
t e r i a l  r e c r y s t a l l i z e d  to a f ine r  g ra in  s ize  at 871 than 
at 927~ 

These  data suggest  that, at leas t  for Ti-6A1-4V, the 
tes t  condit ions ( s t r a i n - r a t e  and t empera tu re )  for 
achieving max imum superp las t i c i ty  (elongation) a re  
not n e c e s s a r i l y  the same as those indicated by the m 
t e s t s .  The elongat ion to fa i lure  at a given t e m p e r a t u r e  
is  p ropor t iona l  to m, but this  co r re l a t ion  is not n e c e s -  
s a r i l y  main ta ined  when compar ing  data at va r ious  
t empe ra tu r e s .  
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Identification of a Fracture 
Mode: The Tearing Topography Surface 

ANTHONY W. THOMPSON AND JAMES C. CHESNUTT 

F r a c t u r e  su r f aces  of meta l s  have long been charac -  
te r ized  as " b r i t t l e "  or " d u c t i l e , "  accord ing  to the i r  
v i sua l  appearance;  the f o r m e r  type has also been de- 
sc r ibed  as " c r y s t a l l i n e "  or " f a c e t e d , "  while the lat-  
t e r  is often cal led " f i b r o u s . "  With the use of higher 
magnif icat ion techniques of f r ac tu re  examinat ion,  pa r -  
t i cu la r ly  r ep l i ca  t r a n s m i s s i o n  e lec t ron  mic roscopy  
(TEM) and scanning  e lec t ron  microscopy  (SEM), there  
have grown up a group of m i c r o s c o p i c  appearance  
types,  often cal led f r ac tu re  " m o d e s . "  Among the ea r ly  
efforts  to catalog these modes were those of Beachem 
and Pel loux ~ and Phi l ips  et  aL e cur ren t ly  there  a re  
avai lable  two r a the r  comprehens ive  catalogs of this 
type. T M  All c lass i fy  mic roscop ic  f r ac tu re  de ta i l s  (par-  

*Ref. 3 is currently available version of Ref. 2. 

t i cu la r ly  of t ens i l e  f r ac tu res )  into four c l a s s i c a l  modes:  
i n t e r g r a n u l a r ,  cleavage, quas i - c l eavage ,  and microvoid  
coalescence  (or dimpled) f r a c t u r e s .  The re  is a conse-  
quent tendency 4 to a s s ign  any pa r t i cu l a r  f r ac tu re  topo- 
graphy to one of these four modes,  although it is often 
the case that the ma jo r i ty  of a f r ac tu re  sur face  is " i l l -  
def ined"  in c l a s s i ca l  t e r m s  and one must  s ea rch  to 
find local  a r e a s  which a re  adequately " r e p r e s e n t a t i v e "  
of the mode ass igned .  

What we desc r ibe  in this communica t ion  is an addi- 
t ional  mode of f rac ture ,  one with a c h a r a c t e r i s t i c  
appearance;  such a d is t inc t ive  appearance  is the funda- 
menta l  c r i t e r ion  for d is t inguish ing  f rac tu re  modes .  1-3,S 
This  mode is often observed  in s tee ls  and in a lpha-be ta  
t i t an ium al loys,  such as Ti-6A1-4V (Ti-6-4) ,  but is 
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also  p re sen t  in other  m a t e r i a l s ,  as de sc r ibed  below; 
we bel ieve  it has not been p rev ibus ly  desc r ibed  as a 
d is t inc t  mode only because  it is " n o n c l a s s i c a l . "  The 
f r ac tu r e  su r faces  appear  to be formed by ducti le  or 
m ic rop l a s t i c  t ea r ing  on a ve ry  fine (submicron)  scale ,  
and accord ingly  we r e fe r  to the r e su l t  as a " t e a r i n g  
topography s u r f a c e , "  or TTS f r a c t u r e .  The mode is 
observed  in t ens i l e  spec imens  and in compact  tens ion  
spec imens  f rac tu red  under  e i ther  r i s i n g  or cyclic 
(fatigue) s t r e s s  in t ens i t i e s .  

Examples  of the topography a re  shown in the f igures .  
F i g u r e  1 shows the f r ac tu re  sur face  of HY-130 s tee l  
with a ba in i t i c  m i c r o s t r u c t u r e .  6 At low magnif ica t ions ,  
Fig .  l(a),  the typical  complex t ea r ing  appearance  is 
evident ,  with a n u m b e r  of c l a s s i ca l  d imples  also p re -  
sent .  At higher  magnif ica t ion,  Fig .  l(b), the pa r t i c l e s  
which have nucleated  d imples  a re  v i s ib le ,  but much of 
the f r ac tu re  a r ea  cons is t s  of mic rop la s t i c  t ea r ing .  
Addi t ional  examples  f rom another  spec imen  of the 
same m a t e r i a l  a re  shown in Fig.  l(c) and (d). Other  
s tee l  m i c r o s t r u c t u r e s  a lso exhibit  TTS f r ac tu re  under  
some condit ions.  F igure  2 gives examples  from a 
eutectoid s tee l  ( s im i l a r  to AISI 1080), in which f r ac -  
ture  occurs  a c r o s s  and through pear l i t e  colonies,  and 
f rom HY-130 with a m a r t e n s i t i c  m i c r o s t r u c t u r e ;  6 the 
s i m i l a r i t y  to Fig .  1 is evident .  

The TTS appearance  is a lso observed in a lpha-be ta  
t i t an ium a l loys .  F igure  3(a) is an example drawn f rom 
STA (solution t rea ted  and aged) T i - 6 - 4 ,  which contains 
p r i m a r y  alpha pa r t i c l e s  about 10 ~m in d iam in a 
ma t r ix  (about 70 vol pct) of fine Widmanst~itten alpha 
and beta.  These  m i c r o s t r u c t u r a l  cons t i tuents  a re  not 
evident  on the f r ac tu re  sur face ,  as was ver i f ied  by the 
"p la teau  e tch ing"  te chnique.7 An addi t ional  example 
f rom T i - 6 - 4  is shown in F ig .  3(b), in this case m a t e r i a l  
water  quenched f rom the be ta - f i e ld  to give a mixed 
m i c r o s t r u c t u r e  of fine Widmanst l i t ten  alpha and m a r -  
t ens i t e .  Here some flat  f r ac tu re  a c r o s s  alpha plates 
is evident,  but the t ea r ing  por t ion of the f r ac tu r e  s u r -  
face has a TTS appearance .  Addi t ional  examples  occur  
in T i -6A1-2Sn-4Zr -6Mo,  Fig .  3(c) and (d). F igu re  3(c) 
is m a t e r i a l  with a s i m i l a r  m i c r o s t r u c t u r e  to the T i - 6 - 4  
of Fig .  3(a) except for c o a r s e r  secondary  Widmans t~ t ten  
alpha plates in the matr ix ;  here  the f r ac tu re  may r e -  
flect fine t ea r ing  in and at boundar ies  of the plates.S, 9 
Note a l so  the s i m i l a r  sca le  of the f r ac tu r e  sur face  fea-  
t u re s  to Fig.  l (a) .  F ina l ly ,  when this  al loy is water  
quenched f rom the be ta - f ie ld ,  analogously  to the T i - 6 - 4  
of Fig.  3(b), it again  shows a typical  TTS appearance  
( f ig .  3(d)). 

F igure  4 is the f r ac tu re  sur face  of a Ni-20 Cr-2  ThO2 
mate r i a l ;  1~ the f r ac tu re  la rge ly  compr i ses  fine d imples ,  
but the fine scale  t e a r i ng  as well  as the blocky aspect  
seen in some of the other  TTS f r a c t u r e s  is a lso  evi-  
dent.  F i gu r e s  1 to 4, then, express  the typica l  range 
of TTS appearance .  In addition, there  a re  many pub- 
l ished f rac tographs*  which contain TTS charac te r ;  the 

*Examples which appear to exhibit at least some areas of TTS appearance are 
as follows: steels (Figs. 3748, 3749, 3809, 3814, 3842, 3851,3860, 4216, 4224, 
4226, and 4297. Ref. 4), aluminum alloys (p. 4-87, Ref. 3; Figs. 3967, 4063, and 
4071, Ref. 4), titanium alloys (p- 4-609, Ref. 3; Figs. 4177,4185, 4193, 4195, 
and 4260 Ref. 4; Ref. 9), and nickel alloys (p. 4-664, Ref. 3; Figs. 3921, and 
3933, Ref. 4). 

bes t  col lect ions  a re  in the f rac tography a t l a ses  a,4. The 
TTS mode is most  eas i ly  recognized  in SEM photo- 
graphs,  due to the i r  more  evident  three  d imens iona l i ty ,  
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Fig. 1-Appearance of TTS fracture (SEM) in bainitic HY-130 steel: (a) Low magnification topography, (b) Detail from upper left corner of (a), 
showing apparent particle-nucleated dimples among fine tearing, (c) and (d) Other examples, again including some partMes in dimples. 

Fig. 2-Fracture  surfaces (SEM) of other steel microstructures: (a) Eutectoid steel, essentially 100 pct pearlite, at low magnification, (b) Quenched 
and tempered (martensitic) HY-130 at higher magnification; compare Fig. 1 (b), (c), and (d). 
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Fig. 3 Fracture appearance (SEM) in alpha-beta titanium alloys: (a) Ti-6-4 in STA condition, (b) Ti-6-4 in beta quenched condition, (c) Ti-6-2-4-6 
in STA condition; specimen has been "plateau-etched", ~ (d) Ti-6-2-4-6 in beta quenched condition. 

but s t e reo  viewing of r ep l i ca  TEM photos 13 can provide 
equivalent  in format ion .  

It is felt that although the m i c r o s t r u e t u r a l  nuc le i  for  
this  f r ac tu re  mode have not been identif ied (nuclei  a re  
a l so  unknown for most  examples  of the other  modes 
except d impled f rac ture ) ,  the genera l  appearance  is 
d i s t inc t  and not r e s t r i c t e d  to one al loy sys t em.  F u r -  
t he rmore ,  the genera l i ty  of the mode is supported by 
i ts  obse rva t ion  in t ens i l e  spec imens  (Figs .  2(a) and 
4), and in compact tens ion  spec imens  f r ac tu red  under  
r i s i n g  s t r e s s  in tens i ty  (Figs.  1, 2(b) and 3(a)), or fati-  
gue (Figs.  3(b) to (d). Moreover ,  it occurs  in the p r e s -  
ence of hydrogen (Fig. 4(b)), as do each of the other 
modes 9,11,12,14 

It is poss ib le  that the TTS mode is a kind of m i c r o -  
void c o a l e s c e n c e  in which ve ry  complex and closely 

spaced nuclea t ion  occurs .  (This would be cons is ten t  
with the fact that nea r ly  a l l  the m i c r o s t r u c t u r e s  in 
which TTS f rac tu re  occurs  contain high dens i t i e s  of 
in te r faces  which could se rve  as nuclei . )  In this case,  
e i the r  the s m a l l  amount  of subsequent  void growth or  
p r e m a t u r e  s t r a in  local iza t ion  would p reven t  the o b s e r -  
vat ion of wel l -developed voids; this would be a pa r a l l e l  
to the be l ie f  in some q u a r t e r s  that quas i - c l eavage  is 
m e r e l y  a poor ly  developed cleavage mode.  However,  
the observa t ion ,  F ig .  1, of voids in t imate ly  mixed with 
the TTS a r e a s  tends to cast  doubt on this view, as does 
the observa t ion  of the mode under  va ry ing  s t r e s s  s t a tes .  
As an e m p i r i c a l  approach,  therefore ,  it is proposed 
that the TTS mode be cons idered  an independent  f r ac -  
tu re  mode pending deta i led  inves t iga t ion  of nuclea t ion  
and propagat ion p r o c e s s e s .  
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Proc. 4th Int. Conf. on Fracture, Univ. Waterloo Press, Waterloo, Ontario, 
1977. 

13. J. A. Fellows: Metals Handbook, 8th ed., vol. 9, pp. 281-96, ASM, Metals 
Park, OH, 1974. 

14. A. W. Thompson: Environment-Sensitive Fracture of  Engineering Materials, 
pp. 379-410, TMS-AIME, Warrendale, 1979. 

Fractographic Characteristics of a 
Hydrogen-Charged AISI 316 Type 
Austenitic Stainless Steel 

HANNU HANNINEN AND T E R O  H A K K A R A I N E N  

Fig. 4-Fracture surtaces (SEM) of Ni-20 Cr-2 ThO 2 fractured at room 
temperature, a~ (a) Without hydrogen, (b) Hydrogen-charged, same 
magnification as (a). 

We  a p p r e c i a t e  p r o v i s i o n  of u n p u b l i s h e d  f r a c t o g r a p h s  
by  H.  L .  G e a r h a r t  a n d  C.  Chen ,  a n d  a s s i s t a n c e  w i t h  
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a u t h o r s  w e r e  a t  the  S c i e n c e  C e n t e r ;  s u b s e q u e n t  p a r t i -  
c i p a t i o n  of one  of us  (AWT) was  s u p p o r t e d  by  t h e  
N a t i o n a l  S c i e n c e  F o u n d a t i o n ,  G r a n t  D M R  7 8 - 0 0 7 2 3 .  
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I t  h a s  b e e n  s h o w n  t h a t  t h e  d u c t i l i t y  of a u s t e n i t i c  
s t a i n l e s s  s t e e l s  i s  r e d u c e d  b y  c h a r g i n g  w i t h  h y d r o g e n  
t h r o u g h  c a t h o d i c  p o l a r i z a t i o n  o r  in  a h y d r o g e n  a t -  
m o s p h e r e ,  1-4 b u t  t h e  b a s i c  f r a c t o g r a p h i c  f e a t u r e s  
a s s o c i a t e d  w i t h  h y d r o g e n  i n d u c e d  r e d u c e d  d u c t i l i t y  
h a v e  n o t  b e e n  e s t a b l i s h e d  in  d e t a i l .  In  t h e  p r e s e n t  
w o r k  the  h y d r o g e n  e m b r i t t l e m e n t  of a n  AISI  316 
s t e e l  ( T a b l e  I) w a s  s t u d i e d  b y  c h a r g i n g  i t  w i t h  h y d r o -  
g e n  t h r o u g h  c a t h o d i c  p o l a r i z a t i o n  a n d  b y  s u b s e q u e n t  
t e n s i l e  t e s t i n g .  

T h e  t e n s i l e  s p e c i m e n s  ( F i g .  1) w e r e  p r e p a r e d  by  
co ld  r o l l i n g  a p l a t e  to  the  t h i c k n e s s  of a b o u t  0 .3  m m  
a n d  t h e n  b y  c u t t i n g  f r o m  t h e  s h e e t s .  T h e  s p e c i m e n s  
w e r e  a n n e a l e d  f o r  1 h a t  1373 K in  a n  e v a c u a t e d  s i l i c a  
t u b e  a n d  q u e n c h e d  i n to  r o o m  t e m p e r a t u r e  w a t e r .  T h e  
s u b s e q u e n t  t h i n n i n g  of the  s p e c i m e n s  w a s  p e r f o r m e d  
by  g r i n d i n g  w i t h  e m e r y  p a p e r  w i t h  the  f i n a l  g r i n d i n g  
b e i n g  p e r f o r m e d  by  600 g r i t  p a p e r .  T h e  c a t h o d i c  
c h a r g i n g  of t h e  s p e c i m e n s  w a s  c a r r i e d  out  a t  353 K in  
a 1 N H2SO4 solution containing 0.25 g of NaAsO~ per 
liter. A platinum counter electrode and a current den- 
sity of 50 m_A/cm ~ were used. The hydrogen charging 
time was 18 h. After charging, the specimens were 
tensile tested within 5 rain at room temperature in a 
tensile testing machine at a crosshead speed of about 
5 cm/min. After failure, the fracture surfaces were 
examined with a scanning electron microscope. Mea- 
surements to detect the possible hydrogen induced o~ f- 
martensite were made on the faces of the specimens 
as near as possible to the main crack using a ferrite 
detector (Ferritescope) with a sensitivity of 0.1 vol 
pct of ~'- martensite. 

The fracture stress of a hydrog2en charged AISI 
316 steel specimen was 97 N/ram and no elongation 
to fracture could be detected. For a similar un- 
charged reference specimen the yield strength was 
300 N / m m  2, t h e  f r a c t u r e  s t r e s s  w as  477 N / r a m  2, a n d  
t h e  e l o n g a t i o n  to  f r a c t u r e  w a s  30 p c t .  M i n o r  s u r f a c e  
c r a c k i n g  w as  o b s e r v e d  a f t e r  t e n s i l e  t e s t i n g  on t he  
o u t e r  s u r f a c e s  of t h e  h y d r o g e n  c h a r g e d  s p e c i m e n s .  
The surface cracking occurred in part during charg- 
ing, b u t  d u r i n g  r o o m  t e m p e r a t u r e  a g i n g  a f t e r  c h a r g -  
hug t h e  s u r f a c e  c r a c k i n g  i n c r e a s e d  m a r k e d l y  a s  o b -  
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