A Study of the Deformation of Patented Steel Wire

GEORGE LANGFORD

Comparisons of transmission electron micrographs of transverse sections of heavily drawn
patented steel wire with existing metallographic and strength data were made with the aid of a
computer. Both fragmentation of the cementite and the local deformation mode within the wire,
i.e., plane strain elongation, an effect of the (110) wire texture of the ferrite, were taken into
account in order to obtain a model for large-strain deformation of pearlitic or bainitic micro-
structures which is consistent with the observed microstructural changes and strain hardening
rate. The functional dependence of this model on true strain and original substructural spacing
is similar to the equation of Embury and Fisher for the strain hardening of drawn pearlite be-
cause their assumptions (no fragmentation of the cementite and homogeneous, axially sym-
metric elongation) produced offsetting errors. The present model allows for additional sensi-
tivity of the strain hardening rate of drawn patented steel wire to metallurgical and processing

variables over and above the simple dependence on original substructural scale predicted by

the model of Embury and Fisher.

DRAWN patented carbon steel wire has a fibrous
microstructure when viewed in a longitudinal cross
section with the electron microscope’® but a ‘‘wavy”’
microstructure when viewed in a transverse cross
section.’*

Embury and Fisher' found, from their measurements
on longitudinal sections, a direct proportionality be-
tween the characteristic transverse dimension of this
substructure and the diameter of the as-drawn wire.
This seemed to indicate that the carbide particles or
lamellae completely inhibited dynamic recovery. They
therefore proposed an equation which accounted simply
for the observed strength-prior strain relation of
these wires:

k
y
0 =0p + exp(e/4) 1
where o, is the ‘‘lattice friction’’ stress, d, is the
original substructural spacing, ky is the Hall-Petch
proportionality constant, € is the true wire-drawing
strain,* and o is the resultant flow stress of the ma-

*True stresses and strains are used theoughout this paper. The strains are given
by the well-known expression, 2 in (D¢ /D), where Dy and D are the original and
instantaneous specimen diameters, respectively.

terial. This relation, with strength proportional to
exp(e/4), seems to be a limiting case, since the data
of Chandhok et al.” for patented steel wire drawn at
various temperatures above and below room tempera-
ture approached this behavior more closely, the lower
the deformation temperature. For convenience, these
data are replotted in Fig. 1.

On the other hand, transverse sections of similar
material, as shown in the micrographs of Dewey and
Briers® and Glenn ef al.* as well as in this paper,
exhibit the characteristic ““wavy’’ or ‘‘curly-grain’’
microstructure known, at least in single-phase ma-
terials, to be associated with the (110) bcc wire tex-
ture.”™® This implies that the local shape change is
plane strain, as explained by Hosford.” It should be
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mentioned that patented steel wires also are known
to have a (110) wire texture.®

If the local shape change corresponds to plane
strain, then the interlamellar spacing of pearlite
oriented parallel to the wire axis and perpendicular
to the most rapidly changing transverse dimension of
a microregion* should be inversely proportional to

*In this paper the term, “microregion”, is used to describe one of the units or
swirls in the wavy microstructure of a transverse section of the drawn pearlite.
Each microregion corresponds approximately to a pearlite colony or at least part
of that celony. Viewed in three dimensions each microregion is ribbon-shaped,
with the long dimension straight and parallel to the wire axis.

the wire length and, therefore, proportional to the
square of the wire diameter, if no dynamic recovery
occurs. The latter relationship has been observed by
Glenn et al." in the same drawn patented steel wire
used in this study, where the finest resolvable inter-

TENSILE STRENGTH (psi x107%)

TENSILE STRENGTH (KGF/mm2x1072)

[ 1 1 1 1
0 ! 2 3 4 5
PRIOR TRUE STRAIN
Fig. 1—-Room-temperature tensile strengths of patented steel

wires as a function of prior strain at various temperatures,
after Chandhok et al.2
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lamellar spacing measured on transmission electron
micrographs of transverse sections of the drawn
wires was plotted as a function of the square of the
wire diameter.

The present work was undertaken because these
separate observations on longitudinal and transverse
sections seem to be incompatible. If the local shape
change is indeed plane strain elongation, then either a
Hall-Petch relation (strength proportional to (inter-
lamellar spacing)”/?) is not followed, or the actual
strength-controlling intercept is not the extrapolated
interlamellar spacing, implying that some kind of
dynamic recovery is taking place. Due to the absence
of any information leading to such a weak strengthen-
ing effect of the intercept size (such as, strength pro-
portional to (interlamellar spacing)™/*) it will be as-
sumed in the rest of this paper that a Hall-Petch rela-
tion is the correct one to be used here.

By a detailed calculation of the change in shape of
microregions and of the change in pearlite spacings

Table 1. Chemical Composition of Steel Used in This Study

Element Composition, percent
C 0.94
Mn 0.43
P 0.006
S 0.002
Si 0.065
Cu 0.005
Ni 0.004
Cr 0.050
Mo <0.005
\' 0.005
Ti <0.005
N 0.002
Acid Sol Al 0.043
o} 12 ppm
Sn <0.001
10 T T T T 7
9 16
8
7 45
6 da
5
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Fig. 2—Tensile strengths of the patented steel wire used for

the transmission electron micrographs in this paper, as a
function of prior strain, after Spare et al.1?
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with strain, the effects of various assumptions regard-
ing the local mode of deformation upon the calculated
strength-strain relationship and microstructural
changes can be investigated. These potential models
must predict 1) the experimentally observed changes
of the flow stress and 2) the characteristic changes of
scale and shape of the microstructure brought about
by the wire-drawing deformation.

EXPERIMENTAL

A series of samples drawn from a 0.220 in. (5.60
mm) diam patented steel wire were provided by G. T.
Spare of the Applied Research Laboratory. The chem-
ical analysis is shown in Table I and the previously
determined tensile strengths of the wires'®are re-
plotted according to the convention used in this paper
in Fig. 2,

Transverse discs 0.015 in. (0.38 mm) thick were cut
from the wires on a Servomet spark-discharge machine,
modified by the wire electrode shown in Fig. 3. These
discs were subsequently wet ground on abrasive paper
to about 0.001 in. {0.025 mm) and electrolytically
thinned by the technique of Glenn and Schoone.'' Trans-
mission electron micrographs were made of the re-
sultant thin foils. This is also the series from which
Fig. 4 of Ref. 4 was prepared.

Fig. 4 of this paper shows the development of the
characteristic ‘‘wavy’’ microstructure as a function of
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Fig. 3—Schematic representation of wire electrode used in
spark-cutting transverse sections for transmission elec-
tron microscopy.
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Fig. 4 (Continued)
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Fig. 4 (Continued)
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wire-drawing strain. The micrographs are enlarged direction of thinning. In the former case the apparent

by a progressively greater factor to compensate for pearlite spacing is smaller than would be predicted by
the decreasing wire diameter, in order to aid the ob- simple proportionality to the wire diameter, while in
servation of the microstructural shape change. There the latter case the apparent spacing is larger than
appears to be no orientation relationship between the would be so predicted. There are many more examples
thin direction of a ribbonlike microregion and the ori- of case a than case b.

entation of the pearlite lamellae within it. Two ex- Only a fraction of the as-patented structure of this
tremes of this behavior are shown in Fig. 5. In one steel consists of recognizable classically lamellar
area of the micrograph, a, the pearlite lamellae are pearlite; the balance is either upper bainite or pearlite
apparently perpendicular to the direction of thinning unfavorably oriented with respect to the foil. The
(parallel to the thin dimension of a microregion) 950°F (510°C) transformation temperature favors the
whereas in area b the lamellae are parallel to the formation of both microconstituents. The appearance

of the bainite is much like a fragmented pearlite; that
is, the cementite ‘‘lamellae’’ actually consist of rows
or sheets of fine platelets, Fig. 6. Because of the re-
sulting uncertainty about the original appearance of a
given region in the drawn wire, it is difficult to dis-
cuss the integrity of the cementite lamellae following
wire-drawing. It is only possible to say that some of
the pearlite is deformed without fragmentation of the
cementite, Fig. 7, but that there is less recognizably
perfect pearlite in the microstructures of the drawn
wires than in the undrawn wires. None of the voids
previously reported'? between the ends of fractured
cementite lamellae in bent drawn or undrawn wires
of coarse pearlite were observed here in transverse
sections of drawn wires.

MODELS AND COMPUTER CALCULATIONS

A model for the deformation of pearlite must be con-
sistent with the experimental observations on drawn
patented steel wires, which are summarized below:

Fig. 5~Transmission electron micrograph of a transverse sec-
tion of a patented steel wire drawn to a strain of 2.0, showing
two extremes of the orientation relationship between a ribbon-
like microregion and the pearlite lamellae.

Fig. 7~Transmission electron micrograph of a transverse
; : section of the neck of a tensile specimen of drawn patented

Fig. 6—Transmission electron micrograph of upper bainite steel wire showing heavily deformed but intact pearlite,

in as-patented steel wire. € = 0.7(drawing) + 0.7(necking) = 1.4 total.
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Fig. 8—Schematic representation of the
changes of interlamellar spacing and ori-
entation brought about by homogeneous
elongation.

1) The rate of strain hardening, when plotted as
In(o — g,) vs €, has a slope of +.

2) A ““wavy’’ structure develops in a transverse
section and becomes more apparent, the greater the
strain.

3) The range of apparent pearlite spacings broadens
with increasing strain.

The following discussion contains the quantitative
evaluation of the behavior of a series of potential
models and combinations of models during hypotheti-
cal wire-drawing deformation.

Three modes of deformation are considered:

1) homogeneous axially symmetric elongation, 2) homo-
geneous plane strain elongation, and 3) inhomogeneous
intralamellar shear, producing inhomogeneous plane
strain elongation. Mode 1) would be expected in an
isotropic continuum. Mode 2) is considered to be an
effect of the (110) bce wire texture; the intercurling
of the ribbon-like microregions to maintain constant
aggregate volume is not considered in order to sim-
plify the calculations. Mode 3) is considered in com-
bination with each of the other modes in order to

take account of a second potential mechanism of for-
mation of the wavy microstructure. The question of

the integrity of the cementite is also taken into account.

In the following discussion the usual terms used to
describe pearlite, lamellae, colonies, and so forth,

METALLURGICAL TRANSACTIONS

{a.} START
(e=0)

[Pl=1.10
(=014,

(b) AFTER HOMOGENEOUS , AXIALLY
SYMMETRIC ELONGATION. (€ =10)

1P=1.4
{d=0.71d,)

(c) AFTER HOMOGENEOUS, PLANE
STRAIN ELONGATION (e=1.0)

will be used in like manner to describe the hypothetical
model.

COMPUTATION METHOD

During homogeneous deformation by axisymmetric
elongation or plane strain elongation the transverse
dimensions of a finite medium are reduced, while its
length is increased. As shown in Fig. 8 this should
have the effect of changing the spacing of an isotropic
lamellar aggregate and geometrically rotating the
lamellae towards parallelism with the tensile axis (for
axially symmetric elongation) or with the plane of the
ribbon (for plane strain elongation). At infinite elonga-
tion, all lamellae will be completely reoriented and
will have zero spacing, even without lamellar reorien-
tation by nonhomogeneous flow.

The spacing of the ith pearlite colony, a region
where the pearlite is of the same orientation and spac-
ing, is:

di = do/VIG + k2 + 12 [2]

where do is the original interlamellar spacing of all
the colonies, and 4;, k;, I; are the coordinates of a
vector P; which is perpendicular to the lamellae and
whose magnitude is the ratio of original to instantane-
ous spacing at a given strain. These coordinates vary
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Fig. 9—Schematic representation of the
process of elongation by inhomogeneous
intralamellar shear (deck-of-cards defor-
mation) indicating the change of orienta-
tion and the effectively plane strain elonga-
tion without a change in the interlamellar
spacing.

(b) AFTER PLANE STRAIN ELONGATION BY

INHOMOGENEQUS INTRALAMELLAR SHEAR

{€=10)

with strain (e) according to the following equations:

hi = hifl(e) [3]
k; = k3fy(€) [4]
i = lifs(e) (5]

where fi, f., and f; are different functions of strain
depending on the type of deformation, and &3, k3, I are
the coordinates of the original vector Pj.

By reference to Fig. 8 it can be seen that the coor-
dinates (k;, k;, I;) of the vector P; vary inversely with
the changes in dimensions of the aggregate, so that
for axially symmetric elongation, assuming constant
volume,

file) = exp(e/2) (6]

fo(€) = exp(e/2) (7]

fs(€) = exp(—€) (8]
For plane strain elongation,

f1(e) = exp(e) [9]

fele) =1 f10]

f3(€) = expl-e) [11]

When all the colonies have the same initial spacing,
the loci of the tips of the vectors P; will form a
sphere; if the lamellae are randomly oriented, the dis-
tribution of the vector tips will be uniform over the
surface of that sphere:*

*In the computer program, the vectors (P;) are drawn to the centers of equal-
sized “rectangles”, bounded by continuous lines of latitude and discontinuous
lines of longitude, drawn on the surface of an octant of a sphere. The surface has
the appearance of the wall of an Eskimo igloo.

() + B3P + (15 =1 [12]
In the case where the aggregate is weaker in the
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lamellar plane, there is also the possibility of non-
homogeneous deformation by shear within and parallel
to the lamellae, similar to the sliding of a deck of

of cards, as shown in Fig. 9. If the slip direction is in
the same direction as the maximum shear stress on
that plane, the plane of the ensuing plane strain inter-
sects the long axis of the aggregate as also shown in
Fig. 9. In this case there is no change in the lamellar
spacing as all the shear displacement would be con-
fined to the plane of the lamellae; the aggregate is as-
sumed to be free to rotate to accommodate the re-
sultant rotation. This means that:

()" + (e)* + (1)) = (13)° + ®3)" + (15 [13]

With reference to Fig. 9, the corresponding equations
for the components of the vectors (P;) are:

hi = [{[(hi’-)2 + (&5 + (3]

0\2 (ho')z vz
-3 eXP(—2e)}(Ulc2)2—+’@?ﬂ [14]
k; = (%—)h, [15]

If K3 =0, then

ki = {03 + (13°[1 - exp(-2€)]}"?
In either case,

1; =17 exp(-¢) [16]

The shear stress resolved in the plane of the lam-
ellae is

[15a]

z
. 0 R
Theg = h2°m sin 2¢; [17]

whe re (o}imm) is the stress for homogeneous flow of
that colony and ¢; is the angle between the tensile

METALLURGICAL TRANSACTIONS



axis and the vector P;. Nonhomogeneous flow occurs

i i sps
under a stress (onhom) when Tre reaches a critical
value, T.:

8

27,
sin 2(1)1'

0frlhom = [18]

7o is assumed to be a fraction « (0 < a < 1) of the

shear stress for homogeneous flow of the aggregate.
Thus

oi - 2(aolllom /2) — ( o] Oi [19]
flow sin 2¢; ~ \sin 2¢,~) hom

The stress for homogeneous deformation (Ofmm) is
assumed to be related to the linear-intercept inter-
lamellar spacing in the direction of maximum shear
stress. This relationship is assumed to be

hom = T + ky(dy) ™" [20]

which is the well-known Hall-Petch relation as first
applied to the problem of the deformation of pearlite
by Embury and Fisher.' In this calculation, &y, 0o,
and d, were chosen so as to obtain the same initial
strength as patented pearlite. If (o/sin 2¢;) is less
than unity, deformation is considered to take place by
the deck-of-cards mechanism, with the flow stress of
the ith colony given by Eq. [19], but if (a/sin 2¢;) is
greater than unity, homogeneous deformation takes
place under the stress given by Eq. [20]. Since the
aggregate is by definition of the problem fully plas-
tic, however, there will be a finite strain rate by one
deformation mode superimposed on the other at all
times. For simplicity, this effect is not taken into
account in the calculations; it will be seen later that
this is justified for the present problem.

In the strength calculations, d; was taken as the
mean linear interlamellar intercept in the direction of
maximum shear stress, which is at a 45 deg angle to
the longitudinal axis. There is a slight dependence of

1
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Fig. 10—Calculated flow stress-strain curves for initially
axially aligned, and for randomly oriented pearlite, for
various combinations of homogeneous axially symmetric
and inhomogeneous deck-of-cards elongation.
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Zii on the orientation of the pearlite colony. For pur-
poses of comparison with actual measurements the
apparent spacings on a transverse section of the hy-
pothetical aggregate have also been calculated.

Each hypothetical pearlite colony will therefore have
a unique stress-strain relationship dependent on its
original orientation; the stress-strain curve for the ag-
gregate is the average of all the colonies. Since an
analytical average requires an elliptic integral, the
computation was done for a finite number of colonies
by first determining the strain limits of the deck-of-
cards deformation mode for each colony and then com-
puting the average strength of the aggregate from the
strength of each colony, at each increment of strain.

PRESENTATION AND DISCUSSION OF COMPUTER
RESULTS

Fig. 10 contains a family of flow stress-strain
curves calculated for various combinations of homo-
geneous axially symmetric elongation and inhomo-
geneous intralamellar shear, referred to below as the
deck-of-cards mode. The top curve is for pearlite
oriented parallel to the longitudinal axis and the others
are for randomly oriented pearlite. All the curves
asymptotically approach a limiting slope of %, the ex-
perimentally observed value, despite variations in
initial orientation and deformation mode. Note es-
pecially that the deck-of-cards mode is exhausted and
insignificant beyond relatively low strains. Note also
that the rate of strain hardening is quite rapid during
operation of the deck-of-cards mode. This form of
strain-hardening curve has not been observed experi-
mentally.

A second series of calculations was made, using the
assumptions corresponding to various combinations of
homogeneous plane strain elongation and deck-of-cards
elongation; the results are shown in Fig. 11. The deck-
of-cards deformation mode is the same as in Fig. 10,
but the homogeneous deformation mode has been

g N ®mOO
T

AXIALLY ORIENTED

L

(]

~n

RANDOMLY ORIENTED

TENSILE STRENGTH (KGF/mm? x 1072)

TENSILE STRENGTH (psi x107%)

| 1 L i I
0 | 2 3 4 5
TRUE STRAIN
Fig. 11—Calculated flow stress-strain curves for initially
axially aligned, and for randomly oriented pearlite, for vari-
ous combinations of homogeneous plane strain and inhomo-
geneous deck-of-cards elongation.
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changed from axially symmetric to plane strain elonga-
tion. The top curve is again for oriented pearlite, and
the lower curves are for randomly oriented pearlite.
All the curves asymptotically approach a limiting slope
of . This will be discussed below. The same com-
ments about the deck-of-cards mode as made above
apply here also.

There are several possibilities for the failure of
the calculations summarized in Fig. 11 to predict the
experimentally observed strengthening rate:

1) the {110) bcc wire texture was assumed perfect
from the very beginning of the deformation, while ex-
perimentally a strain of about 0.5 is necessary to de-
velop a detectable (110) texture, which continues to
sharpen at higher strains. This error would have the
effect of overestimating the strengthening rate, es-
pecially at low strains.

2) The initial strengthening rate is zero, especially
for oriented pearlite and also for homogeneously de-
forming randomly oriented pearlite. Experimental
scatter, or other more transient strain hardening mech-
anisms affecting the o, term in Eq. [20], could hide
this low initial rate and lower the overall strengthen-
ing rate, up to the highest strains yet investigated,
€~ 4,

3) I cementite lamellae were fragmented by defor-
mation, the average strain in the cementite would be
lower than the applied strain. The probability (p) of

— i —
START
€=0
1 e(;m =0
L dg=1
o
0
MEASUREMENT
OF AVERAGE
(NTERLAMELLAR
Fl
SPACING FINISH
~ d, ACTUAL EXPECTED  €°!
COUNTS  COUNTS €m=05
7 8 -
s d=3 (dl)
I
6 8 =5 (doexpl-e))
88
4 .88
8 54 (037)
2724 4 8 = 06l
le=1) | 7 8 WHI;:HdIS THE( SAMT AS
= dg exp(-¢,
4 8 (1] cm:
=06l
5 8
4 8 p IS THE PROBABILITY
OF INTERSECTING A
3 8 CEMENTITE LAMELLA
5 8 _ ACTUAL COUNTS
0372]_ 5 a8 EXPECTED COUNTS
€=-1 .54

88

Fig. 12—Schematic representation of the effect of fragmenta-
tion of the cementite lamellae in a pearlite colony on the
average interlamellar spacing as viewed on a longitudinal
section.
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intersecting a given platelet would then be lowered
from unity according to the equation,

P =explecm— €) [21]

where € and €., are the applied and cementite
strains respectively, thereby inversely raising the
intercept interlamellar spacing above the projected
interlamellar spacing and reducing the rate of strain
hardening. This would alter the approximate equation
for the change in d with strain, by homogeneous plane
strain elongation, from

d =doexp(—¢) [22]
to

d= %’exp(—e) [23]
which, when combined with Eq. [21] becomes

d =doexpl—eom) [24]

A schematic representation of this process is shown
in Fig. 12 for the case where ¢€gy, is one half of «.
Thus, a strain-hardening slope of 4 would result for
€cm = %€ because Eq. [24] can then be combined with
Eq. [20] to yield Eq. [1].

There are additional data in the literature which
support this hypothesis: The transverse intercept
spacing of rolled pearlite measured on transmission
electron micrographs of edge sections by Embury
et al.” decreases more slowly than in simple propor-
tion to the strip thickness; analysis of their data in-
dicates that the intercept spacing varies with strain
according to the approximate equation,

d =doexp(-0.43¢) [25]

If it can be assumed that this is entirely due to frag-
mentation of the cementite lamellae, rather than to
some kind of inhomogeneous deformation, the strain
in the cementite in this rolled pearlite is therefore 43
pct of the applied strain.

These possibilities will be discussed further with
respect to their effects on the distribution of apparent
interlamellar spacings.

Fig. 13 contains a series of families of histograms
representing the changes in the distribution of appar-
ent interlamellar spacings (transverse sections) with
prior strain. The deformation modes are the same as
those in Fig. 10. As it was assumed for simplicity in
the calculations that there was but one initial spacing,
there is no distribution or even the development of a
distribution of spacings for axially symmetrically
elongated, oriented pearlite. The microstructure of a
transverse section simply remains similar to itself
throughout the deformation.

The spacing distribution of homogeneously and axi-
symmetrically elongated pearlite remains unchanged,
but the width of the spacing distribution is reduced by
operation of the deck-of-cards deformation mode.
Fig. 14 shows the distribution of axial ratios of the
ribbon-like microregions resulting from this defor-
mation mode as would be viewed on a transverse sec-
tion for a series of increasing strains. Although these
axial ratios are large enough to be potentially detec-
table, they are not large enough to account for the mi-
crostructures in Fig. 4. Also, the calculated lamellar
traces in each of the ribbons are always aligned per-

METALLURGICAL TRANSACTIONS
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Fig. 13—Calculated apparent spacing dis- o ,,,fro/, . 606**163210
tributions on transverse sections of drawn SPACING (10%cm)

pearlitic wires as a function of strain by
various combinations of homogeneous ax-
ially symmetric and inhomogeneous deck-
of-cards elongation. Histograms are nor-
malized to have equal areas.

NUMBER OF COLONIES

SPACING (10"%m)

pendicular to the thinnest dimension, as demanded by
the deck-of-cards deformation mode, but contradictory
to Fig. 5. Thus, the computed effects of the deck-of-
cards deformation mode on the microstructure are
incompatible with the experimental observations, so
that it is unlikely that this is the dominant deforma-
tion mode or a significant cause of the ‘‘wavy’’ micro-
structure.

Fig. 15 shows two more families of histograms rep-
resenting the changes in the spacing distribution for
homogeneous plane strain elongation of randomly
oriented pearlite and of axially aligned pearlite. Note
that the widths of these distributions increase rapidly
with increasing strain. For axially aligned pearlite,
where the apparent spacings are also the true spacings,
the ratio of the largest to the smallest spacing is
exp(e). For a perfect (110) texture, the axial ratio of
every ribbon should also be exp(e), so that at strains
of 1, 2, 3, and 4 each ribbon would have an axial ratio
of about 2.7, 7.4, 20, and 55, respectively. Unfortu-
nately, the microstructures of the actual drawn, ran-
domly oriented pearlite in Fig. 4 are too complicated
and unresolved to allow comparable quantitative meas-
urements. However, the degree of waviness and the
axial ratios of at least a few pearlite colonies increase
rapidly with strain, in qualitative agreement with the
calculations.

Fragmentation of the cementite would not alter the
widths of the spacing distributions if it occurred with-
out regard to orientation, but would reduce the rate of

METALLURGICAL TRANSACTIONS

g l €3l
% 200 B €:2
=
§ €3
z —
100 /
A4/ )
//— / ' ‘ex5 :
ol [ ,
] 0 K0 1000 10000
SPACING (10"*cm)
(10 @)
DARKER AREAS INDICATE
PEARLITE COLONIES WHICH
HAVE NOT UNDERGONE /
DECK - OF - CARDS ELONGATION

Fig. 14—Calculated
axial ratio distri-
butions of pearlite
colonies on trans-
verse sections of
drawn wires as a
funetion of strain
when the critical
resolved intrala-
mellar shear
strength is 3 of the
stress for homo-
geneous flow.
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refinement of the structure. Hence, direct measure-
ments of the distribution of spacings and the effect of
strain on the average spacing of drawn pearlite would
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Fig. 15—Calculated apparent spacing dis-
tributions on transverse sections of drawn
pearlitic wire as a function of strain by
plane strain elongation. Both curves are
normalized to have the same areas as in
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detect this effect as well as the effects of the (110)
wire texture on the microstructure., The work would
be much simplified if initially axially aligned pearlite
were used.

The microstructural shape change in rolling is
nearly the same as the external shape change, which
is plane strain if there is no spreading. Since the
state of stress is similar, i.e., highly compressive,
the rates of fragmentation of the cementite should be
similar in wire drawing and in rolling, as was as-
sumed in comparing Eqs. [24] and [25]. The strengthen-
ing mechanism is probably the same, so the rate of
strain hardening ought to be the same in spite of the
external differences in shape change of the specimens.
This is so, as shown in Fig. 16, in which the tensile
strengths of rolled fine pearlite are plotted as a func-
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Fig. 16—Tensile strengths of the rolled fine pearlite used for
the substructural spacing measurements of Embury et al.,!?
after Grange.!!
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tion of true strain, ln{to/t), where t, and ¢ are the
original and instantaneous specimen thicknesses, re-
spectively. These data were obtained by Grange'* for
the same set of specimens that Embury ef al.” used
to measure the change in transverse intercept spac-
ings described by Eq. [25]. This provides additional
evidence that the local shape change in drawn patented
steel wire is plane strain elongation.

No distinction need be made between the spacing of
carbide particles in a transverse direction as used
in this paper and the spacing between dislocation cell
walls used by others"® in similar structures, because
the former spacing probably controls the latter; the
dislocation cell walls probably possess higher mobility
during the deformation than the carbide particles. Thus,
in Fig. 12, the fine lines connecting the carbide par-
ticles need not represent cell walls but merely indi-
cate the planes of the original unbroken lamellae.

In the future, during discussions of the strengthen-
ing mechanism in these materials as opposed to the
mechanisms of deformation and local shape change
which are emphasized in the present paper, such a
distinction will need to be made. It is not now clear
whether the Hall-Petch relation is followed in drawn
steel wires because of the necessity of cutting the
carbide particles with the aid of dislocation pileups in
the ferrite, or because of a grain- or cell-size effect
in the ferrite, or because of some other mechanism,
such as the one proposed qualitatively by Chandhok
et al.? The cutting of carbide particles by piled-up
dislocations can account for the observed strengths
of the drawn pearlite if the strength of the cementite
is constant and on the order of 2 x 10° psi (1400 kgf
per sq mm). The dislocations are too stiff to form
closed loops within the very small dislocation cells
in the drawn pearlite, in contrast to the mechanism
proposed by Langford and Cohen®'® for the strengthen-
ing effect of the much larger cells in wire-drawn iron.
This mechanism would bring about a direct relation-
ship between strength and (d)™*, and the constant of
proportionality®'® is too high to be applied to the ma-
terial used here.

METALLURGICAL TRANSACTIONS



CONCLUSIONS

When the cold drawn into wire, pearlite develops a
““wavy’’ microstructure in transverse sections be-
cause of the (110) bcc wire texture of the ferrite.

The paucity of slip systems in this texture causes the
shape change of at least some of the interwoven rib-
bon-like microregions, corresponding approximately
to the pearlite colonies, to be nearly plane strain
elongation, insofar as can be determined from the ex-
perimental evidence presented here.

Calculation of the rate of strain hardening and the
distribution of apparent interlamellar spacings by
computer have shown that a model based on another
possible mechanism of local plane strain elongation,
inhomogeneous intralamellar shear, is not consistent
with the microstructural evidence or the observed
strain hardening rate.

Similar calculations have been made using a model
corresponding to locally homogeneous plane strain
elongation, as would be brought about by the (110)
wire texture, in order to predict the spacing distribu-
tions of randomly oriented and also axially aligned
pearlite for later quantitative comparison with more
detailed measurements on electron micrographs of
transverse sections of drawn pearlite, especially drawn
initially axially aligned pearlite, which would be
simpler to handle by the existing quantitative metallo-
graphic methods. It was found necessary to consider
fragmentation of the cementite in the model in order to
obtain the observed strain hardening rate and change
of the average transverse intercept spacing with
strain. Also, the degree to which the (110) bcc wire
texture affects the microstructural shape changes
has yet to be determined, as it is the average shape
change of the entire microstructure which controls the
strain hardening rate. Comparison of the strain hard-
ening rates of wire-drawn pearlite and rolled pearlite
suggest that the local microstructural shape change in
both is indeed plane strain elongation.

Both the process of fragmentation of the cementite
and the development of the (110} bce wire texture can
be expected to be somewhat sensitive to metallurgical
structure and processing variables, such as die geom-
etry, as well. This means that there may yet be the
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possibility of improving the strain-hardening rate of
drawn pearlitic or bainitic structures in steel.

A simplified equation approximately describing the
strain-hardening rate of drawn pearlite or bainite, ac-
cording to the most likely model, is

k
0 =00+ B—\/yT‘exp&cm/z) (26]

[¢]
where $ is between 1 and 2 and oo, ky, and €.y, are
as defined previously. This equation assumes 1) the
Hall-Petch relation between flow strength and sub-
structural scale and 2) locally homogeneous plane
strain elongation within the wire.

Eq. [26] produces the same numerical result as the
Embury-Fisher equation (Ref. 1, also Eq. [1] of this
paper) but corrects their erroneous assumptions of
homogeneous axially symmetric elongation and absence
of dynamic recovery.
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