ea ted  to the T6 t emper  and tes ted  at room 
tempera tu re  in both hydrogen charged and uncharged 
conditions.  The f rac tu re  path was found to be a lmost  
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Fig. 3-Results of the tensile tests: Reduction of area vs test tempera- 
ture: (a) underaged (UT), (b) T6, (c) T73. 

e x c l u s i v e l y  i n t e r g r a n u l a r ,  a s  shown in F i g .  8. The  g r a i n  
bounda r i e s  a r e  f a i r l y  smoo th  with s h a l l o w  d i m p l e s  (Fig .  
8(a)), a s  would be expec ted  for  a s h e a r  type  i n t e r g r a n -  
u l a r  f r a c t u r e , w h i l e  t r a n s g r a n u l a r  t e a r i n g  a c r o s s  a few 
g r a i n s  p roduced  o c c a s i o n a l  d imp led  s t eps  (Fig .  8(b)). 
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Fig. 4-Reduction of area loss vs test temperature for the three 
different microstructures. 

The d i m p l e d  f r a c t u r e  a r e a s  of one s p e c i m e n  of e ach  
m i c r o s t r u c t u r e ,  t e s t  t e m p e r a t u r e  and hydrogen  content  
were  pho tographed  using an SEM, with the t e n s i l e  ax i s  
a c c u r a t e l y  a l igned  with the viewing d i r e c t i o n .  The 
s p e c i m e n s  chosen  were  those  whose RA value  was 
c l o s e s t  to the mean va lue  for  each  condi t ion .  The  d i a m -  
e t e r s  of 100 d i m p l e s  in a t yp i c a l  a r e a  about 500 ~ m  
f r o m  the gage s u r f a c e  were  m e a s u r e d  in each  c a s e .  
Re su l t s  a r e  shown in T a b l e  III .  None of the d i f f e r e n c e s  
a r e  s ign i f i can t  a t - 1 9 6 ~  but above  that  t e m p e r a t u r e ,  
in the UT condi t ion,  d imple  s i z e s  a r e  s ign i f i can t ly  in-  
c r e a s e d  by hydrogen,  while in the T73 condi t ion  the 
s ize  is  s ign i f i can t ly  d e c r e a s e d .  F o r  T6 m a t e r i a l ,  the 
d imp le  s ize  did  not change s ign i f i can t ly .  

DISCUSSION 

The r e s u l t s  r e p o r t e d  above,  in combina t ion  with 
e a r l i e r  r e p o r t s ,  1~-18 c l e a r l y  show that  c a thod i ca l l y  
c h a r g e d  hydrogen  r e d u c e s  the ductility of 7075 a l u m i -  
num.  As  is  t yp i c a l  of hydrogen  e m b r i t t l e m e n t ,  24 the  
t e m p e r a t u r e  dependence ,  F i g .  3, shows a d i s t i nc t  
m a x i m u m  a s  a function of t e m p e r a t u r e ;  m o r e o v e r ,  the 
ef fec t  is  ab sen t  at  -196~ ru l ing  out a p u r e l y  m e c h a n i -  
ca l  ef fec t  due,  fo r  example ,  to some  kind of cha rg ing  
damage  p r e s e n t  p r i o r  to m e c h a n i c a l  t e s t i ng .  

The p r i n c i p a l  new finding of th is  work  is that  the 
duc t i l i t y  l o s s  is  a function of m i c r o s t r u c t u r e .  Th is  
ef fec t  was l a r g e s t  for  the unde raged  m i c r o s t r u c t u r e  
and s m a l l e s t  for  the ove raged ,  sugges t ing  that  the 
d e g r e e  of s u s c e p t i b i l i t y  to hydrogen e m b r i t t l e m e n t  is  
s t r o n g l y  c o r r e l a t e d  to s l i p  p l a n a r i t y .  7 In the u n d e r -  
aged condi t ion  used  he re ,  with y i e ld  s t r e n g t h  about 10 
pc t  l e s s  than for  T6, the cohe ren t  GP zones  p r e s e n t  
in the m a t r i x  can be cut  by  p a s s i n g  d i s l o c a t i o n s ,  leading 
to a loca l  sof tening of the s l ip  p lane  and thus to  the  
fo rma t ion  of c onc e n t r a t e d  s l ip  bands .  25 In the T73 t e m -  
p e r ,  the m a t r i x  p r e c i p i t a t e s  a r e  s e m i c o h e r e n t ,  r e -  
sul t ing in a homogeneous  s l ip  d i s t r i b u t i o n .  25 The  T6 
t e m p e r  r e p r e s e n t s  a t r a n s i t i o n  s ta te ;  the m a t r i x  con-  
t a ins  a mix tu re  of GP zones  and s e m i c o h e r e n t  7 '  
p r e c i p i t a t e s .  In th is  condi t ion,  the s l ip  d i s t r i b u t i o n  is  
inhomogeneous  at  low p l a s t i c  s t r a i n ,  but with i n c r e a s -  
ing s t r a i n  b e c o m e s  m o r e  and m o r e  homogeneous.2~ 
The c o r r e l a t i o n  be tween  s l ip  d i s t r i b u t i o n  and hydrogen  
s e n s i t i v i t y  sugges t s  the p o s s i b i l i t y  that  hydrogen  t r a n s -  
p o r t  in th is  m a t e r i a l  is  i m p o r t a n t l y  inf luenced by 
mobi le  dislocations.26,27 With the low hydrogen  diffu-  
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Fig. 5-Typical fracture surfaces (SEM), test temperature 20~ (a) underaged, uncharged, (b) underaged, charged, (c) T6, uncharged, (d) T6, 
charged, (e) T73, uncharged, ff) T73, charged. 

sivity 28 in aluminum the large embrittling effect of 
hydrogen appears difficult to explain by lattice diffu- 
sion; several  accelerative mechanisms have been 
suggested, 26'29 including the dislocation transport  of 
hydrogen as condensed atmospheres.  Our findings 

support the possibility of a dislocation t ransport  
mechanism. We believe, as do many others, that a 
certain, cri t ical  hydrogen concentration is needed 
locally to cause macroscopic embritt lement.  The 
accumulation of this cri t ical  amount of hydrogen should 

METALLURGICAL TRANSACTIONS A VOLUME 10A, NOVEMBER 1979-1763 



Fig. 6-Typical fracture surfaces (SEM) at 196~ (a) T6, uncharged, (b) T6, charged. 

Table III. F ractum Surface Dimple Size* for the Three Microstructures 
at Three Test Temperatures 

Test Temperature 

Material -196~ -98~ 20~ 

UT uncharged 0.142 -+ 0.041 0.160 -+ 0.049�82 0.156 + 0.054 
H charged 0.166 -+ 0.067 0.195 -+ 0.063 0.178 + 0.073t 

T6 uncharged 0.161 +- 0.059 0.143 -+ 0.040 0.196 +- 0.060 
H charged 0.138 -+ 0.041 0.148 -+ 0.049 0.183 -+ 0.064 

T73 uncharged 0.123 +- 0.038 0.185 +- 0.053�82 0.205 -+ 0.060 
H charged 0.128 --- 0.037 0.110 +- 0.038 0.178 -+ 0.045 �82 

*Values shown are dimple diameters in gin, +- standard deviation (1 e). 
tDifference in mean values significant at 95 pct level. 
~1 Difference in mean values significant at 99 pct level. 

Fig. 7-Intergranular secondary cracking (light micrograph); T6, 
charged, tested at -196~ 

Fig. 8-Fracture  surface (SEM) of a specimen cut 45 deg to the rolling direction; T6, test temperature 20~ (a) Intergranular, shear type fracture, 
(b) Small amounts of transgranular, dimple type fracture. 
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be favored by an inhomogeneous s l ip  d is t r ibut ion.  With 
a homogeneous dis t r ibut ion of dis locat ions  the overa l l  
hydrogen concentrat ion might be the same,  but the 
c r i t i ca l  hydrogen concentrat ion to cause embr i t t l ement  
would not be reached local ly .  

This leads d i rec t ly  to the question as  to the nature 
of the s i t es  at which hydrogen is t r anspor ted  and 
accumulated.  7 It is known that hydrogen is accumulated 
at gra in  boundaries,3~ as well as p rec ip i ta tes ,  d i s -  
pe r so ids  and pores .  7,~5'~ Since the f rac ture  mode is 
t r ansgranu la r ,  even in the presence  of hydrogen, the 
RA loss is apparent ly  not caused by embr i t t l ement  of 
the g ra in  boundaries ,  suggesting that the other  s i tes  
mentioned could se rve  as nuclei  for the observed d im-  
pled f rac tu re .  To address  this question, we c a r r i e d  
out a s t a t i s t i ca l  ana lys is  of dimple d i ame te r s  on the 
f rac tu re  surface  33'34 as a function of heat t rea tment ,  
charging condition and tes t  t empera ture ;  the resu l t s  of 
the analys is  a re  shown in Table III. 

These data show s ta t i s t i ca l ly  significant changes in 
dimple d iamete r  (above -196~ only for the UT and 
T73 conditions, but the total  c r o s s - s e c t i o n  of the em-  
br i t t l ed  specimens  is in every  case signif icantly l a rge r  
(lower RA) than for the uncharged ma te r i a l .  Thus for 
each condition, UT, T6, and T73, it is neces sa ry  to 
compare  the observed dimple s ize  ra t io ,  (dimple 
d iameter )  H + (dimple d iameter ) ,  to that predic ted  
geomet r i ca l ly  f rom the RA clmnge alone.34 When this 
is done, both the T6 and T73 data (above -196~ in 
Table III indicate that the to ta l  number of d imples  is 
higher in the charged specimens ,  which can most s im-  
ply be explained by enhanced nucleation of microvoids  
due to hydrogen. 33-~ This is consis tent  with the p r e s -  
ence of semicoherent  and incoherent  p rec ip i t a tes  in the 
T6 and T73 conditions, which may act as addit ional 
f rac ture  nuclei  in hydrogen charged spec imens .  On the 
other hand, dimple s izes  a re  inc reased  beyond the 
geomet r i ca l  predict ion 34 in UT specimens ,  indicating 
that the effect of hydrogen is p r i m a r i l y  on microvoid 
growth. "3,~4'~ This would be consis tent  with the r e l a -  
t ively p lanar  s l ip and re la t ive ly  few addit ional f r a c -  
ture nuclei avai lable  in this condition. 33 Fur the r  ex- 
per iments  will  be neces sa ry  to investigate the role  
of d is locat ions  and to obtain more  detai led informa-  
tion about hydrogen accumulation s i tes  and the p roces s  
of f r ac tu re  nucleation. 

It is important  to recognize that the t r ansg ranu la r  
f r ac tu res  observed in the present  t es t s  on longitudinal 
specimens are  different  from the in te rgranular  f r ac -  
tu res  normal ly  observed in SCC of short  t r an sve r s e  
specimens  of commerc i a l  plate product ,  z Never the less ,  
the T73 condition was more  r e s i s t an t  to hydrogen, in 
contras t  to the conclusion drawn from a cor ros ion  
fatigue study, s7 that overaging is only beneficial  to 
environmental ly  a s s i s t ed  f rac ture  when an in tergranu-  
la r  f rac ture  mode is observed.  The lack of improve-  
ment from T73 aging in that work "v must have a r i s en  
from some other cause than f rac ture  path. 

The work of Swarm, Scamans and eoworkers  3~ has 
c l e a r l y  shown that the presence  of hydrogen can damage 
gra in  boundaries  in high puri ty  AI-Zn-Mg al loys  with 
equiaxed gra in  s t ructure ;  they a lso  showed that addi-  
tion of 1.7 pet Cu (see Table I) g rea t ly  inc reased  r e s i s -  
tance to hydrogen effects .  Thus, it is  unclear  that the 
well  known benefi ts  of Cu to SCC re s i s t ance  2'%~ of these 
al loys is in fact e l ec t rochemica l  in nature,  as has been 
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cla imed.  38 The role  of gra in  boundary microchemistry 
changes, particularly Mg segregation, 39 is also unclear, 
but the pronounced Mg-H interaction which would be 
expected Is may well be part of any explanation of hydro- 
gen effects in these alloys. 

The t r ansg ranu la r  f r ac tu res  in the presen t  work 
evidently s tem from the or ientat ion of the tens i le  axis  
re la t ive  to the major  gra in  boundary sur faces .  Even if 
the g ra in  boundar ies  were embr i t t l ed  by hydrogen, or 
softened by the formation of p r e c i p i t a t e - f r e e  zones, 
nei ther  the shear  s t r e s s  nor the normal  s t r e s s  is 
evidently high enough to f rac ture  the gra in  boundar ies .  
It was to tes t  this poss ib i l i ty  that the 45 dog specimens  
were used; in such an orientat ion,  the shear  s t r e s s  on 
the major  gra in  boundary sur faces  is maximized and 
the normal  s t r e s s  on the boundaries  is minimized.  As 
F ig .  8 shows, in te rgranu la r  f r ac tu res  were observed 
and a hydrogen induced duct i l i ty  loss  was presen t .  The 
secondary  cracking observat ions  in the longitudinal 
spec imens  are  also consistent  with this  ra t ionale .  The 
secondary  c racks  form af ter  the onset of necking, when 
a t r i ax i a l  s t r e s s  state develops and normal  s t r e s s e s  
begin to be exer ted  on the major  gra in  boundary su r -  
faces,  espec ia l ly  near  t r ip le  points and other a r e a s  of 
nonuniform s t r e s s .  This  was ver i f ied  by sectioning 
spec imens  pa ra l l e l  to the load axis  well a f te r  the onset 
of necking, but before f racture;  no longitudinal c racks  
were found. Apparent ly  the secondary  c racks  are  
formed immedia te ly  before or  during final f rac tu re .  

The proposa l  that hydrogen embr i t t l ement  is at leas t  
a contr ibutory p rocess ,  and may be a dominant one, in 
tile phenomenon of s t r e s s  cor ros ion  cracking (SCC) of 
7Q75 and other high s t rength aluminum al loys has been 
presented  by a number  of inves t iga tors  6,7,11,12,14,15,17~ 
31,37,4o-44 No d i rec t  evidence on this question is offered 
by the presen t  r e su l t s ,  but it is appropr ia te  to con- 
s ider  the implicat ions of this work for the SCC problem.  
F i r s t l y ,  if there  is a hydrogen embr i t t l ement  contr ibu-  
tion to SCC in 7075, it need not occur sole ly  through an 
effect on in te rgranu la r  f rac ture ;  the present  work 
demons t ra tes  a dis t inct  hydrogen effect on t r a n s -  
g ranular  fa i lure .  Secondly, the f rac ture  path appears  
to be a function of loading direct ion,  with shor t  t r ans -  
ve r se  or RD-ST 45 deg specimens showing in te rgranu la r  
fa i lures ,  and is not neces sa r i l y  a function of e l ec t ro -  
chemical  phenomena. This is consis tent  with the mic ro -  
s t ruc tu ra l  evidence in Speidel and Hyat t ' s  review.  2 
Thirdly ,  the dec reas ing  sens i t iv i ty  to hydrogen a s so -  
ciated with inc reased  aging is consistent  with the 
p a r a l l e l  behavior  of SCC suscept ib i l i ty  as a function of 
aging, 2 indicating at least  the poss ib i l i ty  that the SCC 
dependence on mic ros t ruc tu re  r e l a t e s  to hydrogen 
effects .  This las t  point could be more d i rec t ly  in- 
ves t igated using Mode I-Mode III tes t s ,  ~2 exper iments  
which a re  now underway in our l abora tory .  

SUMMARY 

The response of 7075 aluminum having three different 
micros t ruc tu re s  (underaged, peak-aged and overaged) 
to cathodical ly  charged hydrogen was examined in the 
tes t  t empera tu re  range of -200 to 20~ The pr inc ipa l  
r esu l t s  were:  

1) For  al l  m ic ros t ruc tu r e s ,  a t empera tu re  dependent 
loss  of duct i l i ty  due to hydrogen was found. 

2) The effect was absent at the lowest test  t empera -  
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ture, ruling out a purely mechanical effect due to charg- 
ing damage present prior to mechanical testing. 

3) The temperature dependence of the embrittling ef- 
fect showed a distinct maximum, which was dependent 
on the microstructure; with increasing aging tempera- 
ture, the maximum shifted towards lower test tem- 
peratures.  

4) The ductility loss  was a function of microstruc-  
ture, being highest for the underaged and lowest for the 
overaged material, which suggests a correlation be- 
tween hydrogen embrittlement and slip planarity. The 
pattern found here qualitatively mirrors the pattern 
found for s tress  corrosion cracking susceptibility. 

5) It was found that the fracture mode was not affected 
by microstructure and charging condition. For all 
temperatures, a transgranular dimple type fracture was 
observed, which is believed to be due to test geometry 
relative to the pancake shaped grains.  The dimple s ize  
data suggested enhancement of microvoid nucleation 
in T6 and T73 specimens, and enhancement of void 
growth in UT specimens, as the primary hydrogen 
effects. 

All these results confirm a hydrogen embritUement 
effect responsible for the ductility loss .  However, 
more detailed experiments are needed to understand 
the fracture nucleation events as well as the hydrogen 
transport mechanism. 
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