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1. - E a r l y  d e v e l o p m e n t s .  

1"1. The genesis. - (~Anyone who is not shocked by quantum theory has not 
understood its), once wrote Niels Bohr. The first shock that  came from quantum 
physics was generated by the lack of separability of the quantum system from 
the measuring apparatus. Yet this lack of separability is understandable, since 
after all there is concrete physical interaction between the microsystem and the 
measuring apparatus. Instead, much more shocking is the lack of separability 
between two widely separated and noninteracting quantum systems, a feature 
that  persists undiminished even when their relative separation becomes infi- 
nitely large. 

l ' l .1 .  T h e  E i n s t e i n - P o d o l s k y - R o s e n  a r g u m e n t .  During the 
spring of 1935 Einstein, Podolsky and Rosen (henceforth referred as EPR) 
wrote their classic paper (,Can Quantum Mechanical Description of Physical 
Reality be considered complete?~> [1]. This seminal work has continued to sprout 
animated discussions and vigorous debates over the past five decades. Accord- 
ing to a recent book devoted to the EPR paradox [2], at least 600 papers have 
been written on various aspects of the EPR argument. In this review we make 
an a t tempt  to provide an up-to-date overview of the germane and significant 
studies, starting from the original formulation of the argument. 

The key ingredient in the EPR paper was their reality criterion: <df, without 
in any way disturbing a system, we can predict with certainty (i.e., with 
probability equal to unity) the value of a physical quantity, then there exists 
an element of physical reality corresponding to this physical quantity~>. We 
begin by analysing the meaning of this criterion with reference to the particu- 
lar situation dealt with in the EPR treatment.  

Position in quantum mechanics is described by a linear Hermitian operator 
Q whose action on the wave function is equivalent to its multiplication by the 
position parameter. The eigenvalue equation 

Qu(q; x) =qu(q; x) 

is solved by an arbitrary real value of q with the corresponding eigenfunction 
(normalized on unit length in the wave number space) 

(1.1) u(q; x) = 5 ( x - q )  

which is the Dirac 5-function. The wave function (1.1) predicts a fixed position 
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q, with all possible values of momentum having equal probability (since 
5 ( x -  q) can be written as a superposition of all possible plane waves with 
constant weight factor). I f  the EPR reality criterion is applied to the wave 
function (1.1), it follows that  an element of physical reality corresponds to the 
predicted value q of position which belongs to the physical system described by 
(1.1). 

Considering next the momentum operator 

P =  - i b e x ,  

the eigenvalue equation 

P v ( p ;  x) = p v ( p ;  x) 

is solved by an arbitrary real value of p with the corresponding eigenfunction 
(plane wave, normalized on unit length) 

(1.2) v (p; x) = exp [ipx/h] 

which leads to an exact prediction of momentum but with a completely 
undefined position, in the sense that  all conceivable positions can be found 
with equal probability. Application of the EPR reality criterion to the wave 
function (1.2) leads to the attribution of an element of physical reality corre- 
sponding to the fixed value p of momentum. The notations u (q; x) and v (p; x) 
show then explicitly the objective physical properties q and p of the respective 
wave functions at one particular time, say t o. 

At this stage it is important to emphasize that  on the basis of the EPR 
reality criterion it is not possible to attribute to a single quantum system the 
two elements of reality corresponding to P and Q simultaneously. This is of 
course consistent with the nonvanishing commutator of P and Q: [P, Q] = ifi. 
I t  can be presumed that  when Q is measured and a definite value is obtained, 
the element of reality corresponding to P is destroyed. I t  seems also natural to 
assume that  this destruction is brought about by the inevitable disturbance, or 
the action quanta exchanged between the macroscopic measuring apparatus 
and the observed quantum system. Viewed in this way, ascribing the elements 
of reality to quantum systems becomes a rather innocuous exercise in conform- 
ity with the formalism of quantum mechanics. 

This state of affairs, however, changes dramatically when two correlated 
quantum objects (a and fl) are considered. Possible fixed-time wave functions 
for the system a + fl are 

(1.3) ~ (qo; 

(1.4) ~(Po; 

where the notation 
the same as before, 
system (a or fl) to 

xl, x:) = Sdq'c(q')u~(q'; Xl)U/3(q 0 + q'; x2) , 

x 1, x:) = Sdp'5(p')v~(p'; xl)v/~(p o - p ' ;  x2) , 

for fixed-position and fixed-momentum wave functions is 
the only change being the specification of the quantum 

which they refer. 
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The s t andard  in te rpre ta t ion  of �9 (q0; Xl, x2) is as follows: a posi t ion measu-  
r emen t  on a will yield the  result  q' wi th  probabi l i ty  I c (q') 12; if q' has been found  
for a, t hen  it can be predic ted  wi th  cer ta in ty  t h a t  a posi t ion measu remen t  for 
fl will give the  result  q0 + q'- In  o ther  words, correlated posi t ion measu remen t s  
made  on a and  fl will lead to results  whose difference equals qo wi th  probabi l i ty  
equal  to  uni ty.  I t  can then  be inferred t h a t  there  is an e lement  of real i ty 
corresponding to qo which belongs to (a + fl). 

A similar a rgumen t  applied to ~ leads to the  conclusion t h a t  one can 
ascribe an e lement  of real i ty to the  sum Po of the  m o m e n t a  belonging to 

+ P). 
Now it needs to  be no ted  t h a t  the  s imul taneous  a t t r ibu t ion  of q0 and P0 to 

a pair  of q u a n t u m  systems is no t  prohib i ted  by the  q u a n t u m  formal ism 
- unl ike the  case of q and p for a single q u a n t u m  sys tem - since the  difference 
of  posi t ions and  the sum of m o m e n t a  are represented  by c o m m u t i n g  operators:  

(1.5) [Q~ - Qp, Pa + P~] = 0.  

This  fact  was used by Einstein,  Podolsky  and Rosen to fo rmula te  their  
example .  They  considered the  wave funct ion  given by 

(1.6) ,f 
T(qo, Po; Xl, x2) = ~ dp' exp[i(xl - x2 + qo)P'/hI 

which can be wr i t ten  in the  form (1.4) wi th  P0 = 0 and  wi th  5(p ')  = h -1 (apart  
f rom a cons tan t  phase  factor). I t  can also be wr i t ten  in the  form (1.3) (with 
c (q') = 1): 

(1.7) T(qo, Po;Xl, X 2 ) = 5 ( x l - x 2  + q o ) = S d q ' 5 ( x l - q ' ) 5 ( q ' - x 2  +qo). 

Consequent ly ,  one can invoke the  E P R  criterion of physical  real i ty  and 
conclude t h a t  there is an e lement  of physical  real i ty corresponding to the 
posi t ion of ft. E P R  presumed  t h a t  this e lement  of physical  real i ty  exists 
regardless of whe ther  or not  a measu remen t  on a has been made  because 
otherwise one would have to invoke spooky act ion at  a dis tance to con tend  t h a t  
the  measu remen t  on a creates ins tan taneous ly  the e lement  of real i ty  corre- 
sponding  to the  spat ial ly separa ted  sys tem ft. I t  is therefore concluded t h a t  
there  corresponds an e lement  of real i ty to the  posi t ion of fl for all pairs  of the  
ent ire  ensemble E. 

A similar a rgumen t  can be made  for momen ta :  t ak ing  a subset  E 2 of E,  let 
us consider m o m e n t u m  measu remen t  on all the  a's of E2; p ] ,  p]', ... denote  the  
ob ta ined  results. Since it can be predic ted wi th  cer ta in ty  t h a t  subsequent  
measu remen t s  of the  m o m e n t u m  of fl will give - P'I for the  first pair,  - p~ for 
the  second pair  and  so on, it can be concluded t h a t  an e lement  of real i ty  
corresponds to the m o m e n t u m  of fl for all fl's of E 2. Exc luding  the  possibil i ty 
t h a t  this e lement  of real i ty could be created ins tan taneous ly  by the measure-  
men t s  made  on a, one can then  ex tend  the  above conclusion to the  entire 
ensemble E (also the  s t anda rd  'principle of induct ion '  enters  here). 

Obviously,  the  choice of the  sys tem (a or fl) on which measuremen t s  are 
per formed  is arbi t rary.  A symmetr ica l  reasoning therefore leads to the  infer- 



BELL'S THEOREM AND THE EPR PARADOX 5 

ence tha t  there are also simultaneous elements of reality corresponding to the 
position and m o m e n t u m  of the particle a. The upshot  of the entire a rgument  is 
that  individual positions and momenta  can be considered to be in a sense 'real' 
before measurements  for all objects (a and fl) comprising the ensemble E. The 
underlying sense being tha t  there exist some inherent elements of physical 
reality associated with a and fl that  lead necessarily to preassigned results if 
and when a measurement  of one or the other of the two observables is made. 

Since the wave function (1.6) implies tha t  these quanti t ies are a priori 
indeterminate,  E P R  concluded tha t  the description of the physical reality 
provided by (1.6) is not  complete. The E P R  paper was, thus, in essence an 
argument  claiming the incompleteness of the existing quan tum theory. I t  is 
interesting tha t  E P R  themselves never used the term paradox in their paper 
(which was, incidentally, also unique in tha t  it did not  contain a single 
reference). 

A little known but  curious historical fact is tha t  an embryo of the E P R  
argument  can be found in an earlier paper by yon Weizs~cker in 1931 [3]. 
Weizs~cker was analysing Heisenberg's gamma-ray microscope thought  experi- 
ment  in the case of a photon being scattered by an electron, the initial 
momenta  of both being assumed to be known before their collision. By 
measuring the m o m e n t u m  of the scattered photon  one could therefore infer the 
final m o m e n t u m  of the electron after the collision. Alternatively, one could 
ascertain the position of the electron at the moment  of its collision with the 
photon by directing the scattered photon to the image plane of an optical 
system. This foreshadows at  least the spirit of the E P R  argument;  however, 
yon Weizs~:cker did not  elaborate its conceptual implications. Max Jammer  [4] 
has referred to this as an example of ((how often in the history of science, 
a slight critical turn  may  open a new vista with far-reaching consequences~). 

1"1.2. B o h r ' s  r e s p o n s e .  The E P R  paper marked the climax of the 
historic Bohr-Einstein exchanges. Reflecting on the impact  of the E P R  paper 
Bohr[5] had remarked: (~Due to the lucidity and apparent ly  incontestable 
character of their argument ,  the E P R  paper created a stir among the physi- 
cists)). Rosenfeld, Bohr's close associate at tha t  time, recalls [6]: (,This onslaught 
came down upon us as a bolt from the blue... A new worry could not  have come 
at  a less propitious time. Yet, as soon as Bohr had heard my report  of 
Einstein's arguments,  everything else was abandoned~). 

In  spite of different claims it is not  too difficult to comprehend Bohr's 
ideas, the cautiousness of his writings notwithstanding.  The paper which he 
wrote as an answer to E P R  [7] contains a rather  interesting analysis. To pu t  it 
succinctly, Bohr did not  question the correctness of the E P R  reasoning once all 
its premises were accepted. But  it is precisely these premises which Bohr 
refused to accept. His contention was tha t  the assumptions underlying the 
E P R  argument  could be invalidated within the framework of complementarity 
which was for him ((a new feature of natural  philosophy,). The notion of 
complementarity implies 

a) renouncement  of the classical idea of causality, and 

b) radical revision of our concept of physical reality. 
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In  order to grasp the crux of Bohr's objection to the E P R  argument ,  it is 
first necessary to clarify the roots of complementarity which can be expressed 
by the assertion tha t  it is in principle impossible to describe the processes in 
quan tum mechanics in a realist way as developing causally in space and time. 
By causal description Bohr meant  the process to be described according to 
well-defined rules among which he considered the most  impor tant  one being the 
law of conservation of energy and momentum.  In quan tum mechanics the two 
possibilities of space-time description and causality are seen to be mutual ly  
compatible because position and m o m e n t u m  observables are represented by 
noncommut ing  operators. The measurement  of one of them necessarily destroys 
all previous knowledge pertaining to the other one. I t  is this peculiar feature of 
quan tum formalism which led Bohr to his conclusion tha t  acts of observation 
for any two noncommut ing  operators have to be considered as mutual ly  
exclusive. One can then apply this reasoning to the analysis of the E P R  
argument  based on the wave function {1.6). 

Let us consider two apparatuses Q1 and P1 (Q2 and P2) performing, 
respectively, position and m o m e n t u m  measurements  on the system ~ (fl). I f  one 
chooses to use Q1 and Q2, the wave function (1.6) predicts tha t  the results x 1 
and x 2 will be precisely correlated: x 2 - x 1 = qo- I f  instead one chooses to use 
P t  and P2, there is a precise correlation between the results p~ and P2: 
Pl + P2 = 0. The crucial point  here is tha t  the two apparatuses Q1 and P1 are 
mutua l ly  incompatible: one can choose to employ either Q1 or P1, but  never 
the two of them simultaneously; the same holds for Q2 and P2- F rom this point  
of view one cannot  therefore conclude tha t  position and m o m e n t u m  correspond 
to two simultaneously existing elements of physical reality, because it is not  
possible to perform simultaneous measurements  of position and momentum.  
According to Bohr, the expression ~without in any way disturbing a system,~ as 
used by E P R  in their criterion of reality contains ~an essential ambiguity~> 
because the conditions (or the experimental arrangements) defining the possible 
types of prediction concerning a system constitute an inseparable par t  of the 
phenomenon (unanalysable whole) to which the term physical reality can be 
associated (~no elementary quan tum phenomenon is a phenomenon until  it is 
registered~). Since these conditions depend on whether  Q1 or P1 is being 
rmeasured, the E P R  conclusion appears to be unjustified. 

In  fact, E P R  had themselves anticipated in their paper the possibility of 
such a refutation. They wrote: ~4ndeed, one would not  arrive at our conclusion 
if one insisted tha t  one or more physical quantit ies can be regarded as 
simultaneous elements of reality only when they can be simultaneously meas- 
ured or predicted. From this point  of view, since either one or the other, but  
not  both simultaneously, of the quantities P and Q can be predicted, they are 
not  simultaneously real. This makes the reality of P and Q depend upon the 
process of measurement  carried out  on the first system, which does not  disturb 
the second system in any way. No reasonable definition of reality could be 
expected to do this,~. 

The crux of the debate, therefore, boils down to the irreconciliability 
between the E P R  reality criterion and Bohr's tenet  tha t  a particle on which no 
measurement  is being performed cannot be considered as an independent  seat 
of physically real attributes.  

The completeness of quantum-mechanical  description, challenged by EPR,  
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was thus saved according to Bohr's view by the feature of wholeness. This is the 
way he himself summarized his position [8]: ((The unambiguous account of 
proper quan tum phenomena must,  in principle, include a description of all 
relevant features of the experimental  arrangement  ... the feature of wholeness 
typical of proper quan tum phenomena finds its logical expression in the 
circumstance tha t  any a t t empt  at a well-defined subdivision would demand 
a change in the experimental  arrangement  incompatible with the definition of 
the phenomena under investigatiom). Here we should add the remark tha t  
Bohr's reaction to the E P R  paper was particularly significant from the view- 
point  of the philosophy of science because it signalled the revival of tha t  notion 
of unanalysable wholeness which had no place in the rationalistic approach of 
classical physics. 

I t  is relevant to note tha t  many  leading contemporaries of Einstein, such as 
Max Born, had considerable difficulty in grasping the essence of the E P R  
argument.  Here is Born's summing up which clearly reflects his erroneous 
understanding of the E P R  paradox: ((The root of the difference between 
Einstein and me was the axiom tha t  the events which happen in different 
places A and B are independent  of one another,  in the sense tha t  an observa- 
tion on the state of affairs at B cannot teach us anything about  the state of 
affairs at A~)[9]. I t  is interesting to recall Bell's comment  on it: <~Misunder- 
standing could hardly be more complete. Einstein had no difficulty accepting 
tha t  affairs in different places could be correlated. What  he could not  accept 
was that  an intervention at one place could influence, immediately,  affairs at 
the other. These references to Born are not  meant  to diminish one of the 
towering figures of modern physics. They are meant  to illustrate the difficulty 
of put t ing  aside preconceptions and listening to what  is actually being 
said~> [10]. 

I t  needs to be stressed tha t  the E P R  idea of separability hinges on the 
notion that  two objects which are sufficiently separated in space (in such a way 
tha t  the spatial separation is large compared to the ranges of all known 
physical interactions between them) should be incapable of influencing one 
another. One may object to this idea on the ground tha t  the quan tum 
formalism does not  represent (~real state of affairs,) in ordinary space and t ime 
because the SchrSdinger equation for n-particles describes a wave function 
propagating in configuration space. I t  can be argued tha t  separability in 
ordinary space is not  sufficient to ensure separability in configuration space. 
However, the main point  is tha t  while configuration space is a theoretical 
construct,  four-dimensional space-time, on the other hand, is more fundamen- 
tal and in some sense has physical reality independent  of us. Separability in 
ordinary space is therefore a physically relevant objective criterion, particular- 
ly because all known interactions decrease rapidly with distance in ordinary 
space. 

There is also considerable misunderstanding about  the point  calling in 
question the E P R  reality criterion on the ground tha t  it associates elements of 
reality with observables tha t  cannot be measured simultaneously. In  this 
context it may be useful to illustrate the meaning of the E P R  reality criterion 
with the help of a classical example: one can predict with certainty tha t  water 
below 0 ~ will solidify to form ice; hence the E P R  reality criterion allows us to 
associate an element of reality A 1 with this proper ty  of water. Another  
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fundamental  property of water is tha t  it becomes vapour  above 100~ and 
since this also can be predicted with certainty, the E P R  reality criterion 
associates a second element of reality 42 with this property of water. In  this 
case the the elements of reality ~l and )~2 are understood as physically relevant 
features of the interaction potential  between water molecules giving rise to 
freezing and boiling processes at the appropriate temperatures.  The fact tha t  
one cannot observe at the same time the freezing and boiling of water does not  
preclude the simultaneous existence of these elements of reality 21 and 22. I t  is 
this same realistic approach tha t  is applied to the microphysical phenomena by 
the E P R  reality criterion. 

12.  The subsequent formulations. - Sparse but  impor tant  results on the 
E P R  paradox were obtained during the th i r ty  years following 1935. The most  
interesting ones are reviewed in this section, starting from the incisive analysis 
by Erwin SchrSdinger in 1935 and ending with the 1957 Bohm-Aharonov 
paper. 

1"2.1. S c h r S d i n g e r ' s  v e r s i o n .  Like Einstein, SchrSdinger was an- 
other prominent  physicist who had contributed substantially to the develop- 
ment  of quan tum theory, and yet, at the same time, was a severe critic of its 
s tandard interpretation. I t  was the E P R  paper which mot ivated him to present 
his critical views about the quantum-mechanical  t rea tment  of two correlated 
quan tum systems [11]. 

SchrSdinger's approach was in many  ways an antithesis of Bohr 's  response 
to the E P R  paper. SchrSdinger concentrated on generalizing the E P R  argu- 
ment  in terms of a rigorous analysis based on the mathematical  formalism and 
regarded its weird conceptual implication as an indication of a serious inad- 
equacy of quan tum mechanics. The paradoxical aspect of the EPIC example 
was clearly brought  out  in his analysis (the term paradox is used here in the 
sense of a ((plausible argument  leading from plausible premises to an implausi- 
bile conclusiom) [12]). 

I t  should be interesting to mention here tha t  though the term paradox was 
not  used in the original E P R  paper, Einstein used it for the first t ime (in the 
context  of the EPIC argument)  in his letter to SchrSdinger on August  8, 1935, 
and SchrSdinger picked it up in his response on August  19. Subsequently,  
SchrSdinger referred to the E P R  argument  as a paradox in his p a p e r [ l l ]  and 
Einstein also used the term in his 1936 article titled Physics and Reality [13]. 
For a detailed account of the illuminating correspondences between Einstein 
and Schr6dinger during the summer of 1935, see Fine [14]. These exchanges 
served as a prelude to the impor tant  pape r [ l l ]  by SchrSdinger on the E P R  
problem which we are now going to discuss. 

SchrSdinger emphasized tha t  the issue of entanglement lay at the heart  of 
the E P R  argument.  When two particles emerge from a temporary  interaction 
and get separated, the wave function of the system of two particles is no longer 
the product  of separate wave functions of the individual particles. Hence the 
knowledge of the total wave function would not  enable us to ascribe an 
individual wave function to each of the particles; in other words, the 
two-particle system S in a pure state has to be regarded as a single whole even 
after the particles cease to interact. In  this notion of entanglement SchrSdinger 
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recognised the characteristic trait of quantum mechanics - ((the one that  
enforces its entire departure from classical lines of thought~). Quantum mechan- 
ics does not allow to perceive S as comprising of two separate and individual 
particles. Such a perception is valid only after the phase relations involved in 
the superposition of states are destroyed by performing measurements on any 
one of them; that  is, the entanglement between the two subsystems is then 
broken. In a sense, the measuring apparatus interacts with the whole system 
even though we may perceive it to tinker with only one of the particles. This 
disentanglement is, according to SchrSdinger, of sinister importance, particularly 
in its form underlying the E P R  argument. 

To give a sharper orientation to this reasoning SchrSdinger formulated the 
following theorem (in the treatment that  follows we adopt the same notation as 
in paragraph l ' l .1) .  

Statement: To every Hermitian operator F (Q~, P~) of the particle a in an 
EPR pair there corresponds another Hermitian operator G (Qp, Pp) of the other 
particle fl such that  

(1.s) [F (Q~, P~) - G (Qp, Pp)] T (x 1, x2) = 0, 

i.e. T(x l ,  x2) is an eigenfunction of ( F -  G) with eigenvalue zero. Here 
T(xl ,  x2) satisfies the two eigenvalue equations 

(1.9) Q~I/ (Xl, X2 ) = qo~l (Xl, X2), P T  (x 1, x2) = po T (x 1, x2), 

where Q = Q ~ - Q p  and P = P ~ + P p .  
Proof: We consider the operator 

(1.10) Finn (Q,, P~) = Q~P~ + h.c. 

and 

(1.11) G~n (Qp, Pp) = (Qp + qo) ~ (Po - Pp)" + h.c. = 

= (Q~ - Q + qo) ~ (po + P~ - P)" + b.c. 

Now let us figure out the result of application of G~. to T (xl, x2). First note 
that  the factor (P0 + P ~ -  P)" becomes P'~ because of (1.9). Then since P~ 
commutes with ( Q ~ - Q  + q0), one can shift P~ to the left of the factor 
(Q~-  Q + q0) m which when applied to T(x l ,  x2) gives Q~ because of (1.9). 
Finally one obtains 

G,,,~T (xl, x2) = [P~Q~' + h.c.] T (x 1, x2) = F,,,.T (x 1, x2) 

using (1.10). Equation (1.8), therefore, holds for the operators Finn and Gin, 
defined by (1.10) and (1.11). The previous result is obviously generalizable to 
functions of the type 

(1.12) F (Q~, P~) = ~ c,,,Q'~P"~ + h.c., 
mtn 
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where the Cmn'S are numerical coefficients. I t  is then easy to extend SchrSdin- 
ger's theorem to an arbitrary analytic function F.  

An immediate corollary of the theorem is tha t  since measurements  pertain- 
ing to an F operator and its corresponding G operator must  always yield equal 
results if a and fl are described by the wave function T (x 1, x2), a measurement  
of F on a has to be interpreted as steering fl into an eigenstate of G. I t  is 
precisely this strange counterintuit ive aspect which, according to SchrSdinger, 
is one of the deep mysteries of quan tum mechanics and endows the E P R  
argument  with an enigmatic character. This thesis is eloquently captured in his 
following assertion: (tit is rather discomforting tha t  the theory should allow 
a sys.tem to be steered or piloted into one or the other type of state at the 
experimenter 's  mercy in spite of his having no access to it. This paper does not  
aim at a solution of the paradox, it rather adds to it, if possibles). I t  is fair to 
add tha t  even today noboby knows how to measure the observables corre- 
sponding to F and G except for a few very simple cases. 

SchrSdinger elaborated this viewpoint and its relation with his general 
philosophical objection to the s tandard interpretat ion of quan tum mechanics in 
a series of papers published in Die Naturwissenschaften [15]. As an illustration 
of the E P R  argument,  SchrSdinger compared the member of the two-particle 
pair which is assumed not  to be measured with ((a scholar in examination,) who 
is questioned as to the value of his position or m o m e n t u m  coordinate. The 
scholar is always prepared to give the correct answer to the first question he is 
asked, al though thereafter he (ds invariably so disconcerted or tired out  tha t  all 
the following answers are wrong)~. But  since he always provides the right 
answer to the first question without  knowing which of the two questions 
- position or momen tum - he is going to be asked first, ((he must  know both the 
answers~). 

Schr5dinger's conviction, as reflected in these papers, was tha t  the paradox 
exhibited in the E P R  argument  could not  be resolved within the framework of 
conventional quan tum mechanics. In  contrast  to EPR,  for Schr5dinger it was 
not  only a mat te r  of incompleteness of the quan tum theory, but  a manifesta- 
tion of a fundamental  deficiency in its very foundation. His suspicion was tha t  
a possible source of this l imitation laid in the t rea tment  of time in quan tum 
mechanics and the intriguing way it appeared in the problem of measurement.  
To summarize, SchrSdinger extended the E P R  argument  in a way which 
appeared to him to provide substantial  support  to his claim tha t  (~the reigning 
doctrine is born of distress~). 

1"2.2. F u r r y '  s a n a l  y s i s. Schr5dinger's extension of the E P R  argu- 
ment  was soon supplemented by Furry 's  t rea tment  [16] whose starting point  
can be best appreciated by posing the following problem: given a general state 
vector IN ) for the two-particle system e -  (a, fl), can one always write it as 
a direct product  of two state vectors separately describing the particles com- 
posing e? 

That  the answer is negative can be easily seen as a necessary consequence of 
the superposition principle: every possible vector I T i ) I O j )  is a conceivable 
state vector for e (it describes a in the state I T i )  and fl in the state I Oj)).  
Therefore, all possible linear combinations of these vectors are also permissible 
state vectors of e. To write this in a most general way, let {I ~, )} and {I ~1 )} 
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be two orthonormal and complete sets of states for a and fl, respectively. 
Carrying out a (double) expansion of It/> over the sets {I Ti > } and {I ~j  > }, we 
get 

(1.13) It/> = ~ci jI  ~ i>l  ~ > ,  
i , j  

where the c~j's constitute a set of generally complex coefficients. I t  is important 
to note that  in the absence of superselection rules, every vector I t/> of the form 
(1.13) represents a possible state for 5. The coefficients c~ are unrestricted, 
except for the normalization condition 

(1.14) ~lc i j [  2 = 1. 
i , j  

In particular, one cannot restrict the cii's to only of the following type: 

(1.15) c~j = diej, 

where the di's and the ej's are suitable numerical factors. 
The superposition principle, therefore, forces one to consider vectors ]t/> of 

the type (1.13) for which (1.15) does not hold. This implies the existence of at 
least some states for e such that  neither ~ nor fl is in a well-defined quantum 
state. States of this kind are known as the second type, while those for which 
(1.15) holds are called the first type. To put it more precisely, state vectors of 
the first (second) type are the faetorizable (nonfactorizable) state vectors. Since 
the concept of state vector is the crucial link which connects the quan- 
tum-mechanical formalism with the mierophysical reality, it follows that  quan- 
tum theory does not ascribe any separate reality to the particles a and fl whose 
complex (~, fl) is described by a state vector of the second type. Furry 
interpreted the essence of the EPR example as illustrating this particular 
feature of quantum formalism: (~... the assumption [that] a system free from 
mechanical interference necessarily has independent real properties, is contra- 
dicted by quantum mechanics,). 

To elaborate his thesis, Furry made use of a theorem proved by yon 
Neumann according to which the state vector (1.13) can always be written in 
the form 

(1.16) It/> =  c,I 
i 

if the complete orthonormal sets {ITi>} and {l~>} (in general, different 
from those entering in (1.13)) are suitably chosen. If  | t/> is of the first (second) 
type, only one (more than one) of the coefficients c~ will be different from zero. 
Let these two new sets of state vectors constitute eigenstates of two linear 
Hermitian operators A and B, respectively, so that  the relations 

(1.17) Al~i> --ail ~i>; BI~> =bil~i> 

are valid for all values of the index i. One can then say that  A (B) represents an 
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observable of the particle a (fl) and that  the possible values of such an 
observable are the eigenvalues ai(bi). The state vector (1.16), whose form is 
maintained unchanged during time evolution, implies in general the following 
E P R  type correlation: if an observer measures at time t 1 the observable A on 
the particle a and finds the value a~, then a second observer will necessarily 
find the value b~ for a measurement of B made at time t ~ t 1 on the other 
spatially separated member fl of the same pair of particles. Now invoking the 
EPR reality criterion, it follows that  the result pertaining to measurement of 
B on fl must have been fixed and equal to b k already before the measurement 
on a was performed. To adhere to the quantum formalism, one has to then 
assert that  the state of fl must have been already the eigenvector I~k ) before 
the time t x. Similar argument can also be made for the state of a and one would 
conclude that  the state vector for this particular pair (a, fl) before the time tx 
was ] T k ) [ ~ k ) .  Repeating this reasoning for all members of the statistical 
ensemble of pairs (a, fl) leads to the inference that  the state vectors describing 
this ensemble are actually incoherent mixtures of the state vectors of the type 

(1.18) Iql,) = ] ~ k )  ~k)  

with the probabilities [Ck[ 2. 
Now, eqs. (1.16) and (1.18) are obviously different mathematical descrip- 

tions of the ensemble. Furry pointed out that  they are not only mathematically 
different but also that  these are not equivalent physical descriptions. At this 
stage, instead of following Furry's  original reasoning, we shall present an 
elegant way of formulating this incompatibility due to Fortunato[17]. 

Consider the projection operator 

(1.19) P ,  = I q ) ( q l ,  

which is a bounded Hermitian operator and hence, at least in principle, can be 
assumed to correspond to an observable. Its expectation value for the state 
(1.16) is given by 

(1.20) ( t / [ P .  It/> = 1. 

The expectation value of the same operator for the mixed state (1.18) is instead 

( pn ) = [c 1 [2 ( ~yl~ 1 [Pn [ ~ l~x  ) + {% [2 ( ~2~2 [Pn [ ~lY2(ll}2 ~ + 

+ ... + ]Ckl2( T k ~ k [ P . [  Tk4~k ) + ... 

Since ( ~k~k [P,  [ ~k4~k ) = [C k [2, it follows that  

0.2 ) ( p . )  = ]c 1 ]4 + [c214 + ... + [Ck[4 + ... 

But from the normalization condition we have 

(1.22) Icil 2 + ]c2] 2 + -.. + I Ck[2 + . . . .  1. 
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Using (1.22) it follows from (1.21) that  

( P . }  < 1, 

provided that  there are at least two coefficients different from zero. The latter 
condition is, however, precisely that  of having a state vector of the second 
type. Therefore the observable corresponding to P ,  has an expectation value 
equal to unity (less than unity) for the state vector of the second type (1.16) 
(for the mixture of state vectors of the first type (1.18)). 

Though it may appear that  the paradoxical element in the EPR argument 
can be avoided by assuming that, after spatial separation between the two 
particles ~ and fl, th~ phase relations involved fl~ the state vector of the second 
type (1.16) are somehow destroyed leading to a mixture of factorizable state 
vectors of the first type (1.18), this supposition (henceforth referred to as 
Furry 's  hypothesis) leads to an incompatibility between the statistical predic- 
tions derived from (1.16) and (1.18). The importance of Furry's  analysis, 
therefore, lays not in its a t tempt  to ((refute~) the E P R  argument, as sometimes 
alleged, but in the fact that  it indicated the possibility of relating the EPR 
paradox to empirical probing. 

12.3. B o h m ' s  f o r m u l a t i o n .  There were a few unsatisfactory fea- 
tures associated with the wave function (1.6), (1.7) used by E P R  in their 
original reasoning. Epstein [I8~ raised the question of time dependence of ~ e  
wave function, which was ignored in the EPR treatment.  The wave function 
(1.6), (1.7) is valid only at the particular instant t = 0 (when the two particles 
a and fl interacted before getting spatially separated); subsequently on time 
evolution, it is no longer a stable solution of the SchrSdinger equation. 
A similar argument against the appropriateness of the EPR wave function was 
also made by Piccioni et al.[19]. Another disadvantage of the E P R  wave 
function (1.6) is that  since it is based on plane waves it describes the two 
correlated particles a and fl as present with constant probability at all points in 
space; hence it is not appropriate for describing completely separated particles 
in space. Cooper [20] pointed out that  the assumption of spatial separation 
between the particles after their mutual interaction implies tha t  they no longer 
have self-adjoint representations for their momenta, suggesting that  for com- 
pletely separated quantum systems (confined to spatially bounded regions) 
their momenta cannot be treated as observables in the usual quantum-mechan- 
ical sense. However, these difficulties were circumvented in the formulation 
presented by Bohm [21] in 1951, who made use of dichotomic, discrete observ- 
ables to make the argument mathematically sound and conceptually more 
transparent. 

Consider (a, fl) pairs of two spin-(I/2) particles with the following wave 
function: 

(1.2a) 

Here ~(%) ,  T~(x2) are the space parts of the wave functions for a and fl, 
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respectively,  and  70 is the  singlet s tate given by 

(1.24) 
1 

7o = ( - )  - u# ( + ) ] ,  

where u~ (+ ) ,  u~ ( - )  are eigenvctors  corresponding to the  eigenvalues + 1 and  
- 1, respectively,  of the Paul i  ma t r ix  a~ (a) represent ing the  z-component  of 
the  spin angular  m o m e n t u m  for a, and  u# ( + ) and  u# ( - ) are the  corresponding 
eigenvectors  of the Paul i  ma t r ix  a z (fl) for ft. Note  t h a t  the  space-dependent  
pa r t  of the  wave  funct ion  (1.23) allows for incorpora t ing  t ime dependence,  
while the spin par t  is considered to be t ime independent .  Therefore the  singlet 
s ta te  ~]o preserves its form over the  passage of t ime. 

We now suppose t h a t  T~ (xt) is a Gaussian funct ion  wi th  modulus  appreci- 
ably different  f rom zero only in a region R t of wid th  At, cent red  a round  the  
poin t  x'l. Similarly, let T# (x2) be a Gaussian funct ion  localized in the  region R 2 
of wid th  A 2, centred a round  x~. As a sufficient condi t ion for separabi l i ty  of the  
part icles a and fl, we invoke the following st ipulat ion:  

0.25) - x ' l {  > > A .  /12. 

I f  the  part icles a and fl are now supposed to move  to the  left and  to the  right,  
respectively,  so t h a t  the  dis tance between the  centres of the  two wave packe ts  
increases l inearly wi th  t ime,  it can be shown t h a t  the  Schr5dinger  equa t ion  
allows condi t ion (1.25) to be satisfied dur ing  t ime evolut ion even t hough  A 1 
and A 2 increase wi th  t ime. One can then  assert t h a t  a and  fl are located wi th in  
the  two localized small regions R 1 and R 2, respectively,  well separa ted  f rom 
one another ,  so t h a t  all known  physical  in teract ions  between t h e m  become 
negligibly small. In  such a condi t ion one would  be na tura l ly  inclined to infer 
t h a t  a measu remen t  per formed on a cannot  give rise to any effect on fl, and  
vice versa. However ,  the  presence of ~?o in the  wave funct ion  (1.23) leads to 
a puzzling nonlocal  effect (the E P R  paradox).  

The  following i m p o r t a n t  characterist ics of r/o are used in B o h m ' s  version of 
the  E P R  a rgument :  

P1) 70 is no t  a factorizable state.  

P2) I t  is ro ta t ional ly  invar iant .  

P3) I t  predicts  opposi te  results  for measuremen t s  of the  componen t s  (along 
any arb i t rary  direct ion h) of the  spins of the particles a and  ft. 

P4) I t  predicts  the  result  zero for a measu remen t  of the  to ta l  squared spin of 
the  particles a and ft. 

To develop the  E P R - t y p e  reasoning in this case, consider a large set E of (a, fl) 
pairs in the  s tate  (1.23). Measure a z (a) at  t ime t o on all a's of a subset  E i of E. 
I f  + 1 ( -  l) is found,  a fu ture  measu remen t  at  t ime t(t > to) of az(fl) will 
cer ta inly give - 1  (+  1). Invok ing  the  E P R  reali ty criterion, we can then  
assign to the  fl's of E 1 an e lement  of real i ty ~1 ()~2) fixing a priori the  result  - 1 
(+  1) of the  az(fl) measurement .  Exc luding  the  possibil i ty t h a t  )~1 ()~2) be 
created by act ion at  a dis tance due to the  measu remen t  of a z (a), it follows t h a t  
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~1 (~2) actually belongs to all fl's of the entire ensemble E. Now if we apply the 
completeness assumption of EPR,  we have to describe the particle fl with 
predetermined value of a= (fl) by assigning to it the eigenstate up ( - ) [up ( + )]. 
The strict correlation implied by P3), applied to the z-axis, leads to the 
inference that  the ensemble E has to be described in spin space by a mixture of 
the factorizable state vectors with the same weight factor 

(1.26) u~(+)u~(-) and u~(-)u~(+) 

even for t < t  o . 
At this stage it is important to note that  there is an empirically meaningful 

difference between an ensemble whose members are described by t/0 (1.24) and 
an ensemble which is a mixture of states (1.26). This is most easily seen by 
observing that  measurements of the total squared spin on a set of (a, fl) pairs 
described as a mixture of the factorizable state vectors (1.26) will yield with 
equal probability the results 0 and 2h 2, which contradicts the property P~t) 
implied by t/o (1.24). This completes Bohm's formulation of the EPR paradox 
as a testable contradiction between the consequences derived from the state 
vector of the nonfactorizable type and those from the notion (Furry's hypoth- 
esis) that  the nonfactorizable state vector may spontaneously decompose into 
mixture of factorizable state vectors, once the particles get spatially separated 
(to recall once again, the latter possibility was envisaged to satisfy the assump- 
tion that  particles once freed from mutual dynamical interference could be 
regarded as possessing independent real properties). 

Greenberger and YaSin [22] have introduced a new variation in Bohm's 
version of the EPR example. They consider a gedanken example of a spin-0 
system decaying into two neutrons flying out in opposite directions, one of 
them (say, a) directed into a neutron interferometer and split into two 
sub-beams. Then using a magnetic field, each of these two sub-beams is 
envisaged to be separated into spin-up and spin-down components. A double- 
neutron mirror device is assumed to be inserted into each of these four 
separated sub-beams such that  it enables one to observe which of these four 
sub-beams the neutron is in (by noting the displacement of a double-mirror 
system during the passage of a neutron through it). This in turn specifies the 
spin component of the neutron ~, and one can therefore infer that  its partner 
fl must certainly have the opposite spin. If, however, one does not observe the 
recoil of the device before the neutron gets out of it, the net displacement of 
the system disappears, and one can no longer know the spin of the neutron 

and that  of ft. Invoking the E P R  reality criterion, this leads to the following 
interesting situation. Even though one never tinkers with the neutron fl, it 
suddenly acquires an element of reality corresponding to its spin component 
when its spatially separated partner ~ enters the double-mirror device and then 
suddenly loses it when a leaves the device. Greenberger and YaSin interpret 
this example as indicating the queer fact that  <~rcmote measurements can not 
only bestow properties on a particle, but they can equally as well remove 
theme>. They conclude: <~Reality should be made of sterner stuff ... the EPR 
criterion does not possess the simple qualities it appears to at first sight~>. This 
example has been called <ca haunted version for the EPR paradox~). Its implica- 
tions call for further probing. 
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Now, going back to the historical perspective on Bohm's  formulation, the 
next  logical step was to look for actual experimental results to shed further 
light on this issue, and it was precisely this analysis which was taken up by 
Bohm and Aharonov [23] in 1957. As a mot ivat ion for such a study, Bohm and 
Aharonov stated tha t  even Einstein in his later years entertained a point  of 
view sympathet ic  to Furry 's  hypothesis: ((... Einstein has (in a private com- 
munication) actually proposed such an idea, namely, tha t  the current formula- 
tion of the many-body problem in quan tum mechanics may break down when 
particles are far enough apart~). 

1"2.4. T h e  B o h m - A h a r o n o v  i n v e s t i g a t i o n .  Bohm and Aharo- 
nov [23] began by emphasizing tha t  in the absence of any clear-cut experimen- 
tal inference related to the physical situation considered in the E P R  paradox, 
one could adhere to Furry 's  hypothesis without  gett ing into conflict with the 
available experimental  results. They then pointed out  tha t  if the two spin-(i/2) 
particles used in Bohm's  formulation were replaced by the two photons  
produced in the annihilation of a positron-electron pair, such a case did 
correspond to an experiment tha t  had already been perfomed: the measure- 
ment  of the polarization correlation in the pairs of annihilation photons  (not 
directly but  through polarization-dependent joint distribution for Compton 
scattering) by Wu and Shaknov in 1950124]. 

Consider the quan tum state 

1 
(1.27) Io- > = {I �9 - l y >  

which is the zero angular -momentum negative-parity state, where x and 
y denote the mutual ly  orthogonal directions of linear polarization of the 
photons  a and ft. Note tha t  the state 10- > is rotationally invariant.  This means 
tha t  each photon  is always found in a state of lineai polarization orthogonal to 
tha t  of the other, no mat te r  what  may be the choice of axes with respect to 
which the state of polarization is expressed. 

To establish connection with the relevant experiment,  Bohm and Aharonov 
considered the ratio R = F1/F 2, where F 1 is the rate of double scattering of the 
two photons through a fixed angle 0, when the planes ~1 and z: 2 formed by the 
lines of motion of the scattered first and second photon with their common 
original direction of motion are mutual ly  perpendicular; F 2 is the same rate 
when the planes ul and u2 are parallel to each other. The value of R derived 
from the [ 0 - >  state is given by 

(1.28) R =  
(7 - 2 sin 2 0) 2 "q- 7 2 

27 (Y -- 2 sin 2 0) 

where 

(1.29) V=(ko/k)+(k/ko). 

Here k o is the wave number  of the incident photon,  k tha t  of the scattered 
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photon. In the actual experiment by Wu and Shaknov, the scattered photons 
were detected with an angular spread around 82 ~ . Corresponding to such 
a situation, eq. (1.28) predicts using standard quantum electrodynamics 

(1.30) R = 2.00 

obtained with a suitable angular average. This value agrees very well with the 
experimental result 

(1.31) R = 2.04 _ 0.08. 

Bohm and Aharonov then proceeded to demonstrate that  the hypothesis of 
a breakdown of the quantum description (I.27) with the increasing separation 
between the two photons, implying its substitution by a mixture of factorizable 
states, leads necessarily to the constraint 

(1.32) R < 1.5 

which is clearly incompatible with the experimental value given by (1.31). 
Bohm and Aharonov, therefore, concluded that  the Wu-Shaknov experiment 
provided empirical evidence against Furry's hypothesis, that  is against a sim- 
ple-minded breakdown of the quantum formalism that  avoided the EPI~ 
paradox. 

This contention was, however, contested by Peres and Singer[25] who 
argued that the spin of photons is physically different from the spin of fermions. 
The photon spin is always oriented along the direction of its propagation; the 
components of the spin orthogonal to the direction of propagation are not 
gauge-invariant and therefore have no physical significance. 

Hence, Peres and Singer asserted that  it could not be used in the context of 
Bohm's example of the EPR paradox. Countering this objection, Bohm and 
Aharonov [26] pointed out that  they did not use in their treatment explicitly 
the spin operator of photons. The analogy with the spin case of fermions is that  
when linear polarization of photon is measured, the circular polarization is 
indeterminate and vice versa; while with spin, when one component is meas- 
ured, the others are indeterminate and vice versa. For the purpose of formula- 
ting the EPR argument, the fact that  there are three components of the spin 
and only two for polarization is not at all relevant. 

Accepting the Bohm-Aharonov conclusion on the basis of the Wu-Shaknov 
experiment, it would, however, not be correct to interpret it as an empirical 
evidence against local realism per se, since there are well-known local realist 
models capable of reproducing the quantum-mechanical predictions for the 
examples of the type studied in the Wu-Shaknov experiment. A simple illustra- 
tion is the model proposed by Kasday[27]. Suppose there are two hidden 
vectors ~ and ~ associated with the photons a and fl, respectively, and let the 
photons be ultimately scattered in the directions of these vectors. It  is assumed 
that  )~ and )~a have the same probability distribution as that  of the momenta 
k~ and k 8 of the scattered photons, as predicted by quantum mechanics. This 
realist assumption obviously implies that the photons have decided in advance 
(at the time of annihilation) in which directions they would ultimately scatter. 
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The model is manifes~y local: altering the position of the detector 1 does not 
affect the parameter A~, and therefore it does not change the response of the 
detector 2. Furthermore, it can be shown that  the model reproduces the 
quantum-mechanical results derived from eq. (1.27) for all the measurements 
that  can be made on the scattered photons. 

I t  is interesting to note that,  notwithstanding the claim by Bohm and 
Aharonov to have found empirical evidence against Furry 's  hypothesis, several 
authors still pursued the idea. Jauch [28] tried to argue on the basis of an 
(~algebra of propositions~ that  the states of the type eq. (1.27) do not exist for 
the E P R  pairs. Similarly, de Broglie [29] strongly suspected that  the standard 
quantum formalism would be inapplicable for particle separation larger than 
the coherence length of the wave packets. Ghirardi, Rimini and Weber [30] 
proposed a modification of the quantum formalism such that  the time evol- 
ution is governed by the SchSdinger equation provided the two correlated 
quantum systems are close together, while a continuous transition to a mixed 
state takes place with increasing spatial separation between the systems. 
However, Furry 's  hypothesis has now certainly lost much of its original 
interest, not only because its empirical validity has been shown untenable, but 
also because there are simple local realist models of correlated spins which 
clearly contradict the results derived from Furry's  hypothesis. As emphasized 
in the analysis by Garuccio, Scalera and Selleri[31], it is now increasingly 
realized ((how narrow is a reduced quantum mechanics)~ obtained by applying 
Furry 's  hypothesis to standard quantum mechanics. 

2. Testable incompatibility between quantum mechanics and local realism. 

2"1. Bell 's inequality. - The paradox of Einstein, Podolsky and Rosen was 
advanced as an argument that  quantum mechanics could not be a complete 
theory but should be supplemented by additional (hidden) variables. These 
additional variables were thought by EPR to introduce in the theory a causal 
and local description. The 1935 paper by SchrSdinger pointed out that  the 
paradox was much stronger: There was not only a problem with completeness, 
but a clear indication that  the reality of one of a pair of correlated quantum 
systems depended on the type of measurement performed on the other system. 

A crucial development of SchrSdinger's conclusion was obtained thirty 
years later by Bell [32]. After giving a mathematical proof of the incompatibil- 
ity between quantum theory and a broad class of local hidden-variable the- 
ories, Bell wrote: 

(tin a theory in which parameters are added to quantum mechanics to 
determine results of individual measurements, without changing the statistical 
predictions, there must be a mechanism whereby the setting of one measuring 
device can influence the reading of another instrument, however remote. 
Moreover, the signal involved must propagate instantaneously, so that  such 
a theory could not be Lorentz invariant~). 

Three proofs of Bell's inequality will be reviewed in this section, the first 
one being essentially equivalent to the original (1965) one. The second one 
(Wigner's proof) introduces for the first time probabilities in the study of Bell's 
theorem. The third proof gives rise to a dichotomy in the quantum-mechanical 
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t rea tment  of correlated systems, corresponding to what  d 'Espagna t  defined as 
proper and unproper mixtures. Finally, we will review a recent s tudy of 
quan tum nonlocality not  based on Bell's inequality. 

21.1.  D e t e r m i n i s t i c  p r o o f .  A proof of Bell's theorem will now be 
given which is essentially equivalent to the original proof. We start  by giving 
the definition of correlation function and by recalling some simple and 
well-known quantum-mechanical  results. 

Consider an ensemble formed by a very large number  N of pairs of 
correlated quan tum systems (a, fl), for example, coming from the decay of an 
unstable system. Suppose tha t  a and fl fly away from one another,  for example, 

flies to the right and fl to the left of some observer. Suppose then tha t  an 
observer O~ measures on ~ in the space region R~ a dichotomic observable A (a), 
while a second observer Op measures on fl in the space region R another 

P 
dichotomic observable B (b). The regions R~ and Rp are taken very far from one 
another and with no overlap. 

The observables A (a) and B (b) are taken to be dichotomic, meaning tha t  

A ( a ) - -  _ l  and B ( b ) = _ l  

and they depend on the arguments  a and b, respectively, which are assumed to 
be experimental  parameters,  fixed in the structure of the apparatuses in any 
given experiment,  but  possibly variable over different experiments. Examples 
of such d ichotomic  observables are those represented by the spin matrices 
a(a)"  d and a (fl)" b, where the experimental  parameters  are the unit  vectors 
d and /~, defined by the directions of inhomogeneous magnetic fields. In  
practice, any physical quant i ty  can be used to define a dichotomic observable: 
One could say, for example, tha t  A (a) = _ 1 if the energy of an a tom is above 
or below a certain level E a. 

When measurements  of such observables are made on all the N pairs of the 
given ensemble, 0~ will obtain a set of results {AI, A2, ..., AN} , while Op will 
collect a similar set {B1, B2, ..., BN} , all with respect to the fixed values of the 
parameters a and b. The results of the two sets are correlated in the sense that  
A 1 and B 1 pertain to the particles a and fl respectively arising from the first 
decay; A 2 and B 2 are similarly associated with the second decay; and so on. By 
definition, these results are, in every case, equal to _ 1. 

The correlation function P (a, b) of the results A i and B i is defined as the 
average product  of the results obtained by 0~ and 0p from the same decays: 

(2.1) 
1 N 

P (a, b) = ~ i ~-1 A~Bi" 

Since every product  A~B i is _+ l, it follows tha t  

(2.2) - l  <P(a ,b)<_ + 1 .  

As a particular example of correlation function let us consider the case of 
two spin-(I/2) particles in the (~singlet,) state I~o > for which quan tum mechan- 
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ics predicts 

(2.3) P(4,/~) = <qo]a ( a ) "  d |  > = - d ' /~ .  

This result is, however, incompatible with local realism as we will soon see. 
Let  us define the quant i ty  

(2.4) A = ]P  (4,/~) - P (d, b')l + I P (4', b) + P (4',/~') I �9 

Consider two orthogonal u n i t j e c t o r s  d and d' associated with particle a and 
two orthogonal  unit  vectors b and b' associated with particle fl, and suppose 
tha t  the relative orientat ion of these vectors is such tha t  they  can be found by 

clockwise rotat ions of ~ in the order d,/~, A, /~,. - a ,  One can then easily see tha t  the 
4 

subst i tut ion of (2.3) in (2.4) leads to 

A = 14. g -  d .  g'l + Id ' .  b + d "  b'l = 2 , / 2 .  

I t  can also be shown tha t  2 ~ is the maximum value of A for all conceivable 
orientat ions of the vectors 4, b, A, b'. a ,  This result is of great  interest,  because, as 
we will see next,  A is a physical quant i ty  for which local realism allows 
a max imum value of 2. The inequali ty A < 2 is Bell's inequality. I t  has been 
called ((the most  profound discovery of science,~ [33]. 

In  a theory developed according to the E P R  reality criterion there are 
elements of reali ty 2 which determine all the observables. They can be expected 
to vary  with density p (2) over a set A. Of course, the following condition has 
to be satisfied 

(2.5) IA d2p (2) = 1. 

The role of the variable 2 is tha t  of fixing the values of the dichotomic 
observables, for example 

(2.6) a(a) 'd--~A(a,  2), a(fl).[~--.B(b, 2), 

where the real discontinuous functions A (a, 2) and B (b, 2) can assume only the 
values + 1. The correlation function as defined in (2.1) (average product  of the 
two observables) can obviously be wri t ten in the form 

(2.7) P (a, b) = ~ d2p (2) A (a, 2) B (b, 2). 

This is a local expression, in the sense tha t  nei ther  A depends on b, nor B on a. 
I t  is a simple exercise to show tha t  

(2.8) [P(a ,  b) - P ( a ,  b')] _< S d 2 p ( 2 ) ] B ( b ,  2) -- B(b',  2) l, 

since [A (a, 2) 1 = 1, and tha t  

(2.9) I P (a', b) + P (a', b')l < S d2 p (2)[B (b, 2) + B (b', 2) 1. 
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By adding (2.8) and (2.9) and using the result 

]B(b, ~) - B(b', ~)1 + I B(b, ~) + B(b', )~)1 = 2, 

which is a consequence of lB(b, ,~)1= I B(b', ~)1 = 1, one obtains from (2.5) 
Bell's inequality in the following form: 

(2.10) A -- [P(a,  b) - P(a ,  b')[ + [P(a' ,  b) + P(a ' ,  b')[ ~< 2. 

The above proof of the inequality is deterministic because the variable ~ fixes 
a priori the results of the measurements that  can be made on a and/or on ft. In 
fact it determines the values of A (a, ~), A (a',)~), B (b, ~) and B (b', ~). 

21.2. W i g n e r ' s  p r o o f .  The proof of Bell's inequality given by Wigner 
[34] was based on two assumptions. The interest of this proof is in its simplicity 
and in the theoretical approach which has a deterministic background but uses 
at the same time probabilities. 

The first assumption was that  the results of all conceivable measurements 
on the correlated pairs (a, fl) are simultaneously preassigned, even in the case 
of the incompatible observables. This deterministic standpoint does not contra- 
dict Heisenberg's relations, because the latter can be taken to imply only that  
an actual measurement made on a given object modifies the preassigned values 
of other nonmeasured observables incompatible with the observed one. Wig- 
ner's picture is fully consistent with the realistic idea that  before the action of the 
instrument all conceivable observables have preassigned values. 

The second assumption was locality. A measurement made on a (fl) does not 
modify the prefixed values of the observables B (b), B (b'), (A (a), A (a')) of fl (a). 
If  one writes 

(2.11) A ( a ) = s ,  A (a ' )=8 ' ;  B ( b ) = t ,  B(b') = t ' ,  

where s, 8', t, t' are all equal to _+ 1, locality means that  these four parameters, 
preassigned by the first assumption, are not modified due to action at a distance 
by remote measurements. Therefore, if A (a) is measured on an ~ object, for 
example, and the value 8 is found, the preassigned values t and t' associated 
with the correlated fl object are in no way modified (while 8' in general could 
be). 

As a consequence of these assumptions a set E of N (~, fl) pairs splits into 
2* subsets with well-defined populations in which the outcomes of the four 
possible measurements are predetermined. Let E(8, s', t, t') be a subset of 
E with prefixed values of the four observables (2.11) and n(s, s', t, t') be its 
population. Naturally 

(2.12) ~ n ( 8 ,  8', t, t') = N ,  

where ~. denotes the sum over the 24 different sets of values of the dichotomic 
parameters. As an example consider E (+ l, - l, - 1, - 1): it is that  subset of 
E for which are a priori determined the following results: 

A ( a ) =  + 1, A ( a ' ) = - l ,  B ( b ) = - l ,  B (b ' )=  - 1 .  
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Of course, only one of the observables A (a) and A (a'), and only one of the 
observables B (b) and B(b') can be measured on a given pair. 

By virtue of the locality assumption the actual performance of the measure- 
ment of A (a) or of A (a') on the a objects does not modify in any way the 
prefixed values of B (b) and B (b') of the corresponding fl objects. In other 
words, there is no action at a distance modifying B (b) or B (b') arising from the 
measurements of A (a) or A (a') (and vice versa). 

The a priori probabilities 

(2.13) co (s, s', t, t') - 
n (8, s', t, t') 

N 

which satisfy the normalization condition 

(2.14) ~ o  (s, s', t, t') = 1 

as a consequence of (2.12), can be used for the calculation of correlation 
functions of actually performed experiments. One has 

(2.15) f 
ppp(a, b) = ~ ~o(s, s', t, t')st, 

(a, b') = ~ co (s, s', t, t ')st' ,  

(a', b) = ~ ~ (8, s', t, t ')s't ,  

(a', b') ~ co (s, s', t, t')s't', 

where ~ denotes again a sum over all the dichotomic variables. I t  is now trivial 
to show that  from ] s l = 1 and I s'l = 1 the following inequalities follow, respect- 
ively, 

(2.16) 
IP(a,  b ) - P ( a ,  b') I _< ~ ( s ,  s', t, t ' ) l t - t ' l ,  

IP(a', b )+ P(a', b')l < ~o~(s, s', t, t')lt + t'l. 

By adding the last two inequalities and using I t -  t ' l + l t  + t ' l=  2, a conse- 
quence of ltl = I t'l = 1, the inequality (2.10), which is Bell's inequality, follows 
readily. 

With Wigner's proof probabilities entered for the first time in the EPR 
paradox. Probabilities were, however, deduced from a deterministic back- 
ground, much in the same way as done originally by Laplace in his formulation 
of probability calculus. 

2"1.3. L o c a l  q u a n t u m - m e c h a n i c a l  c o r r e l a t i o n s .  Given the set 
of all possible quantum-mechanical state vectors for the correlated (a, fl) pairs, 
Bell's inequality has the important property of classifying it into two subsets, 
local and nonlocal. In  paragraph 1"2.2 we defined state vectors of the first type 
(factorizable) and of the second type (nonfactorizahle). Belonging to the latter 
type is the singlet state of two spin-(I/2) particles which, as we saw, violates 
Bell's inequality. I t  will be shown that  the violations of locality are due only to 
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the vectors of the second type. On the other hand, a remarkable property of 
mixtures of factorizable state vectors is that  they satisfy Bell's inequality in all 
cases, as was first shown by Capasso, Fortunato and Selleri [35]. 

Consider an ensemble E of N quantum pairs (a, fl) and suppose they are 
described by factorizable state vectors I Ti> ]q~i> with frequency Ni/N 
(i = 1, 2, ...). In the ensemble E one has 

(2.17) 

%he vector I T1 >]~1 > applying to /-V 1 pairs; 

the vector IT 2 > ~2 > applying to N 2 pairs; 

the v e c t o r  I•i>[(TI)i> applying t o  N i pairs; 

where 

~ N  i = N .  
i 

Suppose that  the dichotomic observables to b e  measured on a and fl are 
described quantum mechanically by the operators A (a) and B (b), respectively, 
so that  the operator corresponding to the product of the joint measurements on 
the two systems is A (a) |  B (b). The correlation function predicted by quan- 
tum theory is precisely the average of the latter observable over the mixture 
(2.17), so that  

(2.1s) P (a, b) = ~ p ,  ( T, ] ( ~ ].4 (a) | B (b)] T, > I Oi >, 
i 

where 

(2.19) Pi = NJN,  ~ p i  = 1. 
i 

I f  one writes 

(2.20) 
B, = < ~, I B (b)[O, >, 

the four correlation functions entering in Bell's inequality can be written as 
follows: 

(2.21) f~ 
(a, b) = ~ p , A , B , ,  P(a', b) =~piA'iBi,  

i i 

(a, b') = ~ p ,  AiB;, P (a', b') = ~ p ,  A'~B'I. 
i i 

Expectation values of operators having eigenvalues + 1 have moduli not 
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exceeding unity.  Therefore 

(2.22) IA,] < 1; IA'il <: 1; I/~il < 1; 

By inserting (2.21) in (2.4), one easily obtains 

(2.22) A <_ ~p~A~, 
i 

where 

(2.24) A~ = IA~B~ - A~B'iI + IA'~B~ + A;B'~I. 

By using (2.22) one can immediate ly  deduce 

(2.25) Ai < IBi --/~iJ + I/~i + /~ i l ,  

whence it follows 

(2.26) A i < 2, 

since any two real numbers  x and y such tha t  Ix f <  1 and l yl_< 1 always 
satisfy I x -  Y l + Ix + Y l < 2. 

I f  (2.26) is inserted in (2.23), one gets finally A < 2, tha t  is Bell's inequality.  
Given the arbitrariness of the populat ion N i and of the state vectors ] T i > I ~ > 
we conclude tha t  an arbitrary mixture of state vectors of the first type (factorizable 
state vectors) always satisfies Bell's inequality. 

2"1.4. I n c o m p a t i b i l i t y  b e t w e e n  n o n f a c t o r i z a b l e  s t a t e  v e c -  
t o r s a n d 1 o c a 1 r e a 1 i s m .  Let  us begin by considering the general form for 
a nonfactorizable state vector of a composite system given by 

(2.27) In > = ~ c,~l T, > ~j >, 
i , j  

where I T i > ' s  and I ~ i > ' s  denote complete or thonormal  sets of eigenstates 
corresponding to the correlated subsystems I and II ,  respectively. 

I t  was shown by von Neumann  (1955) tha t  by suitable choice of the 
complete or thonormal  sets 

(2.28) { IT/>} ;  {Iq~j>} 

one can write 

(2.29) In> = ZvF~IT,>I~,>, 
i 

where the o~i's are real and nonnegative.  The normalizat ion condition of It/> 
implies 

(2.30) ~ ( o  i = 1. 
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In the present paper only the orthonormality conditions of the sets (2.28) will 
be used: 

(2.31) 
< 0~1 ~j > = g~s" 

Now, to show that  at least in principle observables can always be chosen in 
such a way that  Bell's inequality is violated for any state vector of the type 
given by eq. (2.29), we consider pairs of noncommuting dichotomic observables 
(with eigenvalues +_ 1) D S, D~ pertaining to I and DT, D~ pertaining to II ,  with 
the following definition for them: 

(2.32) 

f DD~ = 2P s - l ,  
TS 2 P ~ -  1, 

D 2P T - 1, 

[D~ 2P~--  l ,  

where the projection operators are bounded Hermitian operators corresponding 
to normalized wave functions 

(2.33) 

LP~ = [~, I$~ > +/~21 $~ >] [~* < $~ I + ~ < $21], 

where [ al [2 + [ a2 [2 = 1 = [ill [2 + ]f12 [2. Note that, for the sake of simplicity, 
the observables above have been defined with respect to a two-dimensional 
subspace of the multidimensional Hilbert space spanned by the state vector 
(2.29), but it is sufficient for the purpose of proving our theorem. We assume 
that  both o~ 1 and w 2 are nonzero, as it is possible to do without loss of 
generality, since in (2.29) there are certainly at least two c01's # 0. 

Now, using eqs. (2.29), (2.32) and (2.33) it is straightforward algebra to 
obtain the following results: 

(2.34) 

"<r/lDs |  = 1, 

<t/ID~| = (1 - X) + ZAa,  

<t/lDs | D~[~/> = (1 - Z ) +  ZAfl, 

_~_ [ ( ~ 2  __ a ( o  2) ( l  - -  ao~ 2) (1 - -  a ~ 2 ) ]  1/2 c o s  (~b a -{- e f t ) ,  
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where 

(2.35) f 2; = 601 -~- 0..,)2, 

Ao9 = 0.) 1 - -  092 ,  

A s =  Iml l  2 - 1 m 2 1 2 ,  

Aft = ]fl112 - -  ]fl212 

and ~b~, q~ are the relative phases of a 1, a 2 and of i l l ,  f12' respectively. 
Now, recalling that  the standard form of Bell's inequality is given by 

-- 2 < < D s |  - <D~ |  + < D s |  D~r> + <D's| < 2, 

we have from eqs. (2.34) the following possibility for the violation of Bell's 
inequality: 

(2.36) ] - (1 - 2:) - x A s  + (1 - 2;) + ~ A 3  + (1 - 2;) + ~ Ao~ A 3  + 

+ [(2;2 _ Ao92) ( l  - Atx 2) (1 - -  Aft2)]  1/2 c o s  (~br + (#~) > 2 ,  

which reduces to the following 

(2.37) cos (~b~ + ~b~) > 
2; (1 + A s )  1 - A/~ 

(2;2 __ AO92)1/2 (1 - Aa2) 1/2 (1 - Aft2) 1/2" 

Now, to show that  condition (2.37) can be satisfied by an appropriate choice of 
observables, we consider that  r and Ca are chosen such that  

(2.38) cos (~b~ + ~b~) = 1. 

Then (2.37) reduces to the form 

Ao9 2 1 + Aa 1 - Aft 
( 2 . 3 9 )  1 - - -  > - -  

272 1 - A s l  +Aft" 

Remembering that  Aog: < 2:2 because in (2.35) both o91 and o92 are nonzero, it 
is evident that  condition (2.39) can easily be satisfied by choosing Aa and Aft 
appropriately, because the left-hand side of (2.39) lies between 0 and 1, and 
- l < A s < _ l ,  - l < A f t < l .  

This completes the proof of the theorem whose statement can be formulated 
as follows: For any given nonfactorizable state vector of correlated quantum systems 
it is always possible to choose observables in such a way that Bell's inequality is 
violated by quantum-mechanical predictions. 

This resut is important in reinforcing the notion that  the incompatibility 
between quantum mechanics and local realism is rather deep-rooted and 
though Bell's inequality does not contain fully all the restrictions implied by 
local realism it is nevertheless sufficient for the purpose of displaying in great 
generality the incompatibility between nonfactorizable state vectors and local 
realism. 
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21.5. T h e  G H Z  a r g u m e n t .  Recently, Greenberger, Home  and Zeilin- 
ger (GHZ)[36] have formulated an interesting new theorem that  has at tracted 
wide attention[37]. They consider a system consisting of three mutually 
well-separated and correlated spin-(I/2) particles, in the context of which an 
incompatibility is demonstrated between quantum mechanics and the conjunc- 
tion of the EPR reality criterion with the locality condition. Their demonstra- 
tion, unlike Bell's theorem, concerns only perfect correlations rather than 
statistical correlations and dispenses with the inequalities. 

Let us begin by recapitulating the essence of the GHZ argument. The 
argument is developed by considering the eight-dimensional space of three 
spin-(I/2) particles and the system of these spatially separated particles in 
a particular state IT  > which satisfies the following conditions for the three 
observables 01, 02, 03: 

(2.40) O i l T >  = + 1 ~ >  

w i t h i  1, 2, 3 where O 1 1 2 3 1 2 3 1 2 3 = = axay a~, 0 2 0 3 An explicit form (TyGx(Ty , ---- (Ty O'y Gx.  
for [T > can be written as (referring to the z-axis components) 

(2.41) 
1 

I T > = - - - ~ { ] I ,  1, 1 ) - l - - l ,  - - 1 ,  - - 1 > } .  
42 

In then follows that  one can predict with certainty the result S~ of measuring 
the x component of the spin of any one particle by f a r  a wa y  measurements of 
the y components of the other two. Similar is the case for the result Sy of 
measuring the y component of any one of them. Applying the EPR reality 
criterion it is clear that  we can consider ,_,,r, ql'2'3 (S,, Sy components pertaining to 
the particles 1, 2, 3) to be elements of reality having pre-assigned values _ 1. 
From the locality condition it follows that  these values are independent of 
whichever of the different sets of three single-particle spin measurements one 
might choose to make on these spatially separated particles. Consistent with 
(2.40) we can therefore write the following relations: 

(2.42a) a z 3 SxSySy  = + l ,  

(2.42b) ~ i ~ 2  ~3 + 1 tJp/OxtOy ~ 

(2.42c) 1 2 3 SySyS~= + 1 .  

Remembering that  -x,y~l'2'3 __ __+ 1, one obtains from (2.42a), (2.42b) and (2.42c) 

(2.43) 1 2 3 S~,SxSx = + 1. 

However it follows from (2.40) that  the operator 04 = axlaxzax3 satisfies the 
following eigenvalue equation: 

(2.44) 1 2 3  
= 

which is in contradiction with (2.43). This completes the GHZ proof of an 
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incompatibility between predictions derived from the quantum-mechanical 
wave function (2.41) and local realism (EPR reality criterion plus the locality 
condition). 

Note that  the above argument, which is technically correct, hinges on the 
following implicit assumptions: 

A) The wave function given by (2.41) represents a ((physically real,> state. 

B) The Hermitian operators 01, 02, 03 and 04 correspond to observables 
which are actually measurable. 

Both the assumptions A) and B) are unverified. In fact, for those believing in 
local realism, the GHZ argument leads to the conlusion that  either the wave 
function (2.41) does not correspond to physical reality or the Hermitian 
operators 01, 02, 03 and 04 do not correspond to actual observables. It  is 
important to emphasize that  such a conclusion is not a priori ruled out even 
within the framework of quantum mechanics. The so-called superselection rules 
discussed by Wick, Wigh tman  and Wigner (WWW)[38] provide examples of 
Hermitian operators that  are not associated with any observables. As an 
illustration, we consider the superselection rule for electric charge. If  I gl ) and 
I g2 ) are two different eigenstates of the charge operator for which all other 
quantum numbers are equal, then one can construct, for instance, the state 
vector 

1 
(2.45) l Y ) = ~ (I g, ) + I g2 )) 

, /2 

and the operator 

(2.46) P,  = [g )  ( g [ .  

Note that  since P,  is Hermitian, it is expected to represnt an observable 0,  
with possible values 1 and 0, the measurement of which would necessarily leave 
the system in the state I~ ) whenever the result O r = + 1 is found. However, it 
is well known that  the state I~/) does not correspond to any physical reality 
and the operator P_ does not represent any measurable physical property-- in 
fact, nobody knows~how to produce a state like ]y ) or measure an operator like 
P~. 

Even letting aside the WWW superselection rules, Lamb [39] has pointed 
out operational difficulties associated with the occasionally used quantum- 
mechanical axiom of one-to-one correspondence between Hermitian operators 
and observables. From his discussion it is evident how hard it is to devise 
physically realizable measuring procedures for even apparently simple Her- 
mitian operators such as xp + px. As Penrose [40] has put it, it is one of the 
peculiarities of the formalism of quantum mechanics that  it cannot in itself 
specify which Hermitian operators are actually measurable and which are not. 
Moreover, if one considers the classical limit of quantum mechanics it is 
evident that  not all possible superpositions of quantum states occur in nature. 
For example, a macroscopic ball confined in a box with reflecting walls is 
always found in a state described by a localized wave packet and never, for 
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instance, in a state described by a plane wave which can be viewed as 
a superposition of the localized states. 

I t  needs to be stressed here that  we are not subscribing to the viewpoint 
that  all nonfactorizable state vectors leading to incompatibility with local 
realism are physically unrealizable and that  one cannot in practice discriminate 
between quantum mechanics and local realism. Some nonfactorizable state 
vectors containing EPR-type  correlations are consequences of fundamental 
principles in quantum mechanics, like the conservation of angular momentum 
or other relevant invariance conditions like that  of charge conjugation. We 
have discussed in paragraph 2"1.4 the proof of a general argument showing that  
all nonfactorizable state vectors necessarily lead to violation of Bell's inequalities. 
This reinforces the strength of Bell's theorem. The key point is to search for 
actual cases where the quantum mechanically predicted violation of Bell's 
inequalities can be tested in practice. 

Another limitation of the GHZ argument is that  it is strictly restricted to 
the deterministic form of local realist theories. On the other hand, Bell's 
theorem holds good for probabilistic local realist theories as well. On this point 
some may refer to a so-called ~equivalence theorem~ [41] to the effect that  ((the 
predictions of any stochastic local theory can be duplicated by an appropriate 
deterministic local theory,)[42]. If  this were true, any argument showing an 
incompatibility between quantum mechanics and deterministic local realist 
theories could be construed as implying incompatibility with probabilistic 
theories as well. However, such a general conclusion is not justified. 

To see this, we note that  the demonstration of the above-mentioned 
((equivalence theorems) is essentially with reference to the EPR-type  two-particle 
correlation experiments involving experimentally measurable distribution func- 
tions for four compatible pairs of observables (AB, Af t ,  A'B, A'B'). A crucial 
element in the proof of this theorem is the proposition that  the existence of 
joint probabilities for noncommuting observables is equivalent to the validity 
of Bell-type inequalities. Logical tenability of this proposition was contested by 
Redhead [43] and Stapp [44] who pointed out that  it was possible to derive 
Bell-type inequalities by avoiding any commitment to joint distributions for 
noneommuting observables. Subsequently, Svetlichny et al. [45] have shown 
that  Bell-type inequalities do not necessarily imply the existence of joint 
distributions for noncommuting observables, if such probabilities are inter- 
preted in the physically relevant relative frequency sense. In particular, it has 
been shown that  corresponding to the validity of Bell's inequality one can have 
a situation in which the joint distributions of the noncommuting (incompat- 
ible) observables AA' and BB', defined in terms of limiting relative frequencies 
on product sequences, do not exist, while limiting relative frequencies do exist 
with respect to the individual sequences and compatible product sequences. In 
view of these serious criticisms about the so-called (~equivalence theorems) we 
contend that  it cannot be invoked to extend the range of validity of the GHZ 
formulation. 

We disagree with the contention by Mermin [46] that  the GHZ formulation 
(ds an altogether more powerful refutation of the existence of elements of 
reality than the one provided by Bell's theorem~. The reasons are, first of all 
that  one can talk of refutation only after an unambiguous experimental verdict, 
and moreover: 
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A) Unlike Bell's theorem, the GHZ argument is based on unverified 
assumptions concerning the physical reality of a particular state vector and 
measurability of certain Hermitian operators pertaining to a system of three 
correlated spin-(l/2) particles. 

B) Unlike Bell's theorem, the GHZ formulation is limited to determinis- 
tic local theories. 

C) A direct experimental test of the GHZ argument is probably imposs- 
ible. 

2"2. The strong inequalities. - Bell's inequality has never been tested ex- 
perimentally and can be considered a weak inequality if compared with much 
stronger (i.e. more restrictive) inequalities that  can be deduced from local 
realism if some suitable additional assumptions are made. The present subsec- 
tion is devoted to a review of the most important published proofs of the 
strong inequalities. 

22.1. T h e  C H S H  a d d i t i o n a l  a s s u m p t i o n s .  A way of testing 
experimentally could be as follows. A source is built in such a way that  it emits 
the correlated objects a and fl in opposite directions where two analysers can 
transmit them or absorb them depending on their physical properties. The 
dichotomic choice forced in this way upon each atomic object can be used for 
defining corresponding dichotomic observables, by saying that  A ( a ) - - _  1 
(B(b) = + 1), depending on the choice, transmission (+  1) or absorption ( -  1), 
taken by ~ (fl). 

In 1969 Clauser, Horne, Shimony and Holt (CHSH)[47] suggested the use 
of pairs of optical photons emitted in atomic cascades. For such photons the 
binary choice was between transmission and absorption in a polarizer. For 
given orientations a and b of the two polarizers they introduced four proba- 
bilities T(a+, b+) where, for example, T(a+,  b )  is the probability that  
A ( a )=  + 1 (photon a transmitted by the first polarizer) and B ( b ) = -  1 
(photon fl absorbed in the second polarizer). The correlation function can be 
written in the form 

(2.47) P(a, b) = T(a+, b+) - T(a+, b_) - T(a_,  b+) + T(a_,  b_). 

The double-transmission probabilities T(a+_, b+_) must satisfy 

(2.4s) T ( a + , b + ) + T ( a + , b  ) + T ( a _ , b + ) + T ( a _ , b _ ) = l .  

Considering now the case in which the second polarizer has been removed (the 
symbol oo is used to indicate this), one has 

(2.40) T(a+, b+) + T(a+, b_) = T(a+,  ~ ) .  

I f  instead the first polarizer is removed, one has 

(2.50) T(a+,  b+) + T(a_,  b+) = T ( ~ ,  b+). 

Finally, if both polarizers have been removed both photons will certainly be 
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transmitted, so that  

(2.51) T ( ~ ,  ~ )  = 1. 

By introducing in (2.47) the last four relations one easily gets 

(2.52) P(a, b ) - - 4 T ( a + ,  b + ) -  2T(a+,  ~ ) -  2 T ( ~ ,  b+) + 1. 

Only cases of double transmission appear in the above expression, which thus 
refers more directly to the experimental observations, since it is impossible to 
detect absorption of a photon in a polarizer. 

The only way to know that  a photon has been transmitted is however to 
detect its presence. But photon detectors have efficiencies of (I0 + 20~o only, 
meaning that one cannot really measure a double-transmission probability, but 
only a joint probability for double transmission and double detection. This is not 
the probability entering in (2.52)! 

This problem has traditionally been (~solved,~ by means of ad hoc assum- 
ptions concerning the nature of the transmission/detection process. The addi- 
tional assumption of CHSH is the following: given that a pair of photons emerge 
from two regions of space where two polarizers can be located, the probability of 
their joint detection from two photomultipliers (Do) is independent of the presence 
and the orientation of the polarizers. 

Denoting with the symbol ~ the joint probability for transmission and 
detection, one obtains from the previous assumption 

(2.5a) 
: ( a , b )  = D o T ( a  + , b+), 

(a, ~ ) =  DoT(a+, ~ ) ,  

g2(oo, b) = D o T ( ~ , b + ) ,  

g2(~, ~ ) =  DoT(oo , ~ ) ,  

since the double-detection probability (Do) has been assumed in all cases to be 
the same. In (2.53), f2 (a, b) is the joint probability for double transmission and 
double detection in the case of polarizers with orientations a and b, ~ (a, ~ )  is 
the same probability with the second polarizer removed, and so on. 

The rates of double detections are proportional to the number N O of photon 
pairs entering per second in the solid angles defined by the optical apparatuses. 
One has 

(2.54) 
R(a, b) = N o~)(a, b), 

R(a, oo) Nog2(a , ~ ) ,  

R(oo, b) = N o ~ ( ~  , b), 

R o = N O Do, 

where R (a, b) is the number of photon pairs detected per second (detection rate) 
when the polarizers have orientations a and b, and the meaning of the other 
symbols is obvious. Notice that  R ( ~ ,  oo) has been called R o, I f  one obtains the 
T probabilities using (2.53) and (2.54) and substitutes them in (2.52) one 
obtains 

4R(a, b) R(a, c~) 2 R ( ~ ,  b) (2.55) P(a, b) = - -  2 + l .  
Ro Ro Ro 
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Only the coincidence rates enter in (2.55): by virtue of the CHSH additional 
assumption the correlation function has become measurable/ 

Since Bell's inequality can be writ ten in the form 

(2.56) - 2 < P ( a , b ) - P ( a , b ' ) + P ( a ' , b ) + P ( a ' , b ' ) <  + 2  

the subst i tut ion of the expressions of the type (2.55) for the four correlation 
functions leads to 

R (a, b) R (a, b') R (a', b) 
(2.57) - l < - -  - - + - -  

- Ro Ro Ro 

R (a', b') + 
Ro 

R(a', ~ )  

Ro 

R (~,  b) 

Ro 
_ 0 .  

Only (measurable) coincidence rates enter in the previous inequalities, which 
can therefore be checked experimentally. A useful simplification is obtained if 
two predictions of quan tum theory are accepted tha t  are not  at all paradoxical 
and can anyway be checked directly in every experiment: 

i) the prediction tha t  R 1 = R(a', ~ )  does not  depend on a', and tha t  
R 2 = R ( ~ ,  b) does not  depend on b. 

ii) the prediction tha t  every R function should depend only on the 
relative angle between the axes of the polarizers. 

One then gets 

R (a - b) R (a - b') R (a' - b) R (a' - b') R 1 R 2 
(2.58) --1_< + + < 0 .  

Ro Ro Ro Ro Ro Ro - 

I f  the axes are chosen according to 

(2.59) a - b = a ' - b = a ' - b ' = r  a - b ' = 3 r  

it follows from (2.58) 

3R(r  R(3r  R I + R  2 
(2.60) - 1 _< - -  _< 0. 

Ro Ro Ro 

Considering the previous inequalities for r = 22.5 ~ and for r = 67.5 ~ where the 
max imum quantum-mechanical  violations exists, one obtains the so-called 
Freedman 's  inequality 

(2.61) 
R (22-5~ R (67.5 ~ 1 

Ro Ro - ~ _< 0, 

which does not  contain R 1 and R 2. Notice tha t  all the new inequalities 
obtained from (2.57) to (2.61) could be deduced only because the CHSH 
additional assumption has been made. I t  is therefore misleading to confuse the 
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original Bell's inequality with the much stronger inequalities now deduced. We 
will therefore adopt the following definitions: 

Weak inequality: An inequality exclusively deduced from local realism 
and violated by quantum mechanics in the case of nearly perfect instruments. 

Strong inequality: An inequality deduced from local realism and from 
certain additional assumptions, such as the CHSH one stated above, and 
violated by quantum mechanics in the case of actual instruments. 

A full justification of these definitions is left for the end of the next section 
where it will be shown that  in a typical experimental situation the strong 
inequalities limit the crucial (paradoxical) observable to a n-,,merical interval 
100 times narrower than that  implied by the corresponding weak inequalities. 

2"2.2. T h e  CH a d d i t i o n a l  a s s u m p t i o n .  In 1974ClauserandHor-  
ne [48] used a variable ~t to represent the physical state of a pair of correlated 
quantum objects within a general probabilistic scheme in which 

p (a, 4) is the probability that  the object a in the state )[ crosses the 
analyser with parameter a and is subsequently detected. 

q (b, 4) is the similar probability for ft. 

i](a, b, )~) is the probability that  both a and fl cross their respective 
analysers with parameters a and b, and that  they are both detected. 

Furthermore, Clauser and Horne assumed that  the locality condition could be 
expressed by the following conditions: 

CH1) Factorizability: Q(a, b, 4) = p  (a, ,~)q (b,)~); 

CH2) Neither the probability density p ()[), nor the set A of values of 
depend on a or on b. 

I t  is not obvious (and in fact is not true) that  these definitions should 
exhaust all possible local and realistic situations. This important problem will 
be discussed in detail in the next subsection (2"3, probabilistic local realism). 

In the Clauser-Horne (CH) approach the ensemble probabilities are written 
as weighted averages of individual probabilities: 

(2.62) 
f p (a) = S d)~ p (4) p (a, 4) ; 

(b) = S d~ p (4) q (b,)[) ; 

(a, b) = ~ di[ p ()[) p (a, 4) q (b,)~). 

In order to deduce inequalities, Clauser and Horne considered the following 
theorem. Given six real numbers x, x', X, y, y', Y, such that  

O_<x, x' <_X; O<_y, y' <_ Y ,  

one must always have 

(2.63) - X Y <_ xy  - xy' + x'y + x'y' - x ' Y  - X y  <_ O. 
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The proof  is s t raght forward ,  since the  in te rmedia te  quan t i t y  in (2.63) is l inear 
in each of the  four variables x, x', y, y' so t h a t  its ex t remes  m u s t  be looked for 
on the  b o u n d a r y  of these variables. 

The  CH inequali t ies can be applied to the  E P R  paradox  by tak ing  

(2.64) 
'~x = p (a,)~), 

[ x' p (a',)~), 

y = q (b, 4),  

y' = q (b', 4). 

I n t roduc ing  (2.64) in (2.63), mul t ip ly ing  the  result  by p ()~), and  in tegra t ing  
over )~, one obtains  

(2.65) - X Y < Q ( a ,  b) -O(a ,  b')+ ~2(a', b)+Q(a', b ' ) -  Y p ( a ' ) - X q ( b ) < O .  

W h a t  are the  appropr ia te  values for X and Y in (2.65)? The s t ra igh t forward  
answer is of course X -- Y = 1, since the  probabil i t ies (2.64) migh t  equal  un i ty  
for some values of 4. This leads to inequalit ies of the  weak t ype  (no addi t ional  
assumptions) :  

(2.66) - 1 _< g2 (a, b) - g2 (a, b') + ~ (a', b) + Q (a', b') - p (a') - q (b) _< 0,  

which could also have been deduced  f rom Bell 's inequali ty.  Inequal i t ies  like the  
previous  one t h a t  we decided to call <<of the  weak type,> are somet imes  also 
called (dnhomogeneous inequalities>> since they  are based bo th  on double  and  
single de tec t ion  probabili t ies.  (<Homogeneous inequalities~> will nex t  be deduced  
which are based on double de tec t ion  probabili t ies only. 

The  problem with  (2.66) is t h a t  the quan tum-mechan ica l  predict ions do no t  
violate it for the  available detectors.  For  this reason Clauser and  H o m e  
in t roduced  the  following addi t ional  a s sumpt ion  (a and fl are now photons) :  for 
every photon in the state ~ the probability of detection with a polarizer placed on its 
trajectory is less than or equal to the detection probability with the polarizer 
removed. 

This addi t ional  a ssumpt ion  leads to the  following inequalities: 

(2.67) 
p(a ,  4) <_ p (oo, )~); 

q (b, 4) < q ( ~ ,  4); 

p (a', 4) _< p (oo,)~), 

q (b',)~) _< q (~,)~)  

where the  symbol  ~ indicates,  as usual,  t h a t  a polarizer has been removed.  
One can now use (2.63) and  (2.64) wi th  

(2.68) X = p (~ ) ,  )~); Y = q(oo, 4) 

in order  to obta in  

(2.69) - D O _< ~ (a, b) - ~2 (a, b') + ~ (a', b) + 

+ ~(a ' ,  b') - ~ (a ' ,  oo) - g2(~ ,  b) _< 0,  

where D o is the  same as in eqs. (2.53) and  the  mean ing  of the  new symbols  is 
obvious.  
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Since a ratio of double-detection probabilities coincides with the corre- 
sponding ratio of the detect ion rates, (2.69) can easily be seen to coincide with 
(2.57). From this observation it follows tha t  all the results obtained in the 
CHSH approach from (2.57) - tha t  is inequalities (2.58), (2.60) and (2.61) - are 
true also in the present (CH) approach. 

A numerical  example will help in unders tanding the difference between 
weak and strong inequalities. I f  one defines 

(2.70) F = 0 (a, b) - 0 (a, b') + f] (a', b) + 0 (a', b'), 

the weak inequalities (2.66) and the strong inequalities (2.69) can, respectively, 
be wri t ten as follows: 

(2.71) - -  1 + p (a') + q (b) < F < p (a') + q (b) (weak) 

and 

(2.72) - D O + O(a',  oo) + f2 (~ ,  b) <_ F < Q (a', ~ )  + f 2 ( ~ ,  b) (strong). 

These inequalities should be compared with the quantum-mechanica l  predic- 
tions: 

(2.73) p (a') = el+r/,/2; q (b) = ~2+ q2/2; Do = q, q2, 

(2.74) 

and 

(2.75) 1 1 2 ~ [ e ~  O(a, b ) =  ~[~+e+ + cos2(a-b)]qlq2. 

I t  should be noted tha t  the crucial quant i ty  containing the paradoxical  
features of the quantum-mechanica l  predictions is F. There is instead nothing 
paradoxical  in the quanti t ies given in (2.73) and (2.74), while the E P R  paradox 
is fully contained in the predicted general validity of (2.75), which leads to F via 
(2.70). 

In  (2.73)-(2.75) ~ and e~ are well-known parameters  related to the trans- 
mit tances of the two polarizers, while ql and t/2 are the quan tum efficiencies of 
the two photodetectors.  

By substi tut ing (2.75) in (2.70) it is easy to show[49] tha t  

(2.76) 

L (r)mi. 
Typical numerical  values of the experimental  parameters  are 

(2.77) el+ = ~2+ = 1; e[  = e2 = 0.95; ql = if2 = 0.1. 
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If  they are substituted in (2.71) and in (2.72) these relations, respectively, 
become 

(2.78) - 0.9 _< F _< 0.1 (weak), 

(2.79) 0 _< F_< 0.01 (strong), 

while (2.76) gives 

(2.8o) ( F ) m i n  - -  - 0.00138; (F),,a X = 0.01138. 

One can thus see that  while the strong inequality is violated, the weak one 
is fully compatible with the quantum-theoretical predictions and therefore with 
the experimental results. 

One can also observe that  the role of local realism is to give the set of 
possible values of F a spread of 1.0, while the additional assumptions bring 
down this figure to only 0.01, just enough to generate a violation of the 
quantum-theoretical predictions. The upper limit of (2.79) is, for example, 
violated by (2.80) by about 14~/o. I t  appears so that  the disagreement is 
generated mostly by the additional assumptions themselves. The spread of 
admitted values of F is reduced by two orders of magnitude in the previous 
example, and this feature is common to all experiments on the EPR paradox 
hitherto performed. 

2"2.3. T h e  GR a d d i t i o n a l  a s s u m p t i o n .  In 1981 Garuccio and 
Rapisarda (GR) [50] studied an experiment in which two-ways polarizers (e.g., 
calcite prisms), monitored by two detectors put on the ordinary and on the 
extraordinary rays were used as analysers for each one of the two photons in 
an EPR-type experiment. Garuccio and Rapisarda adopted the same approach 
as Clauser and Home with the density p (4) and with factorizable probabilities 
and applied it to the case of four simultaneously measurable coincidence rates. 

Denoting a photon detection of the ordinary or on the extraordinary ray 
with + and - ,  respectively, one has the following generalizations of (2.62): 

(2.81) 

Ip (a• = Sd~p ()~)p (a• 4); 

,iq(b+_) = Sd~p(2)q(b• 4); 

LO(a+, b• = ~d~p()Op(a • 2)q(b+_, ~), 

where p (a+, 4) is the probability that  the photon a with state )~ emerges and is 
detected in the ordinary beam when the calcite axis has orientation a, and so 
o n .  

Garuccio and Rapisarda proposed a new definition of correlation function, 
based on all the available experimental information: 

~(a+,  b+) - Q(a+, b_) - ~(a_ ,  b+) + Q(a_, b_) 
(2.82) E (a, b) = 

~ ( a + , b + ) + ~ ( a + , b _ ) + ~ ( a _ , b + ) + Q ( a _ , b  )" 
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Substituting the third of eqs. (2.81) in the above definition, one gets 

(2.83) 
~ d 2 p ( 2 ) f ( a ,  2)g(b,  2) 

E (a, b) = ~ d2 p (2) F (a, 2) G (b, 2) ' 

where 

(2.84) 

f (a,  2) ~ p(a+, 2) 

g(b, 2) =_q(b+,2) 

F (a, 2) ~ p (a+, 2) 

G(b, 2) ~q(b+, 2) 

- p ( a _ ,  2), 

- q (b_, 2) ,  

+ p (a_, 2), 

+ q ( b ,  2). 

No inequality violated by quantum theory can be obtained from (2.83) for the 
actually feasible experiments. Therefore, in the present case also an additional 
assumption is needed. The GR assumption is that: For every photon in the state 
2 the sum of detection probabilities in the ordinary and in the extraordinary beams 
emerging from a two-way polarizer does not depend on the polarizer's orientation. 

The practical implications of the GR additional assumption are that  F does 
not depend on a, G does not depend on b and the denominator of E (a, b) does 
not depend on either a or b. A better notation is then F (2) (instead of F (a, 2)), 
G(2) (instead of G(, 2)) and 

(2.85) H o = ~d2 p (2) F (2) G (2). 

One can then obtain an inequality of the strong type violated by the quan- 
tum-mechanical predictions in the case of real experiments_ In fact 

I E (a, b) - E (a, b') + E (a', b) + E (a', b')l __ 

~ Hol  Sdp(2)( l f (a ,  2)] Ig(b, A ) -g (b ' ,  2)l + If(a', 2)11g(b, 2) + g(b', 2)1}, 

whence, using the obvious inequalities 

pf(a, ,t) p, Jf(a', 2) p <_ F (2), I g (b, 2)J, J g (b', ;l) p ~ G (2), 

one obtains 

(2.86) S =- I E (a, b) - E (a, b') + E (a', b) + E (a', b') I -< 2, 

since any two numbers g and g' satisfying I gl -< G, I g'l -< G, must also satisfy: 
I g -  g ' l+ f g + g'f<_2G. Garuccio and Rapisarda could show that  the quan- 
turn-mechanical predictions violate the strong inequality (2.86) by as much as 
50% 

22.4. S t r o n g  i n e q u a l i t i e s  do  n o t  h o l d  in  n a t u r e .  While the 
review of the experimental situation is discussed in subsect. 2"5 we can here 
anticipate that  all the experiments performed with atomic photon pairs have 
found a very good agreement with the quantum-theoretical predictions (with 
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an isolated exception) and violations of the strong inequalities by several 
standard deviations. I t  thus seems very likely that  strong inequalities do not 
hold in Nature and it must be concluded that  some of the assumptions used in 
order to derive them are not valid. The choice is to get rid either of a funda- 
mental pysical principle (local realism) or of arbitrary and experimentally 
untestable additional assumptions. 

2"3. Probabilistic local realism. - Both the original proof of Bell's inequality 
and Wigner's proof were based on a deterministic formulation of local realism. 
In  fact, the EPR reality criterion itself used a deterministic approach. How- 
ever, this results in a limited validity of the reality criterion. This can be easily 
seen by noting that  the E P R  reality criterion defines as real only those 
properties which can be predicted with certainty. However, in the quantum 
domain it is well known that  it is only in the case of an eigenstate of some 
Hermitian operator that  on can make predictions about the relevant observ- 
able with certainty. E P R  were, of course, aware of the limitation; they wrote: 
((... this criterion while far from exhausting all possible ways of recognizing 
a physical reality, at least provides us with one such way,). Even without 
reference to the quantum-mechanical formalism, a fundamental criticism of the 
E P R  reality criterion concerns the fact that  predictability with certainty of 
a physical quanti ty presupposes a complete specification of the state of a sys- 
tem. This is an extremely idealized notion because it is exceedingly difficult, if 
not impossible, to be absolutely certain of all the relevant factors in a given 
experimentally verifiable situation. A probabilistic formulation of local realism 
is, therefore, essentially required. A well-known probabilistic approach is the 
Clauser-Horne (CH) formulation [48] of ((objective local theories~). However, the 
CH approach is not general enough and a more general formulation of probabil- 
istic local realism has recently been given[51]. The present subsection is 
devoted to a review of these aspects. 

2"3.1. A r e  ( ( o b j e c t i v e  l o c a l  t h e o r i e s ~ )  g e n e r a l  e n o u g h ? C l a u s e r  
and Horne[48] defined the ((objective local theories~) by starting from the 
standard E P R  situation: independent pairs (a, fl) of correlated quantum sys- 
tems are emitted from a source with system a (fl) flying to the right (left) where 
the analyser 1 and the detector 1 (analyser 2 and the detector 2) are placed. 
The ((state~) of the two systems is denoted by 4 which is given, over a statistical 
ensemble of similar pairs, with a positive-definite and normalized density 
function p (4). The variable 4 is taken to vary in a ((space of states)) A. The two 
analysers have each an adjustable parameter, a (b) being the value of the 
parameter of the apparatus 1 (2). The value of 4 fixes the probabilities 
p (a, 4), q (b, 4), ~ (a, b, 4) discussed in paragraph 2"2.2. 

The above formulation is sometimes considered to be the most general one, 
encompassing all conceivable situations that  can be described in terms of 
probabilistic local realism. However, a serious criticism of the CH formulation 
is that  the probabilities p (a, 4), q (b, 4) and ~ (a, b, 4) refer to a single EPR 
pair and that  an individual definition of probability is necessarily adopted. 
This is unsatisfactory because no known formulation of probability calculus 
uses the notion of probability referred to an individual object. Any operation- 
ally meaningful definition of probability must be in terms of relative frequen- 
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cies referring to an ensemble of systems. Some papers have also pointed out 
other difficulties with the CH approach: 

a) Deterministic models have been found that  are factorizable as such, 
but lose factorizability as soon as they become probabilistic, owing to averag- 
ing over one of the hidden variables [52]. 

b) A concrete physical model based on local realism has been proposed in 
the macroscopic domain which does not satisfy (CH1) and (CH2) simultaneous- 
ly [53]. 

c) I t  has been shown that  a probabilistic model assumed to satisfy (CH1) 
and (CH2) in n variables does not, in general, satisfy them anymore as soon as 
an averaging is done over even one of these variables [51]. 

In what follows we discuss in some detail the difficulty c). 
Let {4} be the set of variables specifying the state of (a, fl) and 40 be just 

one of these variables. {4'} be the set of remaining variables after 4 o has been 
taken away from {)~}. We assume that  factorizability holds for {4} = {)~, 40} 
and then if p (4', 2o) is the density function one can write 

O(a, b ) =  ~d~o~d~'p (~', 20)p(a, 4', )~0)q (b, 4', )~o). 

Now, suppose that  both (CH1) and (CH2) hold after the averaging over the 
variable 40 has been performed. Then one should have 

Pl (,~')~o(a, ,~')q (b, 4') = ~d20p (2' , ~o)p(a, ~', 2o)q(b , ,~', ~o), 

where Pl is the new probability density and a bar denotes a probability after 
averaging over )~o. However, that  this is not possible in general can be easily 
seen by dividing the previous relation by its partial derivative with respect to 
the argument a: 

(2.87) 
(a, 4') 

p'a (a, 4') 
Sd~oP (~',)~o)p (a, 4', )~o)q(b, )~', )~o) 

S2oP( 2', 2o)P'a ( a, )~', '~o)q( b, "~', '~o) 

While the left-hand side of (2.87) depends only on a (and not on b), the 
right-hand side in general depends both on a and on b. Therefore, only for those 
very special cases in which the right-hand side of (2.87) does not depend on 
b one can maintain the validity of (CH1) and (CH2) after averaging over 40. 
This shows that, in general, (CH1) and (CH2) can be satisfied only if a perfectly 
complete description of the state of the correlated microsystems is provided by 
a whole set of ~'s. This is again an untenable assumption because there is no 
way one can ensure that  one has ~a perfectly complete description of the state~ 
by a given set of ~'s. 

The above difficulties of the CH formulation have been overcome by a new 
approach (using definition of probability in terms of relative frequency) dis- 
cussed in the following paragraph 2"3.2. This new approach uses a very general 
definition of local realism in probabilistic terms. This not only provides a logi- 
cally satisfactory starting point, but also clarifies that  it is (CH2) which is not 
valid in general though (CH1) remains valid. Here it is relevant to note that  
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even the first probabilistic formulation of local realism, given by Wigner in 
1970 (see paragraph 2"1.2), does not satisfy (CH2). 

2"3.2. P r o b a b i l i s t i c  f o r m u l a t i o n  o f  l o c a l  r e a l i s m .  A general 
formulation of local realism in probabilistic terms has recently been pro- 
posed[51]. Its key ingredient is a probabilistic reality criterion resting on the 
idea that  probabilities which can be predicted correctly before they are measu- 
red prove the existence of real physical properties of those statistical ensembles 
for which they are predicted. 

More precisely, let S and T be two sets of physical objects of the same type 
(e.g., photons) 

S = {(X1, . . . ,  0~N} , V = {~1 ,  "" ,  ~N}"  

These objects are supposed to be produced in pairs, a 1 with ill, a2 with f12, and 
so on, but different pairs are assumed to be totally independent. 

Suppose that  it is possible to measure a dichotomic physical quanti ty A (a) 
on the objects of S and let _ 1 be the two possible outcomes. If  one can pre- 
dict correctly that  in a certain subensemble S' of S the results + 1 and - 1 
will be found with respective probabilities o9 (a + ) and o9 (a - ) [o9 (a + ) + 
+ o g ( a - )  = 1], then it is natural to conclude that  the latter probabilities 
belong to S', in the sense that  they are necessary consequences of some 
concrete physical property of S'. We can therefore assume that  

I f  it is possible: 

1) to predict the existence of subset S' of S: 

(2ss) s ' =  . . . ,  

such that future measurements of A (a) on S' will give the results + 1 and - 1 with 
the frequencies o9 (a + ) and o9 (a - ), respectively; 

2) to predict the population N' of S' (0 < N' <_ N); 

3) to make the previous predictions without disturbing in any way the 
a objects of S and S'; 

then it will be said that a physical property A' belongs to S' that fixes the 
probabilities: 

(2.89) ~ ( a  +)  = ~ ( a  + ,  A'); o 9 ( a - )  = l ~ ( a - ,  A'). 

The previous probabilistic reality criterion (PRC) provides a natural generaliz- 
ation of the famous criterion of (deterministic) reality proposed by Einstein, 
Podolsky and Rosen in 1935. 

In E P R  experiments S' will be discovered by performing measurements on 
the set T of the (distant) fl particles individually correlated with the a particles 
of S: The observable B (b) defines a subset T ' C  T, by means of a constant 
value, e.g., P (b) = + 1 (result of measurement). In such conditions it is often 
possible to predict that  another observable A (a) will be found to assume the 
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values + 1 and -- 1, upon measurement ,  with respective probabilities r (a + )  
and co ( a - )  in the subset S' of the a particles born together  with those 
fl particles tha t  compose T ' .  

The PRC goes na tura l ly  together  with the following probabilistic locality 
principle (PLP): Measurements performed on the fl systems do not modify the 
physical property A' belonging to the subset S' of S. 

A concrete measurement  of B (b) splits the ensemble E of (a, 8) pairs 

(2.90) E = { ( a l ,  . . . ,  

into two parts, E (b + )  and E ( b - ) ,  which contain all fl particles for which 
B (b) = + 1 and B (b) = - 1 has, respectively, been found. Correspondingly, 
also the ensembles S and T will be split into two parts: S (b + )  and T (b +) ,  
which compose physically E(b +) ,  and S ( b - )  and T ( b - )  which compose 
physically E ( b - ) .  With  the usual notat ion for conditional probabilities we 
write 

(2.91) 

I r (a + I b + ) :probabil i ty of obtaining A (a) = + 1 in E (b + ), 

J~o_ (a - I b + )  :probabil i ty of obtaining A (a) - 1 in E (b + ) ,  

o) (a + I b - )  : probabil i ty of obtaining A (a) + 1 in E (b - ) ,  

[,~o (a I b - ) : probabil i ty of obtaining A (a) - 1 in E (b - ). 

We assume tha t  the previous probabilities can be predicted correctly either 
because we have a theory which we trust  (e.g., quan tum theory) or because we 
have a large number  of previous experiments tha t  have t aught  us what  values 
these probabilities will assume. We can then apply the PRC and a t t r ibute  to 
S (b + )  and to S (b - )  physical properties, A+ and A_ respectively, tha t  fix the 
probabilities (2.91 ): 

(2.92) f~ (a + ]b + )  = g2(a + ,  A+) ,  

(a + ]b - )  = g2(a + ,  A_) ,  

o)(a - I b  + )  = g2(a - ,  A+);  

~o(a - I b  - )  = g2(a - ,  A ) .  

The previous nota t ion is not  inconsistent because the physical properties A + 
and A_ are expected to depend on the observable B (b) which determines the 
boundary  between S (b + )  and S (b - ) .  This dependence has obviously nothing 
to do with a breakdown of locality, in spite of the fact tha t  the probabilities 
(2.92) are ul t imately measured on the a systems. 

I f  a different observable B (b') is considered, a different splitting of S in 
S ( b ' + )  and S ( b ' - )  is generated,  and two new physical properties A'+ and 
A'_ are a t t r ibuted,  using the PRC, to S ( b ' + )  and S ( b ' - ) ,  respectively. One 
has, for example, 

(2.93) r + Ib' +) = g2(a + ,  A'+). 

I f  the sets S (b + ), S (b - ) and S (b + ) were homogeneous,  in the sense tha t  the 
probabilities of A (a) = _ 1 were the same for every possible subset of each of 
them, then one could reason as follows. 
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The set S (b' + ) is composed of pairs necessarily belonging either to S (b + ) 
or to S (b - ) ,  with respective fractions ? and (1 - ?), say. The probabil i ty (2.93) 
should then  be a weighted average of the first two probabilities in (2.92): 

(2.94) r + Ib' +)  = ?r + Ib + )  + (1 - ?) r (a + Ib - ) .  

Linear  relations of this type  should obviously hold (with a different ?) for all 
possible choices of b and b'. But  (2.94) implies tha t  the lef t-hand side, weighted 
average of o~ (a + I b + ) and o~ (a + ]b - ), should in no case be external  to the 
numerical  interval  of  the two previous quantities,  a generally unacceptable  
conclusion! (For example the quantum-mechanica l  probabilities deduced from 
the  singlet state  do not  satisfy (2.94) for all possible choices of b and b'.) 

We have so concluded that the subensembles S (b +_ ) cannot be homogeneous and 
that the observed probabilities must result of averages of probabilities in general 
different for different subsets composing S (b +_ ), and therefore S. 

This conclusion can easily be extended to T (a _ )  and T, and mus t  there- 
fore hold also for E which is the physical union of S and T. 

In  the previous reasoning locality has been used in an essential way  because 
it has been assumed tha t  the probabilities (2.93) emerge in case of measure- 
men t  of A (a) in some unknown subensembles of S also if no measurement  of 
B (b) is performed.  The opposite assumption would imply tha t  measurements  
on T create at  a distance the properties A• of S ( b _ ) .  

2"3.3. P r o b a b i l i t i e s  f o r  E P R - t y p e  e x p e r i m e n t s .  We have con- 
cluded tha t  if PRC and P L P  are correct assumptions an ensemble E of (a, fl) 
pairs canot  be homogeneous as far as the probabilities of  finding A (a) = + 1 
are concerned. A symmetr ica l  conclusion holds for B(b )=  _+ 1. The most  
general si tuation in a local realistic world is tha t  E splits into a certain number  
of homogeneous subensembles[51]. Let  us call these subsets 

a I (a), a 2 (a), ..., a m (a) 

for A ( a ) =  _ 1, and 

~1 (b), ~2 (b) . . . . .  % (b) 

for B(b)=  + 1. Obviously 

(2.95) a 1 (a) u a 2 (a) w ... w a m (a) = ~l (b) u ~2 (b) w ... w ~n (b) = E .  

The previous nota t ion reflects the fact tha t  a subset like a i (a) tha t  is homo- 
geneous for A (a) - -  +_ 1 is not  in general expected to be homogeneous for 
A(a ' )  = _ 1 ,  i f a ' # a .  

One can easily find subensembles which are homogeneous for two observ- 
ables. I f  A (a) and B(b) are considered, these subensembles are 

(2.96) E k (a, b) = a~ (a) r~ vj (b), 

where the  index k has been chosen to correspond to the pair  of  indices i, j .  One 
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can easily generalize to an a rb i t ra ry  number  of observables. Consider the 
following subensembles of E: 

"a 1 (al), a2 (al), ..., am, (al) 

O" 1 (a2) ,  0" 2 (a2),  ..., O-me (a  2) 

(2.97) 
a l  (at), a2 (at), 

~1 (bl), ~2 (bl), 

~1 (b~), ~2 (b2), 

~1 (b~), ~2 (b~), 

homogeneous for A (al) ,  

homogeneous for A (a2), 

�9 . . ,  a,.r(a ~) 

�9 . . ,  ~ ( b l )  

�9 ", %.2 (b2) 

homogeneous for A (a,), 

homogeneous for B (bl )  , 

homogeneous for B (b2) , 

..., ~,, (bs )  homogeneous for B (b~). 

The union of the ensembles of every line must  in all cases give E, similarly to 
(2.95). By means of intersections one can generate  smaller subensembles in 
which all the considered observables have constant  probabilities. One has 

(2.98) E k (al, a 2 . . . . .  a~, bl, b2, ..., bs) -- 

= ai~ (al) (~ ai2 (a2) n ... n a~r (at) (~ zil (bl) (~ zje (b2) n ... n T/~ (bs) 

for a typical subensemble having homogeneous probabilities for all the con- 
sidered dichotomic observables (in number  of r + s). In  the previous definition 
the single index k has been chosen, for simplicity, to correspond in a one-to-one 
way  to the set of indices (il, i2, ..., i,, J l ,  J2, ..., J~). The nota t ion  can be simpli- 
fied if one introduces a <(vector)~ V having r + s components  in the following 
way: 

( 2 . 9 9 )  V = ( a  1, a 2 . . . .  , a r, b 1, b 2, ..., bs). 

The homogeneous subensemble and its populat ion can then, respectively, be 
wri t ten as 

(2.100) E k ( V  ) = E k ( a l ,  a2,  ..., a~, b l ,  b2, ..., bs) , 

(2.101) N k ( V  ) = N k ( a l ,  a2, ..., at,  b l ,  b2, ..., bs) .  

Probabilit ies which are s imultaneously constant  for all the pairs of the suben- 
semble E k (V) are 

(2.102) Pk (a _+) (with a = al ,  a2, ..., at) 

constant  for A ( a ) =  _ l, and 

(2.103) qk (b _+ ) (with b = b 1, b2, ..., bs) 

constant  for B (b )=  _ 1. 
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It  can be shown [51] that  within every homogeneous subensemble the joint 
probability for fixed values of A (a) and B (b) is given by 

(2.104) ~k(a +_-, b +_) =pk(a +_)qk(b +_). 

The same joint probability over E is then given by 

(2.105) ~(a ++_, b +_) = ~pk(V)pk(a  +_)qk(b +_), 
k 

where 

(2.106) pk(V) N~(V) ~pk(V)  = 1 --~- , 

N k 

where pk(V) is the a priori probability of the subensemble Ek(V). 
Equation (2.105) is in a way similar to the Clauser-Horne factorizability 

formula, the role of the hidden variable A being here played by the index k. 
There is however also an important difference, because now the probability 
((density~) (2.106) depends on the values of the parameters of the considered 
observables. 

Equation (2.105) provides a satisfactory formulation of probabilistic local 
realism, since it is a consequence of the two basic assumptions of reality (PRC) 
and locality (PLP). It  is a very simple exercise to show that  the validity of 
Bell's inequality is a consequence of (2.105). The proof is straightforward and 
will not be repeated here. 

2"4. Consequences of local realism. - Local realism is certainly a simple and 
fundamental physical idea, but one is faced with the puzzling fact that  it does 
not admit of an equally simple formulation at the empirical level: Bell's 
inequality is but one of an infinite set of equalities that  can be deduced from 
local realism. All the meaningful inequalities can of course be obtained by using 
the formulation of probabilistic local realism presented in subsect. 2"3. We will, 
however, not discuss the proofs of the inequalities for the sake of brevity. 

In paragraph 2"4.1, the inequalities valid for arbitrary linear combinations 
of correlation functions will be reviewed, while those holding for arbitrary linear 
combinations of joint probabilities will be reviewed in paragraph 2"4.2. The two 
sets are not equivalent, and the latter is more general than the former, as 
shown by the Garg-Mermin model for joint probabilities (paragraph 2"4.3). 

2"4.1. I n e q u a l i t i e s  f o r  c o r r e l a t i o n  f u n c t i o n s .  The first exam- 
ples of inequalities providing physical restrictions not contained in Bell's 
inequality were given by Roy and Singh in 1978 [54]. They could show, for 
example, that  local realism implies 

4 5 

(2.107) ~ ~ C~jP (a i, bj) <_ 6, 
i = l  j = l  
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where 

(2.108) Ctj = 

1 1 1 0 1~ 

1 1 - - 1  1 0 
l 1 0 - 1  - - 1  " 
1 - 1  0 0 0 

Supposing, for example,  tha t  

1 
(2.109) P (at, hi) = ~ [2 + clj (1 - ctj)], 

2 
so tha t  P (at, b j) = 0 if ctj = - 1, and P (a v b j) = ~ otherwise, one can easily see 

20 
tha t  (2.107) is violated since its lef t-hand side equals - - .  

3 
Any  Bell's combinations of four of these correlation functions can instead 

6 4  
take only the values ~, ~, 0, and thus  none of the corresponding inequalities is 

violated. I t  is then clear t ha t  the set of  20 values (2.109) of P (a, b) violate local 
realism in spite of the fact  t ha t  it satisfies all conceivable Bell's inequalities. 

Tha t  addit ional inequalities can be deduced from local realism was also 
noticed by Pearle [55] and by d 'Espagnat[56] .  Garuccio and SeUeri [57] ob- 
ta ined an inequal i ty  for an a rb i t ra ry  linear combinat ion of correlation func- 
tions_ They  could show that ,  given the numerical  coefficients cq to be real but  
otherwise arbi t rary,  and the correlation functions P (ai, bj) with i = 1, ..., n and 
j = 1 . . . .  , m, local realism implies 

(2.110) - M o <  ~., c t iP(a  i, b i) < M o 
i = l j = l  

with 

(2.111) M o = Max cti ~t rlj , 
4, t/ i 

where among all possible choices of the sign factors ~i = 4- 1 (i = 1, ..., n) and 
t/j = __ 1 (j = 1, ..., m) one has to take the one giving the m a x i m u m  value to 
the quan t i ty  within parenthesis  in (2.1 l l ) .  

The whole s tory of this development,  whi th  the various methods  of proofs, 
is told in Garuccio's review paper [58]. Here only the four main points will be 
recalled: 

1) Bell's inequali ty is a part icular  case of (2.110) with m = n = 2, with 
three eli'S equal to + 1, and with the four th  one equal to - 1 .  
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2) All the  physical  restr ict ions of the  set of the  possible inequali t ies wi th  
n - - m  = 2 are given by Bell 's inequali ty.  

3) An inequal i ty  is trivial (it does not  provide physical  restrictions) if the  
cii's have factorizable signs, t h a t  is, wri t ing 

if 

Cij = [ Cijl (Tij ,  

(Tij = ~ iV j  

with  # i =  +-1 and v j =  •  ( i=  l , . . . , n ;  j =  l . . . .  ,m).  

4) There  are inequali t ies provid ing  physical  restr ict ions on the  P (ai, bi)'s 
which cannot  be deduced by any Bell 's inequal i ty .  The  so-called superinequali- 
ties are of this type.  

2"4.2. I n e q u a l i t i e s  f o r  j o i n t  p r o b a b i l i t i e s .  The  mos t  general  
set of inequali t ies following f rom local realism has been found  by Lepore  [59]. 
Consider m dichotomic  observables A (al) , ..., A (am) for the  S ensemble and 
n d ichotomic  observables B(bl) , ..., B(bn) for the  T ensemble.  Let  

g2 (a~,a, b~z) 

be the  joint  probabi l i ty  of measur ing  A (a,) on a and B (b~) on fl and  obta in ing  

A (%) = a; B (by) = ~, 

where ~, z - -  •  # - - 1 ,  ..., m; v - - 1  . . . . .  n. 
As we have seen in subsect.  2"3 one can write 

(2.112) 

where 

(2.113) 

N i 
(a~a, bv~) = ~ - ~ p l  (a~a)ql (b j ) ,  

ieI "" 

N i  = N i  ( a l ,  ..., am, b 1, ..., b,) 

and  where the  set of integers I depends  on the  re levant  observables 

(2.114) 

Natura l ly ,  one has 

I = I (a l ,  ..., am, b 1, ..., b , ) .  

(2115, 

The following condi t ions hold good: 

(2.116) 

= 1 .  

0 ~ pi(a~a)<_l, 0 < _ q i ( b J ) _ < l ,  
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(2.117) p~(a, +) +p~(a, - - )  = 1, qi(b~ +) + q i ( b , - )  = 1, 

where p = l, ..., m; v = 1, ..., n; i e I .  
Consider nex t  the  linear combina t ion  of jo int  probabil i t ies 

47 

(2.118) L = ~ c~ f2 (a,a, b j ) ,  

I1, r 

where c~  are 4mn real coefficients, otherwise arbi t rary.  
The linear funct ion  associated with (2.118) is defined to be the funct ion  

F(41,  ..., 4~, t/l, ---, t/.) ob ta ined  f rom (2.118) wi th  the  subs t i tu t ions  

(2.119) 
Jr2 (a. + ,  b~ - ) - -*e .  (1 - q~), 

I (2 (a, --, by +)--*  (1 - e,) t/,, 

If2 (a, --, b~ - ) - -~  (1 - e,)(1 - q~). 

T h a t  is 

(2.120) F (41, .-., 4m, t/,, ..., q.) = ~ [C,  ++ 4,t/~ + Cu + -  4, (1 - t/v ) + 
/ l ,y  

+ eL + (i - 4.) v. + c L- (i - 4.) (i - ~)]. 

It is defined in the hypercube ~ _c R "+" 

= { (g l ,  ..., ' t . ) m ' + " l  o -< 41, "", 1'/. ----- 1 } .  

The points  a t  which all the  variables 4a, .--, q. t ake  the  values 1 or 0 are the  
vertices of the hypercube  ~.  

Obviously,  one has 

N i 
~--~F[pi (a  +), ..., pi(am +), q~(b 1 +), ..., qi(b. +)]  = L .  

t 

F is linear in the variables 41, ..., q. and  therefore its m a x i m u m  and m i n i m u m  
can be found on the  vertices of (d. Therefore,  set t ing 

m -~- 

o n e  has 

(2.121) 

min  {F (41, .--, ~.)}, M = Max {F (~1,-.., Y.)}, 
~l . . . . .  r/n= 0,1 ~t . . . . .  t / n = 0 , 1  

m <_ F(p~(a 1 +), ..., qi(b. +))  < M .  
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The function F can also be used for writ ing down the linear combinat ions of 
the joint probabilities. F rom (2.118) one has 

(2.122) 
N I  

C~C2(a~,a, bv~ ) = ~ " ' F ( p i ( a  t +),  ..., qi(bn +)) 
p, ~, iEI ~ 

and from (2.121), (2.122) and using (2.115) one obtains the set of  inequalities 

(2.123) m <_ ~ C~C2(a~,a, bv~ ) <_ M 

#, Y 

The previous set gives inequalities for all possible linear combinat ions of joint 
probabilities. For  every  choice of the coefficient C~,  eq. (2.123) provides the 
most  s t r ingent  inequali ty tha t  can be deduced from local realism [59]. 

Consider the case of three observables A (al), A (a2), A (aa) for the set S of 
a particles and of three observables B(bl )  , B(b2), B(b3) for the set T of 
fl particles and consider the following linear combinat ion of joint probabilities: 

(2.124) (a 3 + ,  b 3 + )  - Q (a 1 - ,  b 2 - )  + ~ (a 1 - ,  b I + )  + 

-t- ~ ( a  2 + ,  b 2 - )  --I-~(a 3 - ,  b 2 - ) - f 2 ( a  3 - ,  b 1 +) + 

+ 2Q(a I + ,  b2 + )  + ~(a2  - ,  b 3 - )  - ~ ( a  1 + ,  b3 - - ) .  

For  such a linear combinat ion the associated F function is 

F ('~1, ~2, ~3, rll, r/2, r/3) = ~sr/3 - (1 - ~1) (1 r Y]2) "-[- (1 - -  ~ 1 )  ~ 1  "-{- ~ 2  (1 - -  r/2) + 

+ (1 -- ~s) (1 -- q2) -- (1 -- C3) ql + 2~lqz + (1 - -  ~ 2 )  ( 1  - -  /73)  - -  ~ 1  (1 r n3)" 

By calculating the value of F over the 26 vertices of the hypercube one gets 

min F = 0.  

Therefore, one part icular  inequali ty of the set (2.123) is given by  

(2.125) Q(a 3 + ,  b 3 + )  - Q(a 1 - ,  b 2 - )  + ~ ( a l  - ,  b 1 +) + 

+ C2(a 2 + ,  b2 - )  + f2(a 3 - ,  b 2 - )  - Q(a  3 - ,  b I + )  + 

+ 2 ~ ( a  I + ,  b 2 + )  + g2(a 2 - ,  b 3 - )  - Q(a 1 +, b 3 - )  ~__ O. 

2"4.3. A n o n l o c a l  m o d e l .  Inequal i ty  (2.125) contains physical  restric- 
tions not  deducible from Bell's inequality.  In  fact  a numerical  example of 
probabilities satisfying the inequalities of  Bell's type  but  violating (2.125) was 
given by  Garg and Mermin [60]. I f  one writes 

(2.126) Q(ai• bk+_) ~-- ~ik(a, ~), 

where a = _ and z = _+ are sign factors, the model proposed by Garg and 
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Mermin is 

(2.127) 
1 

g2ik (o', ~) = ~ [1 --  c (a + ~) + Pik (a~)], 

1 1 
where i, k = l, 2, 3; 0 < c < ~; P l l  = P22 = 1 and Pik = - ~ in all other cases. 

I t  is very easy to show that  all the inequalities of the type (2.66) that  can be 
written with the nine quantities (2.127) reduce to 

(2.128) ]Pik - Pil + Pjk + Pit] s 2 

so that  they are always satisfied. Notice that  the coefficient c has disappeared 
from the locality conditions (2.128). 

By substituting in (2.125) the probabilities of the Garg-Mermin model one 
gets 

(2.129) - c > 0. 

This contradicts the definition of c: hence, the Garg-Mermin probabilistic model 
violates the particular inequality (2.125). This shows that  this model is non- 
local. However, the same model satisfies all the inequalities for linear combina- 
tions of correlation functions, as it is easy to check by noticing that  in all cases 
the correlation function associated with (2.127) coincides with the quanti ty P~k- 

Other interesting consequences of local realism were found by Garg and 
Mermin[61] who were able to deduce Bell-type inequalities for two spin-j 
particles (with arbitrary j). They could show that  the singlet state for two 
particles with spin j leads to violations of local realism for arbitrarily large 
values of j right up and above the threshold of the classical world. But in the 
classical domain it is always possible to assign a priori  well-defined values to all 
observable quantities. This result of Garg and Mermin is disturbing for the 
coherence and rationality of the existing quantum theory, which seems to 
extend its (~magic,) predictions also to the macroscopic domain where classical 
physics had successfully banished all <(magicab) approaches. 

2"5. The experimental evidence. - The present subsection is devoted to the 
discussion of those experiments on the E P R  paradox which have been (or can 
be) performed with atomic photon pairs. A related interesting topic is the 
possibility to perform experiments on the EPR paradox with pairs of sub- 
atomic particles (e.g., with K~ ~ pairs). To this the following paragraph is 
devoted. 

Paragraph 2"5.1 reviews the quantum-mechanical predictions for the physi- 
cal cases in which excited atoms can emit E P R  correlated pairs of photons. 
A concise review of the published experiments is contained in paragraph 2"5.2, 
while 2"5.3 deals with ideas of experiments to be performed in future with pairs 
of atomic photons. 

2"5.1. Q u a n t u m  s t a t e s  a n d  p r o b a b i l i t i e s .  Actual experiments 
on the E P R  paradox have nearly all been carried out with photons. The 
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quantum-mechanical treatment of photon polarization is similar to that  of 
spin-(I/2) in one important respect: both the observables are dichotomic. The 
absence of photon rest mass has the effect of eliminating from the theoretical 
scheme the longitudinal polarizations. Only the linear polarization states per- 
pendicular to the direction of propagation are left, similar to the case of 
classical electromagnetic waves whose tranverse nature is well known. Con- 
sidering also the states of circular polarization one can define 

]R >: single-photon state with right-handed circular polarization; 

I L >: single-photon state with left-handed circular polarization; 

Ix>: single-photon state with linear polarization along the x-axis; 

[y >: single-photon state with linear polarization along the y-axis. 

Elementary quantum theory gives 

(2.130) [ R> =  {Ix> + ily>}, 
L > = -~2 {Ix > - i lY >} . 

The existence of dichotomic observables for photons has the important implica- 
tion that  the Bell-type inequalities can be formulated for pairs of photons. 
There are situations were quantum theory describes the polarization of two 
correlated photons with nonfactorizable state vectors analogous to the singlet 
state of two spin-(l/2) objects which lead to violations of local realism. 

In the case of photons the parity quantum number plays an important role 
and it is necessary to distinguish, for example, the JP = 0 + from the j e  = 0-  
states, represented respectively by the state vectors 

(2.131) I I0 > =~22{IR~>IRr + IL~>ILa>}, 

1 

These states can also be expressed in terms of linear polarizations by using 
(2.130) both for the photon a and for the photon ft. One then obtains 

(2.132) 

0-  > = ~2{lx~>ly~ 

> + ]Y,)IY~>}, 

> --ly~>]x~>}. 

The basic states with respect to which the linear polarization is expressed are 
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arbitrary: Using the rotated x'- and y'-axes one obtains results identical to 
(2.132) for both states, with x' and y' in place of x and y. This property is due 
to the invarianee under rotations around the z-axis of the zero angular 
momentum states. 

All the inequalities of the Bell type (weak and strong) discussed in the 
previous sections clearly apply also to photon pairs, since they were deduced 
from the dichotomic nature of the measured quantities, besides, of course, from 
locality and realism. In order to check that  the quantum-mechanical predic- 
tions violate those inequalities we will give the theoretical formulae for the 
most important probabilities and correlation functions. This will allow us to 
stress once more the very important distinction between weak inequalities (e.g., 
Bell's original inequality) and the strong ones. 

Widely used is the (J = 0)--~(J = 1)--*(J = 0) cascade of calcium. The 
quantum-mechanical predictions, following from the state [0 + ), which apply 
to this case are for the double-transmission probabilities: 

(2.133) 

T ( a + , b + ) = ~ [ e l s 2 +  + e l  s2_Fl(0) c o s 2 ( a _ b ) ] ,  

T(a+, ~)) = ~1+, 

T ( ~ ,  b+) =~e2+, 

T ( ~ ,  ~ )  = 1. 

These relations give the correlation function P(a, b) through 

(2.134) P(a,b)=(1-~l+)(1--e2+)+el_e2_Fl(O)cos2(a--b).  

In these relations F 1 (0) is a function of the half-angle 0 subtended by the 
primary lenses representing a depolarization due to noncollinearity of the 
photons and 

(2.135) = d , +  = 

Here ~ (~)  is the transmittance of the first polarizer for light polarized 
parallel (perpendicular) to the polarizer axis; and a similar notation has been 
used for the second polarizer. All these transmittances are usually very close to 

�9 i close to zero ( i =  l, 2). The the ideal case, with e~ close to unity and ~m 
depolarization factor F 1 is also usually very close to unity, so that  P (a, b) as 
given by (2.134) violates Bell's inequality. As already stressed, the difficulty is, 
however, that  transmission probabilities are not measurable, so that  Bell's 
inequality cannot be tested. 

If  the CHSH additional assumption of subsect. 2"2 is made, the double 
detection probability D O becomes a crucial quantity, which is assumed to be 
independent of the presence and the orientation of the polarizers. Quantum 
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theory predicts 

(2.136) Do = ~/1 r/2, 

where ~1 (r]2) is the quantum efficiency of the first (second) photomultiplier. In 
the performed experiments ~1 and Y2 were of the order ot 10~/o, so that  D o was 
of the order of 10 -2. The latter quantity relates the double-transmission 
probabilities T to the measurable double transmission and detection probabili- 
ties ~2, once the CHSH additional assumption has been made. 

In the usual quantum theory the CHSH assumption does not need to be 
explicitly made, its validity being always taken for granted. The quantum- 
mechanical expressions for the g2 probabilities defined in (2.53) are 

(2.137) 

(a, b) 

Q(a, ~ )  

1 
= ~[~1+ e2+ + e l  ~2_ F1 (0)cos2 (a - b)] ~/1 t/2, 

1 1 

Q ( ~ ,  b) 1 2 = ~e+ ~hr/2, 

(oo, oo) = ~h ~2- 

These double-detection and transmission probabilites are obviously propor- 
tional to the respective coincidence rates R (see eq. (2.54)), the proportionality 
factor being No, the number of photon pairs entering, per second, in the 
appropriate solid angles defined by the optical apparatus. The strong inequal- 
ity (2.57) can therefore be written in the form 

~2(a, b) g2(a, b') ~_g2(a', b) F~2(a', b') f2(a', oo) ~2(oo, b)_<0 ' 
(2.138) - 1 _ < -  

Do Do Do Do Do Do 

and it can easily be shown to be violated by the quantum-mechanical predic- 
tions (2.137). Experimentally it has been found to be violated. One should 
remember that  (2.57), as well as (2.138), are consequences of local realism in 
conjunction with the additional assumption. Its violation can only mean that  
one of these tenets is wrong, it cannot decide which one. It  is, for example, 
possible to build explicit local realistic models that  do not satisfy the CHSH 
additional assumption, and that  violate (2.138). 

Notice that  (2.138) essentially coincides with (2.69) deduced with the help 
of the CH additional assumption. If  instead the inhomogeneous inequality 
(2.66) is considered, which is deduced only from local realism, one can see that  
the quantum-theoretical predictions for the single-photon transmission and 
detection probabilities are 

(2.139) 



BELL'S THEOREM AND THE EPR PARADOX 53 

Owing to the presence of a single g-factor these probabilities are an order of 
magnitude larger than the double-transmission and detection probabilities 
written in (2.138). This implies that  (2.66) is never violated in actual experi- 
ments. 

Coming now to Rapisarda-type experiments with two-ways polarizers, the 
quantum-mechanical predictions for the ~2 probabilities defining E (a, b) (see 
(2.82)) are 

(2.140) 

g2(a+, b+) = ~[T~+T2+ -F T [T2_Fl (O)cos2(a - b)] r/it/2, 

~(a+, b_) lrT1 R:  1 2 = 4  L + + - T - R - F l ( O ) e o s 2 ( a - b ) ] g l g 2 ,  

~2(a_, b+) ~[RI+T 2 R 1 2 = _ _ T _ F l ( O ) c o s 2 ( a - b ) ] t l l g 2 ,  

Q(a ,b_)  l r R I R e  JR2 (0) cos2(a =4L + + + R  _F 1 - b ) ] g l g 2 ,  

where 

T/+ -- TII + T~; T ~_ -- T I I -  T~ ,  

and 

Ri+ = RII + R~; R ~_ = R I I -  R~, 

with i = 1, 2. The T and R parameters are transmittances defined in the 
following way. There are two prisms, denoted with the index i = 1, 2 above. 
From each prism two beams emerge, a reflected one and a transmitted one. 

TII (T• is the prism transmittance along the transmitted path for incom- 
ing light polarized parallel (perpendicular) to the polarization plane of the 
transmitted channel; 

RII (R• is the prism transmittance along the reflected path for incoming 
light polarized parallel (perpendicular) to the polarization plane of the reflected 
channel. 

A measurement [62] gave, for example, 

Tii = 0.9095 _ 0.0023; 

RII = 0.7625 + 0.0024; 

Tz = 0.0044 _+ 0.0002, 

R• = 0.0041 _ 0.0003. 

Insertion of (2.140) in (2.82) gives 

(2.141) E (a, b) -= f + g cos 2 (a - b) 
f '  + g' cos 2 (a - b)' 



54 D. HOME and F. SELLERI 

where 

f -- (T  1+ - R~+ ) (T ~ - R2+); 

f '  = ( T ~  + R~+)(T2+ + R2+); 

g =  (T ~_ + R 1 ) ( T  2_ +R2_), 

g' = (T 1_ - R [ )  (T 2 _ R 2_ ). 

Garuccio and Rapisarda[50] showed that  the predictions (2.140) violate the 
inequality (2.86) if E (a, b) is defined as in (2.82). The violation can be as large 
as 50%. 

2"5.2. E x p e r i m e n t s  w i t h  p a i r s  o f  a t o m i c  p h o t o n s .  In the pre- 
sent paragraph we will review the ten published experiments on the E P R  
paradox which were performed by using atomic photon pairs. 

1) Freedman and Clauser [63]. 

In  this experiment the 3d4plP1 state of calcium in a beam was excited by 
radiation from a deuterium arc lamp. About 10% of the atoms go to the 4p 2 
1S o state which is the initial state of the (0, 1, 0) cascade emitting photons of 
wavelengths 551.3 nm and 422.7 nm. Since the natural calcium used in this 
experiments was an almost pure sample of the isotope with zero nuclear spin, 
there was no significant reduction expected in the polarization correlation due 
to hyperfine structure. On each side of the source the photons were collected 
and collimated by a lens, then passed through a filter and a linear polarizer to 
a photomultiplier. Freedman and Clauser used pile-of-plates polarizers, each of 
which was about 1 m in length and consisted of ten glass sheets inclined nearly 
at Brewster's angle. 

The photomultiplier pulses were fed to a coincidence circuit and coincidence 
measurements were made for 100 s time intervals, the intervals during which 
all the plates were removed alternating with intervals in which the plates were 
inserted. The results obtained, as the relative orientation of the transmission 
axes of the polarizers was varied, were found to be in good agreement with the 
quantum-mechanical predictions. The strong inequality (2.61) ((@reedman's 
inequality~)) can be written as 

5 _ 0.250, 

where 

(2.142) 5 = R (22.5~ R (67.5~ . 
Ro Ro 

The results for R (22.5 ~ and for R (67.5~ combined with those for R o with 
both the polarizers removed, yielded 5 = 0.300 • 0.008, in clear violation of 
Freedman's strong inequality and in agreement with the quantum-mechanical 
prediction (fqm = 0.301 __+ 0.007. 

2) Holt and Pipkin [64] 

In the second experiment, the 567.6 nm and 404.7 nm photons emitted in 
the (1, 1, 0) cascade of the zero nuclear spin isotope 19SHg of mercury were 
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observed, Since the final cascade level is not  the ground s ta te  of  the  a tom,  no 
precaution had to be taken  to avoid the effects of  resonance t rapping observed 
in the Freedman-Clauser  exper iment  [65]. To produce the required radiat ion,  
mercury  vapour  was excited to the 9 t P i  state by  a 100 eV electron beam, both  
the beam and the vapour  were contained in an encapsulated source made by  
Pirex glass. Calcite polarizers were used. These polarizers have a much  bet ter  
ext inct ion ratio than  pile-of-plates polarizers, but  the values of eM are some- 
what  low (see table I). 

TARLIE ], - Optical transmittance of the two polarizers. 

1 ~2 M 2 l~eference ~J~ ~= e~ 

[63] 0.97 +_ 0.01 0,038 4- 0,004 0.96 _+ 0.01 0,037 _ 0.04 
[64] 0.910 _ 0.001 < 10-~ 0.880 _ 0.001 < 10 -4 
[67] -~ 0.965 ~- 0,011 ~- 0.972 --- 0.008 
[69] 0.98 +__ 0.01 0.02 • 0.005 0.97 _ 0.01 0.02 __+ 0.005 
[70] 0.971 _+ 0.005 0.029 _+ 0.005 0.968 _+ 0.005 0.028 _ 0.005 
[72] 0.950 _+ 0.005 0.007 + 0.005 0.930 _+ 0.005 0.007 _ 0.005 
[73] 0.96 _+ 0.01 0.005 _ 0.005 0.93 _+ 0.01 0.007 +_ 0.005 
[87] 0.9095 _+ 0.0023 0,0044 _+ 0,0002 0.7625 _ 0,0024 0,0041 _ 0.000 

Exper imenta l ly  it was found tha t  ~ = 0 . 2 1 6 _  0.013, a result which dis- 
agrees with the quantum-mechanica l  predict ion 5qm = 0.266 and clearly does 
not violate the strong inequality.  This discrepancy has never  been completely 
explained. I t  has been suggested [66] tha t  there m a y  be some significance 
a t t ached  to the use of calcite polarizers. 

3) Clauser [67] 

Clauser repeated the Holt-Pipkin exper iment  using the same cascade but  
involving the  2~ isotope of  mercury.  Also, instead of calcite polarizers, he 
used pile-of-plates polarizers. This exper iment  gave 3 = 0.2885 _+ 0.0093, viol- 
at ing Freedman 's  strong inequal i ty  and in close agreement  with the quan- 
tum-mechanica l  predict ion ~q= --- 0.2841. 

In  an extension of the previous exper iment  Clauser [68] measured the 
circular polarization correlation by  inserting quar ter -wave plates between each 
linear polarizer and the source. The quar ter-wave plates were obtained by  
applying pressure to bars of commercial  grade quartz.  Assuming ideal quar- 
ter-wave plates, quan tum mechanics predicts t ha t  the zero angu la r -momentum 
state vectors (2.131) should remain unmodified after  the two photons have 
crossed the plates. Therefore (2.142) also remains a valid form of Freedman ' s  
strong inequality.  From the exper imental  results Clauser found 
3 = 0.235 _+ 0.025, while, taking into accoun~ the transmission efficiencies of  
the polarizers, and the assumed lack of stabil i ty of the quar ter -wave plates, he 
obtained from the theory  5qm = 0.252 (which almost does not  violate (2.142). 
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Within the limit of experimental  errors these circular-polarization results were 
in agreement with quan tum mechanics, but  the agreement was not  very 
satisfactory. 

4) Fry  and Thompson[69] 

These authors used the 435.8 nm and 253.7 nm photons emit ted in the 
(1, l, 0) cascade using the zero nuclear spin isotope 2~176 of mercury (see 
table II).  The 73S1 state of a mercury beam was populated in a two-step 
process and the electron bombardment  excitation of the 63P2 metastable state 
followed downstream, where all short-lived states had decayed, by absorption 
of resonant radiation from a tunable dye laser. The laser band width was 
narrow enough so tha t  the 2~176 isotope could be selectively excited. The 
polarizers used in this experiment were of the pile-of-plates variety, and the 
magnetic field in the interaction volume was reduced to less than  5 mG. 

TABLF. II. - Experiments using atomic cascades to test the strong inequalities. 

Reference Atom Cascade ~1 ~2 

[63] a~ 
[64] 19aHg 
[67] 2~ 
[68] 2~ 
[69] 2~176 
[70] 4~ 
[72] 4~ 
[73] 4~ 
[87] 4~ 

4t) 21S o--. 4p4s1P1 -+ 4s 21S o 551.3 422.7 
91P1 --~ 73S1 ---} 63P0 567.6 404.7 
91P1 -+ 7 ~S 1 --+ 6aPo 567.6 404.6 
91P1 --. 73S1 -+ 7aPo 567.6 404.6 
7aS1 --+ 6aP1 --* 61So 435.8 253.7 
4p 21S o-+ 4p4s1Px ---* 4s 21S o 551.3 422.7 
4p 2 ISo--*4p4slp I ----~4s 21S o 551.3 422.7 
4p 21S o--* 4p4s1P1 ---} 4s 21S o 551.3 422.7 
4p 21S o-+ 4p4stP1 ---} 4s 21S o 551.3 422.7 

Since the initial state of the cascade had J = l, it was necessary to take 
into account the possibility of unequal population of, and coherence between, 
the initial Zeeman sublevels, which Fry and Thompson did by measuring the 
polarization of the 435.8 nm radiation. Allowing for such effects and consider- 
ing the transmission efficiencies of table I it was predicted tha t  
5qm = 0.294 • 0.007, while the experiment gave 5 = 0.296 • 0.014, in agree- 
ment  with quan tum theory, but  in violation of Freedman 's  strong inequality. 

5) Aspect, Grangier and Roger[70] 

Aspect, Grangier and Roger (AGR) used the 551.3 nm and 422.7 nm 
photons  from the (0, l, 0) cascade of calcium. In  their case the calcium atoms 
were excited to the 4p 2 ~S o state by a nonresonant  two-photon absorption 
process using a krypton-ion laser beam of wavelength 406 nm and a dye laser 
beam tuned to 581 nm, both laser beams being at right angles to the calcium 
atomic beam emit ted from a tan ta lum oven. The laser beams were focused at 
the interaction region to provide a source of about 60 m in diameter by 1 mm 
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long. The density varied between 3" l0 a~ em -3 and 1011 cm -3, resulting in 
cascade rates equal to or higher than 4 �9 107 s-1. Selective excitation of the 
�9 ~ isotope of calcium prevented the polarization correlation from being 
reduced by hyperfine-structure effects. The photons from the cascade were 
analysed by polarizers of the pile-of-plates type and filters in much the same 
way as in the previous experiments. 

The high atomic density of the source generated coincidence rate of up to 
100 s -1, allowing a l~o statistical accuracy in only 100 s counting time. 
Measuring R(22.5~ R(67.5 ~ and R0, AGR obtained 5 = 0.3072 +_ 0.0043, in 
agreement with the quantum-mechanical prediction of 3qm--0.308 ___ 0.002, 
but in violation of Freedman's (strong) inequality, by more than 13 standard 
deviations. An even stronger violation of 40 standard deviations was reported 
by Aspect at the Perugia conference[71]. 

6) Aspect, Grangier and Roger [72] 

In 1982 AGR performed an experiment, originally suggested and analysed 
by Garuccio and l~apisarda [50], using two-channel polarizers instead of the 
previous one-channel pile-of-plates type. Each polarizer was a polarizing cube, 
built using the properties of dielectric thin films and antireflection coated and 
was rotatable about the observation axis. The arrangement allowed the quan- 
t i ty E (a, b) defined in eq. (2.82) to be measured directly in a single run, using 
a fourfold coincidence technique for each of the four relative orientations of the 
polarizers: (a, b), (a, b'), (a', b) and (a', b'). 

I f  the left-hand side of the (strong) inequality (2.86) is called S, AGR found 
experimentally S = 2.697 • 0.015 in violation of (2.86) itself, but in full agree- 
ment with the quantum-mechanicM prediction Sqm = 2 .70_  0.05. 

7) Aspect, Dalibard and Roger[73] 

In all experiments described so far the transmission axes of the polarizers 
were held fixed during every set of measurements. Thus, there was the 
possibility of an exchange of information between the two polarizers with 
a velocity not exceeding that  of light. Such a possibility, although very 
unlikely, given the known nature of interactions, could be ruled out if the 
settings of the polarizers were changed in a time shorter than the time of flight 
of the photons from the source to the polarizers. In  the experiment performed 
by Aspect, DMibard and l~oger (ADR) an optical switch rapidly redirected the 
light incident from the source to one of two polarizing cubes on each side of the 
source. In contrast to the previous experiment only the transmitting channels 
of the polarizing cubes were used. The switching of the light was obtained by 
a Bragg reflection from an ultrasonic standing wave in water. The light was 
completely transmitted when the amplitude of the standing wave was zero, and 
was almost fully deflected through 10 mrad when the amplitude was a maxi- 
mum. Switching between the two channels occurred about once every l0 ns 
and since this time, as well as the 5 ns lifetime of the intermediate level of the 
cascade was smaller than L/c (40 ns), where L = 12 m was the separation 
between the two switches and c the speed of light, a detection event on one side 
and the corresponding change of orientation on the other side were separated 
by a spacelike interval. 
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In the ADR experiment the coincidence rates were only a few per second, 
with an accidental background of about one per second. If  U is the intermedi- 
ate quanti ty in the (strong) inequality (2.57), ADR found experimentally 
U = 0.101 + 0.020, in clear violation of (2.57) itself, but in agreement with the 
quantum-mechanical prediction U = 0.112. 

Although the switching was in practice periodic rather than random, the 
switches on the two sides were driven by two different generators at different 
frequencies and it was assumed that  they functioned in an uncorrelated way. 
That  this situation can instead hide a conceptual difficulty has been shown by 
Zeilinger [74]. 

Finally it should be noted that  some criticisms [75, 76] have been made of 
the AGR and ADR experiments on the ground that  there may have been 
significant resonance trapping due to the high density of the calcium source. 
A reply to this criticism has been given by Aspect and Grangier[77]. 

8) Perrie, Duncan, Beyer and Kleinpoppen [78] 

Perrie, Duncan, Beyer and Kleinpoppen (PDBK) measured for the first 
time the polarization correlation of the two photons emitted simultaneously by 
metastable atomic deuterium in a true second-order decay process. Single- 
photon decay from the 2S1/2 state of deuterium is forbidden and the main 
channel for the de-excitation is by the simultaneous emission of two photons 
which can have any wavelength consistent with energy conservation for the 
pair. However, in practice, because of the absorption in oxygen, the observa- 
tion window was limited between 185 nm and 355 nm. 

In  the PDBK experiment a 1 keV metastable atomic deuterium beam of 
density of about 104 cm -3 was produced by charge exchange, in cesium 
vapour, of deuterons extracted from a radiofrequency ion source. Electric field 
pre-quench plates upstream from the observation region allowed the 2S1/2 
component of the beam to be switched on and off by Stark mixing the 2S1/2 
and 2P1/2 states and, at the and of the apparatus, the beam was fully quenched 
so that  the resulting Lyman-signal could be used to normalize the two-photon 
coincidence signal. The two-photon radiation was collected and collimated by 
a pair of lenses and the polarizers were of the pile-of-plates type. 

Measuring R(22.5~ R(67.5 ~ and Ro, P B D K  obtained 5 -  0.268 ___ 0.010, 
in agreement with the quantum-theoretical prediction 3qm ---- 0.272 __+ 0.008, but 
in violation of Freedman's strong inequality by slightly more than two stan- 
dard deviations. 

In an extension of the previous experiment [79] the circular polarization 
correlation was measured by placing achromatic quarter-wave plates in each 
detection arm between the linear polarizer and the source. The obtained results 
did not violate Freedman's inequality and would have disagreed with the 
quantum-theoretical predictions if the quarter-waves plates had been assumed 
to be perfectly achromatic. With the introduction of a considerable degree of 
achromaticity PDBK could reconcile their observation with theory, considering 
also imperfect parallelism of the incoming photons. I t  is surprising however 
that  the only two measurements of circular polarizations in E P R  experiments 
(the present one and the already discussed Clauser[68] experiment) led to 
results of difficult interpretation. 
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9) Hassan,  Duncan,  Perrie, Beyer and Kleinpoppen [80] 

These authors  inserted in the appara tus  of the previous experiment  a 4/2 
plate in one detection arm between the polarizer and the photomultiplier .  By 
rotat ing the fast axis of the half-wave plate through half  the angle of rotat ion 
of the transmission axis of the linear polarizer, it was possible to ensure t ha t  
the planes of polarization of the two photons were always parallel just  prior to 
detection in the photomultipliers.  The results of this experiment  led to 
5 = 0.271 +_ 0.021, in violation of Freedman ' s  strong inequal i ty and in agree- 
ment  with the quantum-mechanical  prediction gum = 0 . 2 7 2 _  0.008. 

Garuccio and Selleri [81] had proposed a mechanism accounting for the 
observed violation of the CHSH addit ional  assumption,  which was based on 
the idea of polarizat ion-dependent ((enhanced)) detection of the photon pairs. 
The results of this experiment  are inconsistent with the Garuccio-Selleri mech- 
anism which is, therefore, ruled out. There remain other possible mechanisms, 
as shown in the final section of this review. 

10) Hassan,  Duncan,  Perrie, Beyer and Kleinpoppen[80] 

In a fur ther  experiment an addit ional  linear polarizer was inserted on 
one arm of the detection systems: in this way the first photon crossed two 
polarizers (a, a') while the second one crossed just  one polarizer (b). The 
orientat ion of polarizer a was held fixed, while polarizer b was ro ta ted  through 
an angle a - b in a clockwise sense and polarizer a' through an angle a' - a in 
the opposite sense. The ratio R (a - b; a' - a) /R (a - b; oo) was measured, whe- 
re R ( a -  b; a ' - a )  was the coincidence rate with all polarizers in place and 
R (a - b ;  oo) the coincidence rate with polarizer a' removed. The results are in 
good agreement with the quantum-mechanical  predictions thus indicating once 
more t ha t  a polarizat ion-dependent  ((enhanced)) photon detection was not  
responsible for the violations of strong inequalities. 

A summary  of some of the experimental  results on the E P R  paradox 
discussed above is given in table I I I .  

TABLE III. - Weak and strong limits of Bell's inequality. The quantities F, 6, S have been 
defined in eqs. (2.70), (2.142), (2.86), respectively. 

Experimental Weak Strong Quantum Quantum 
tests inequalities inequalities rain. values max. values 

[63] -- 0.80 _< F _< 0.20 10 -6 _< F _< 0.036 - 0.0036 0.040 
6 _< 6.9 6 _< 0.25 0.301 

[64] - 0.85 < F _< 0.15 - 0.002 _< F <_ 0.018 - 0.0029 0.019 
6 _< 12.02 6 _< 0.25 0.269 

[67] -- 0.84 __ F _< 0.16 - 10 -4 _< F < 0.017 - 0.0016 0.019 
6 < 13.74 6 < 0.25 0.284 

[70] - 0.85 < F _< 0.15 - l0 -5 <_ F _< 0.014 - 0.0017 0.016 
6 < 16.67 6 < 0.25 0.308 

[72] 8 _< 2 S < 0.027 0.036 
[78] - 0.82 < F _< 0.18 -- 0.002 < F _< 0.037 -- 0.0034 0.038 

6 _< 6.25 6 _< 0.25 0.263 
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2"5.3. E x p e r i m e n t s  u s i n g  c o r r e l a t e d  t w o - p h o t o n s  i n t e r f e r -  
e n c e .  Following a proposal by Franson[82], a new form of fourth-order 
interference experiment with two photons has recently been studied with 
a view to testing Bell-type inequalities. The basic idea of the experiment is as 
follows: two photons in an entangled quantum state, produced by a common 
source, travel along arms A and B to two detectors D~ and Ds (fig. 1). The 
photons can travel either directly along the shorter path or via a longer path 
involving reflections from two beam splitters and two mirrors, as shown in 
fig. 1. The difference in propagation time or length between the longer and the 
shorter paths is the same in both arms and is much greater than the coherence 
time or length of each photon wave packet. Now, if one looks for simultaneous 
detections by both D A and Ds, quantum mechanics predicts interference effects 
between the different two-photon probability amplitudes, though the single 
detection rates registered by D A and Ds are not expected to show any 
interference effect. Quantum nonlocality in such an experiment is considered to 
arise from the fact that  the detectors are widely separated and the wave 
packets of the photons along the two arms do not overlap. 

Fig. 1. - The Franson exper iment  with fourth-order interference. ~ is a source of  correlated 
photon pairs, PA and Pa  are detectors.  

To see in more detail the violation of Bell-type inequalities predicted by 
quantum mechanics for this case, let us consider a typical outline of the set-up 
for the experiment as shown in fig. 2. The interferometer basically consists of 
the single-photon interferometers for observing the correlated pairs of photons 
71 and 72 produced by appropriate atomic-cascade transition or in parametric 
down conversion using a nonlinear crystal. Since the difference AT in transit 
times along the longer and shorter paths are assumed to be the same for both 
interferometers, the total probability amplitude A T for photon 1 (o)1) to be 
detected in D 1 and photon 2 (c%) to be detected in D 2 at the same time is 
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given by 

(2.143) A v = Ass + exp [i (r + r exp [i (co 1 + ~o2) AT]ALL + 

+ exp [ir exp [ioolAT]ALs + exp [ir exp [io~zAT]AsL. 

Here ALs is the  jo int  probabi l i ty  ampl i tude  for 71 and 72 to have t ravel led 
along pa ths  L 1 and S: ,  and  similarly for ASL, Ass, and  ALL; r and  r are the  
relative phase shifts in t roduced  in the  arms L 1 and L: ,  respectively.  The 
coincidence rate  registered in D 1 and D 2 is propor t ional  to A*A T. 

L2 

F2 F1 

f 

L1 

M 1 ' 

Fig. 2. - Bell-type experiment for fourth-order interference. For photon Yl (i = 1, 2) M i and 
M} arc semi-transparent mirrors, Pi and P} are photodetectors, ~i is a phase-shifting device and 
S i and L i are the short and the long path, respectively. 

Now, let AT be chosen m u c h  larger t h a n  the  first-order coherence t imes,  
bu t  m u c h  smaller t h a n  the  lifetime of the  initial s ta te  and such t h a t  it exceeds 
the  wid th  of the  coincidence resolving t ime. Then  we have 

(2.144) ALS = ASL = 0 

and  eq. (2.143) reduces to 

(2.145) A T = Ass + exp [i (r + r exp [i (01 + o~2) AT]ALL. 

In  ref. [82] it is shown t h a t  eq. (2.145) can be app rox ima ted  by the  following 
formula:  

(2.146) A T = A (1 + exp [i (r + r exp [i (coi0 + 0)20 ) AT]), 

where COlo and  ~O2o are the  centre frequencies (about  which spreads in frequen- 
cies are considered) and  Ass = ALL = A. F r o m  eq. (2.146) one obtains  the  
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coincidence rate given by 

(2.147) R c = 4A 2cos 2(r - r 

where 

1 
(2.148) r  = =r 

Z 

1 
r  ---~ --  2 [r  -~- (0)10 -~ 0)20) AT]. 

One immediately notices that  the coincidence rate of the form given by 
eq. (2.147) violates Bell-type inequalities where relative angles between polar- 
izer settings are replaced by differences in relative phase shift. 

A number of experiments [83-86] have been performed to check the quan- 
tum mechanically predicted oscillation effects in the coincidence rate given by 
(2.147) and the results are consistent with quantum predictions. However, mere 
verification of (2.147) is not sufficient to claim a true nonlocal effect; for that  
one has to demonstrate an unambiguous violation of Bell-type inequality 
without any subsidiary assumption. So far, this type of experiments have only 
shown violation of Bell-type inequalities derived with a subsidiary assumption, 
viz.  the no-ehnancement postulate. As acknowledged in one of the papers [85]: 
(fin principle, detection efficiences approaching 100~o could be achieved in this 
type of experiment and it may be possible to demonstrate a violation of the 
strong form of Bell's equatiom. In this connection it may be noted that  
technological developments related to the solid-state photon counting detectors 
in the near infrared look promising and efficiences of the order of (50 - 60)~/o 
are now feasible. 

2"5.4. N e w  e x p e r i m e n t a l  p r o p o s a l s .  New ideas for experiments on 
the EPR paradox in elementary particle physics will be discussed in the next 
subsection. Here we will instead present some important improvements of the 
experiments performed with pairs of atomic photons which have been sugges- 
ted. 

The first idea, due to Falciglia, Garuccio, Iaci and Pappalardo [871, is based 
on the introduction of the source of atomic-photon pairs into a (10 ~ - 10 z) G 
magnetic field. For a (0, 1, 0) cascade the intermediate J = 1 atomic level splits 
into three levels with mj =0,  + 1, the energy separation being FtsB (/~B is the 
Bohr magneton, B the magnetic field). As is well known, the mj = 0 state does 
not contribute if the photons propagate in directions parallel/antiparallel to 
that  of B. There remain two types of atomic transitions for the emission of the 
photon pair: 

1) (J = 0, mj = 0)---~(J = 1, m I = + 1)--~(J = 0, mj = 0). This leads to 
the emission of a photon pair in the polarization state I R~ >IR~ >. 

2) (J = 0, mj = 0)---*(J = 1, m~ = - 1)---~ (J = 0, mj = 0). This leads to 
the emission of a photon pair in the polarization state [L~ >[L~ >. 

Therefore, if the photons are detected along + B and if the energy separation is 
large enough to allow one to detect, at least in principle, the energy difference 
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between process 1) and process 2), one expects (paradoxical) state vectors 
(2.131) to reduce themselves to a (nonparadoxical) mixture of state vectors 
[R~)iRp) and [L~)[Lp). The correlation function Should make a sudden 
jump when the magnetic field is switched on, since the state vectors (2.131) 
violate while the mixture satisfies Bell's inequality. Therefore, the reduction of 
the wave packet, a typical quantum-mechanical  feature, finds in the case of the 
E P R  paradox a striking possibility of experimental  control. 

The zero angular -momentum states (2.131) satisfy a peculiar invariance 
condition: I f  on the trajectories of the two photons are placed quarter-wave 
plates with parallel optical axes, it is easy to show tha t  the state vectors (2.131) 
are, respectively, t ransformed into the vectors (2.132). But  the lat ter  are 
mathematical ly  identical with the former and the action of the plate is thus 
seen to have no physical implication. This means tha t  the photon  polarization 
correlations remain exactly the same, at  least for ideal plates. This prediction 
can be checked experimentally in an E P R  experiment,  by inserting a quar- 
ter-wave plate on the trajectory of each photon before the interaction with the 
analyser: the coincidence counting rates should remain the same for all relative 
orientations of the analysers' axes. 

Two experiments of the previous type have been performed and surprising- 
ly both gave results in agreement with the strong inequalities. In  Clauser's 
experiment [68] the retardat ion induced by the plates had a measured drift of 
• 8.5 ~ between different calibrations of the plates. The probabili ty for trans- 
mission plus detection of both photons for the (1, 1, 0) cascade used by Clauser 
is predicted to be 

(2.149) l r  1 2 
---- -- e_e_ F 2 (0) cos (~1 b)] Y/1/~2 , Q(a, b) ~le+e+ 1 2 _ ~2)c0s2( a _ 

where 0 is the half-angle substended by the pr imary lenses, F 2 (0) is a numeri- 
cal parameter  measuring the polarization decorrelation due to photon lack of 
collinearity; ~1 and ~2 are retardations induced by the quarter-wave plates (in 
the ideal case ~t = ~2 = u/2); the remaining symbols are the same as in (2.137). 
Clauser tried to check Freedman's  inequality 5 _< 0.250, with 5 defined in 
(2.142), and found experimentally Sex = 0 . 2 3 5 _  0.025. He claimed tha t  the 
previous result was in agreement with the quantum-theoret ical  prediction. The 
previous prediction is however incompatible with the quoted values of the 
retardations: even if one assumed a very pessimistic value of ~t - ~2 = 17 o, one 
would get from Clauser's experimental  data  5 -- 0.274 which deviates from the 
experimental  result by 1.5 s tandard deviations. 

In  the Stifling experiment [88] some interesting data  have been collected 
with polarizers kept  with fixed and parallel axes but  with varying relative 
angle ~b of the quarter-wave plates (one of them had fast axis rota ted by u/4 
with respect to the common direction of the polarizers axes, and kept  fixed, the 
other one was rotated during the experiment).  The quan tum formula for the 
double-transmission and detection probabili ty for this experiment  is 

(2.150) l ~ l  2 1 2 
( ~ )  = ~ l ~ + ~ +  -~- E _ ~ _ F c o s ( ~ I  - -  ~ 2 ) e o s 2 r  
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where the geometrical factor F - -0 .996 .  Experimentally it was found 
5 = 0.195 _ 0.016. The quantum predictions can reproduce such a value of 5, 
which does not disagree with Freedman's inequality, only by assuming a highly 
pathological value of 4 1 -  42 ~- 41 o. A more reasonable value of 4 1 -  ~2 of 
about 7 ~ that  one can deduce from the plate retardations as a function of 
photon wavelength would lead to a prediction for 3 at variance with its 
measured value. 

In conclusion we want to call attention to the fact that  the insertion of 
quarter-wave plates in E P R  experiments has been at tempted twice and that  
both the times: 

i) the predicted invariance of the relative counting rate was not ob- 
served; 

ii) Freedman's (strong) inequality was satisfied; 

iii) very strange effects had to be invoked in order to explain the data. 

The calculation of the quantum-mechanical predictions for an E P R  experi- 
ment with two plates of arbitrary orientation and with two polarizers has 
recently been performed by De Caro [89]. Several interesting cases emerge from 
this general calculation, e.g., the possibility to violate the strong inequalities 
simply by varying the plates' redardations with fixed directions of their axes. 

Several experiments have been proposed in order to overcome the distinc- 
tion between weak and strong inequalities or, in other words, in order to have 
a concrete physical situation in which the disagreement between local realism 
(Einstein locality) and the quantum-mechanical predictions is fully realized and 
is not vitiated by arbitrary additional assumptions. An interesting proposal of 
this type was made by Lo and Shimony [90] who suggested to measure spin 
correlations of two Na atoms emerging from the dissociation of a Na 2 molecule 
in a singlet state. For the detection of Na atoms better instruments are 
available than for optical photons (see, however, the critical remarks made by 
Santos [91]). Another idea was suggested by Drummond[92] who considered 
the cooperative emission of photons from excited atoms and showed that  in 
principle one can obtain quantum-mechanical correlations of two wave packets 
each containing N photons that  violate Bell's inequality. The efficiency of 
a photodector for detecting at least one of the N photons is obviously much 
larger than the single-photon detection probability (for N high enough) and 
one can thus approach the high-detection region where the distinction between 
strong and weak inequalities disappears. A partly similar situation was studied 
by Reid and Walls [93]. 

Chubarov and Nikolayev [94] considered the standard experimental arran- 
gement used in the observations of the Hanbury Brown-Twiss effect: Radiation 
from a source is split by a semi-transparent mirror into two beams and 
registered by two photon-counting detectors D 1 and D 2. Two polarizers are 
inserted in front of the detectors as in the standard E P R  experiments. These 
authors showed that  the coincidence counting rate has to obey inequalities of 
the strong type (deduced with the help of the usual additional assumptions), 
for different orientations of the polarizers. I f  the quantum states so analysed 
are photonic states with sub-Poissonian statistics, one can instead have cases 
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where the quantum-mechanical predictions lead to violations of the strong 
inequalities. 

The previous idea was extended by Ou, Hong and Mandel [95] who showed 
that  violations of the strong inequalities can be obtained even for the nearly 
Poissonian but highly correlated signals of photons pairs that  are created in the 
process of spontaneous parametric down conversion. 

A proposal for an experimental study of the E P R  paradox by using nuclear 
beta decay has been advanced by Skalsey [96]. Beta decay electrons, in cascade 
with the conversion electrons, are longitudinally polarized due to parity viol- 
ation in the weak decay. Therefore the detection of the electron direction is 
equivalent to a spin measurement. 

Study of the EPR paradox by using Rydberg atoms has been suggested by 
Oliver and Stroud [97]. Nearly 100% efficient state-selective ionizers can be 
used as detectors in Rydberg-atom experiments, and this could provide a deci- 
sive advantage over the usual EPR experiments with pairs of atomic photons. 
In this proposal the photon polarization is replaced by the two-level-atom 
Bloch vector. An interesting method for producing pairs of Rydberg atoms 
with the appropriate quantum-mechanical correlation (state-vector of the second 
type) is also proposed by these authors. 

2"6. New tests of the EPR paradox from particle physics. - The EPR para- 
dox, originally discovered in nonrelativistic quantum mechanics, is also appli- 
cable in the relativistic domain. The simplest way to realize this is perhaps to 
consider the rare but allowed decay 

u~ + e - ,  

which accounts for a fraction of about 2 �9 l0 -7 of all ~0 decays. After the 
application of C and P conservation to the decay process one can show that  in 
the centre of mass of the electron-positron pair the only possible spin state is 
the singlet state (1.24). As a consequence, the EPR paradox exists also for this 
relavistic process where, for example, the two final particles have velocities 
very near to that  of light. 

Other examples are discussed below. 

26.1. P r e l i m i n a r y  r e m a r k s .  TSrnqvist[98] pointed out an example 
involving the decay of a JJ'= O- meson r 1 of mass 2980 MeV/c 2 into 
a A-hyperon plus A-antihyperon pair (with the subsequent decays A--~ p + u -  
and A+ p + u+) was one such candidate. If  d and b are unit vectors in the 
directions of the emitted ~ -  and ~+ mesons in the p and p rest frames, 
respectively, then the suitably normalized decay rate summed over p and 
p spins is, according to quantum theory, given by 

r o ( a , b ) = l  + a l d ' b ,  

where a A = - 0 . 6 4 2 _  0.013 is the A-decay asymmetry parameter. T5rnqvist 
showed that  the above prediction disagreed up to 10% from a limit deducible 
from certain types of local realist models. However, the generality of this result 
for all possible local realist models is very doubtful. 
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Another example, investigated by various authors, is the decay of 
a jPC = 1 - - vector meson into a pair of neutral pseudoscMar mesons. Lee and 
Yang[99] were the first to point out the EPR-type features of this case 
(pertaining to the pair of kaons K~ ~ resulting from a pp annihilation), 
followed by d'Espagnat[100], Six[101] and Selleri[102]. Here we seek to 
review the present status of this example. We begin with a r6sum6 of its salient 
features. We consider specifically the decay of a spin-l_r (1020) resonance, by 
strong interaction, into a pair of neutral kaons K~ ~ 

2"6.2. E P R - t y p e  s i t u a t i o n  f o r  (I)--, K ~  Invoking charg_e conju- 
gation invariance of strong interaction, the wave function of the K~ ~ pairs 
at the time of production (t = 0) from the decay of the jPc  = 1- - state is given 
by 

(2.151) 
1 

[ q~o > = - - ~  [1 K~ >L I/~~ >R - [/~~ >L I K~ >R ], 
, /2  

where L (R) refers t_o the left (right) hemisphere. The subsquent time devel- 
opment of the K~ ~ pair is described in terms of the eigenstates of the 
effective Hamiltonian which includes weak interactions. In the situation under 
consideratio_n, the weak interactions induc_e decays of both K ~ ~o and also give 
rise to K~ ~ transition (a pure [K~ ([ K ~ >) state, evolving in time, becomes 

a superposition of lK ~ >, I/~ ~ >, and decay products. This gives rise to K~ ~ 
oscillations). The effective Hamiltonian is written as H = M -  iF~2 where 
M and F are the Hermitian mass and decay matrices, respectively. The 
eigenstates of this H are [K L > and [ K s > with the eigenvalues )~L = mL -- i~'L/2 
and )~s = m s -  i?L/2, respectively, where m L (ms) and YL (?S) are, respectively, 
the mass and the decay width of [ K L > ( [K s >); m L - m s = 0.53 �9 l01~ fi s-  1 and 
7s = 582" 101~ ]is -1, ?L = 1.12" 101~ /iS -1. We assume C P  invariance; the 
implications of C P  violation will be discussed later (paragraph 2"6.4). Note that  

1 
[KL> = ~ [ I K ~  + IK~ >], 

1 
I Ks> = ~ [ I K ~  IK ~ 

They time evolve as 

(2.152) U (t, 0) ] K L > = exp [ -  i~Lt ] I KL > + I ~L (t) > 

with a corresponding equation for [K s ). Here [ (J~L (t) > ([ (J~S (t) >) represents the 
decay products from [K L > ([ K s >); [ (~L > ([ {~S >) is taken orthogonal to the 
state [ K L > ( [K s >). C P  invariance requires that  < K L I K  s > = 0. In terms of the 
states [KL> and [Ks}, the wave function [To} given by eq.(2.151) can be 
written as 

(2.153) 
1 

I To > = - - ~  [I Ks)L I Kr >R -- I KL >rl KS)R]- 
, / 2  

The time evolution of the nonseparable form of the two-particle wave function 
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t T o } correlates the  oscillations be tween the  I K ~ } and  the  I h: ~ } s ta tes  such 
t h a t  it carries the  essence of nonlocal  correlation, reminiscent  of  the  E P R - t y p e  
si tuat ion.  I f  the  left (right) kaon  is observed to be a K ~ (strangeness S -- + 1) 
at  a par t icular  ins tan t  then  t h e  r ight  (left) kaon  can be predicted,  wi th  
cer tainty,  to be observed as a K ~ (S = - 1) a t  t h a t  same ins tant .  Alternat ive-  
ly, if the  left (right) kaon  decays in the  K S mode  (CP = + 1), t hen  the  r ight  
(left) kaon  is bound  to decay as a K L (CP = - l) a t  some fu ture  ins tant .  I t  is 
to be noted  t h a t  there is a subtle dis t inct ion be tween the  K ~  ~ and K L - K  s 
correlations; while the  former  holds only for equal  proper  t imes,  the  la t ter  is 
a t ime- independen t  consequence of the  nonseparable  form of the  wave  func- 
tion. This aspect  was discussed by Selleri [102]. 

Six[101] suggested t h a t  an exper imenta l  tes t  of this E P R - t y p e  situati_on 
would be the  measu remen t  of the  jo in t  probabi l i ty  l~_ _ (tl, t2) of  a double  K ~ 
observat ion  (i.e. on two sides), at  t imes t 1 and t 2 on the  left and  right,  
respectively.  The  quan tum-mechan ica l  predic t ion for ~ _ _  (tl, t2) is given by 

~ _  _ (tl, t2) = I ( K ~  K ~ T (ta, t2) } [2 , 

where [ ~ ( t l ,  t2)} is the  s tate  evolved f rom [ T o }  at  t = O: 

1 
(2.154) IT( t1 ,  t2) ) = - ~ { ] K s ) L ] K L } a e x p [ - - i ( 2 s t  1 + ,~Lt2)]- 

-- [KL }L I Ks }Rexp [-- i (2Lt I + 2stz)]} 

whence on obtains  

(2.155) O_ _ (tl, t2) = ~ {exp [ -  (~stl + YLt2)] + exp [-- (~Ltl + Yst2)] -- 

-- 2 e x p  [-- ~(t 1 + t2 ) ]cosAm( t  1 - t2)}, 

where 7 = ( ? L + ~ S ) / 2  and A m = m  L - m  s . 
Selleri der ived an upper  bound  on g2_ _ (ta, t2) for the  K ~ - ~ o  sys tem using 

a general a r g u m e n t  based on the  not ion  of local realism: 

1 
(2.156) ~ _ _  (t,, t2) _< ~ { e x p [ - -  (~s tt + ~/Lt2)] -~- e x p [ - -  (])Ltl + 7st2)]}. 

This  local realistic upper  bound  differs f rom the quan tum-mechan ica l  predic- 
t ion (2.155) by  the absence of the interference term.  Q u a n t u m  mechanics,  
therefore,  leads to a predic t ion t h a t  violates eq. (2.156) whenever  the  interfer- 
ence t e rm is posit ive,  t h a t  is, whenever  cos A m ( t  1 - t 2 ) <  0. The  m a x i m u m  
possible d iscrepancy is calculated to be abou t  12~/o for ~s ( t l -  t2) -~ 5. 

I t  is i m p o r t a n t  to note  t h a t  the exper imenta l  s tudy  suggested in the 
context  of the  eq. (2.155) and (2.156) has an intrinsic handicap:  for meaningful  
results, t 1 and t 2 m u s t  be shorter  t han  the  lifetimes of K L and Ks, i.e. one 
requires tl, t 2 _< 10 -1~ s. The  uncer ta in t ies  involved in ensur ing t h a t  the 
observat ions  are at  the  specified ins tants  t 1 and  t 2 would be qui te  appreciable 
wi thin  such a small t ime interval.  This difficulty may,  however ,  be circum- 
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vented by considering the time-integrated joint probabilities. This aspect h_as 
recently been examined by Dat ta  and Home[103] for the case of the B~ ~ 
system. This system is almost identical to the K~ ~ system, the only differ- 
ence being that  YL = YS (=  Y ~ 1012 ]iS-i) for the eigenstates of the B~ ~ 
system which are analogous to the I K L ), I K s ) states. They are denoted by 
I B n )  and I BL) with masses m s and mE, respectively (m u > mE). 

2"6.3. E P R - t y p e  t e s t  u s i n g  B ~  ~ s y s t e m .  Recent experiments 
on the decay of the spin-1 Y (4s) vector meson into a pair of neutral pseudosca- 
lar mesons B~ ~ have a_ttracted considerable attention in view of the search 
for evidence of the B~ ~ mixing. Dat ta  and Home [103] have analysed the 
possibility of investigating experimentally the El)R-type quantum nonlocal 
correlations within the framework of the current experiments on the decay 
Y (4s)--~ B~ ~ Here one co_nsiders the time-integrated joint probabilities, 
remembering_that  B ~ and B ~ can be identified by their decay channels: 
B ~  B ~  +vX where ~ and X denote lepton and hadron, respective- 
ly. From the decay kinematics of Y (4s)--~B~ ~ it can be shown that  the 
spatial separation between B~ ~ is of the order of 0.1 mm (much larger than 
the de Broglie wavelength of the particles involved) after a time-interval of the 
order of the life-time of the decaying particles. 

The experimental arrangement currently in use to study Y (4s)-~B~ ~ is 
designed to measure the parameter R defined as follows: 

N++ + N__ 
(2.157) R = , 

N+_ + N  + 

where 

N+ + = total number of double-B ~ decays (correspoding to the observa- 
tion of double ~ § decay products on both sides); 

N_ _ = total number of double-B ~ decays (corresponding to the observa- 
tion of double ~ -  decay products on both sides); 

N+_ = total number of BO decays on the left associated with B ~ decays 
on the right (corresponding to the observation of ~ + decay products on the left 
associated with ~ -  decay products on the right); 

N_ + = total number of B ~ decays on the left associated with ~0 decays 
on the right (corresponding to the observation of ~ - decay products on the left 
associated with ~ + decay products on the right). 

The parameter R is calculated by evaluating the quantities Nii (i, j = _ ). The 
general expression for Nii is given by 

(2.158) Nij = 2N02z dt 1 dt2(]~i (tl, t2), 
0 tl  

where g2ii(tl, t2) is the joint probability for observing the decay products ~i, ~j 
on two sides at times t 1 and t2, respectively; N o is the total number of Y(4s) 
decays, and 2 is the semi-leptonic decay width of B ~ decaying into a ~ - (wich is 
equal to the semi-leptonic decay width of B ~ decaying into a ~ +). The 
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quantum-mechanical expressions for ~ij ( t l ,  t2) derived from the nonseparable 
form of the wave function (2.154) are given by 

(2.159) 1 {2exp[-- ?(t 1 + t2) ] - -  ~ +  + (t , ,  t2) = ~ _ _  (tl ,  t2) = 

-- 2 exp [-- ? (t 1 + t2) ] cos Am(t 1 --  t2 )} ,  

(2.160) l{2exp[_ ?( t  1 + t2) ] + ~+_ (t~, t2) = O _  + ( h ,  t2) = 

+ 2exp[- -  ?(t 1 + t2) ]cosAm(t 1 - t2)}, 

where Am= m H - m L. Using eqs. (2.159) and (2.160) we obtain from (2.158) the 
following quantum-mechanical values for Nij: 

(2.161) N++ -- N _ = (No 22) [(1/472 ) - (1/4a2)], 

(2.162) N+ _ = N + = (No A2) [(1/472) + (1/4a2)], 

where a 2 = ?2 + (Am)2. This leads to the following quantum-mechanical predic- 
tion for the parameter R defined by (2.157): 

x 2 

(2.163) RQM -- 2 + x 2' 

where x = Am/?. The result given by eq. (2.163) hinges on the quantum 
nonseparability which is built into the wave function (2.151) and is assumed to 
be maintained even after the particles get well separated in space. The 
experimental verification of (2.163) will, therefore, constitute an interesting 
test for quantum nonseparability in this EPR-type  situation. 

I t  should be noted t h a t  RQM is model dependent, since no independent 
experimental data is available at present. Confining our attention within the 
ambit of the Glashow-Weinberg-Salam standard model of electroweak interac- 
tions, we make the following observation. There are two types of B ~ mesons: 
B ~ (bd quark-antiquark bound state) and B ~ (bs quark-antiquark bound state). 
Y (4s) decays into the B ~ _~o system only (the B~  ~ channel is forbidden by 
the kinematics considerations). In this case, the precise prediction of the 
standard model as regards Am/F  suffers from certain inherent uncertainties 
which are now being debated. 

The _most recent experimental study indicates strong evidence for substan- 
tial B 0 -B 0 mixing and the value of R is claimed to be 0.21 _ 0.08 [104]. Dat ta  
and Home [103] have shown that  in this case Furry's  hypothesis leads to the 
prediction R = 1, which is obviously ruled out by the experimental result. 

2"6.4. Q u a n t u m  n o n l o c a l i t y  a n d  C P  n o n c o n s e r v a t i o n .  In 
a 1987 paper [105] Datta,  Home and Raychaudhuri  (DHR) have pointed out 
a curious gedanken example of the EPR paradox using CP noninvariance, 
which has evoked considerable controversy. The example involves a pair of 

u 0 correlated neutral pseudo-scalar mesons (M -M ) originating from the decay of 
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a j P c =  1 - -  vector meson--typical intances are the decays of the r 
resonance into K~ ~ and Y(4s) into B~ ~ The exponentially decaying 
states, with the associated masses and lifetimes, are I M L ) and ]M S ) (which 
are certain linear combinations of [ M ~ ) and ]M ~ )); in the standard formalism 
(outlined in the paragraph 2"6.2) these eigenstates of the effective Hamiltonian 
are used to describe the quantum-mechanical time-evolution of the system. In 
the presence of CP nonconservation, ]M L ) and [M s ) are nonorthogonal. This 
nonorthogonality of the physically relevant states (unique characteristic of the 
quantum-mechanical t reatment of CP nonconservation) gives a new twist to 
the E P R  paradox. 

Taking the cue from paragraph 2"6.2 and ref. [105],_the two-particle wave 
function at the time of production ( t - -0)  of the M~ ~ pairs is given by 

(2.164) 
1 

] ~o > = ~ [] MsML > - ]MLMs >], 

where N is a normalization factor and the first (second) member of each pair 
refers to the left (right) hemisphere. 

Following the t reatment  in paragraph 2"6.2, the time-evolved wave function 
can be written in the form 

(2.165) [ ~ (t)) = C 1 I ML~s ) + C 2 I Ms~L ) + 0 3 IX >,  

where cl, c2, c 3 are time-dependent constants, and 

IX > "~ I MsML ) -- I MLMs > 

represents the undecayed piece with ( X l X ) = 1. ] OL ) ( ] OS )) corresponds to 
the decay products on the right from ]M L ) (] Ms)) .  The important difference 
between eq. (2.165) and the EPR-type  correlations in other standard examples 
lies in the fact that  I M L ) and I M s ) are nonorthogonal eigenstates of the 
effective Hamiltonian H = M -  iF~2, where M and F are noncommuting. In 
writing eq. (2.165) we have not considered those components of the wave 
function which contain decay products on the left, as they are not relevant for 
ou_r subsequent discussion which is focused on the flux of, say, undecayed 
IM ~ ) on the left. 

I t  can be easily seen from eq. (2.165) that  the above flux on the left would 
involve a contribution due to the overlap between the decay product states 
[# i  ) and los ) on the right, which is nonvanishing in the presence of CP 
noninvariance. Note that  < ~L (t) I ~$ (t)) is proportional to ( M L I Ms ), contri- 
bution to this nonorthogonality comes essentially from the common decay 
products of M i and M S (in the presence of CP violation). 

That the statistical property of the particles on the one side has some 
formal dependence pertaining to the overlap between the physical states of the 
particle on the other side is the key feature of the example suggested by DHR. 
Whether this overlap can be physically tampered (even in principle) by suitable 
((measurement)) is the controversial issue raised by this example. 

In the absence of CP violation, the mutually orthogonal I~L > and I~ s ) 
states can be unambiguously distinguished. However, in the presence of a small 



BELL'S THEOREM AND THE EPR PARADOX 71 

but  nonvanishing CP violation, if one can partially discriminate between p ~L ) 
and [qO s ), on the one side, by exploiting the differences in physical attributes,  
there arises a possibility to affect the above overlap, thereby leading to 
a nonlocal effect on the flux of undecayed kaons, on the other side. Such 
a scheme, of course, envisages measurements  partially destroying the coherence 
of the original pure state and leading to statistical mixtures of nonorthogonal  
states. Concept of this type of nonor thodox measurement  (partial collapse), 
though unconventional,  is not  inadmissible and can be dealt with, in principle, 
by a suitable generalization of the s tandard quan tum theory of measurement,  
as has been shown by various authors [106]. To digress a bit, we observe tha t  
there are various examples of realistic measurements  such as approximate 
measurements  or nonideal measurements  which cannot be described by the 
s tandard scheme based on orthogonat projections only. Ivanovic[106] and 
Dieks[106] have analysed the viabilities of possible schemes to differentiate 
between nonorthogonal  states. Partial distinction between nonorthogonal  sta- 
tes, in a sense, involves unsharp or imprecise simultaneous measurement  of 
noncommut ing  observables, a concept whose tenabili ty has been explicitly 
analysed by various authors [107]. 

I t  needs to be noted tha t  in their original t reatment ,  D H R  had first 
assumed the collapse to a mixed state comprising of nonorthogonal  components  
to be total and then the error involved (due to an overlap between the 
probability distributions of the invariant  masses of the decay products  corre- 
sponding to the nonorthogonal  states) was estimated. I t  was argued by D H R  
tha t  the error could, in principle, be made small compared to a suitably defined 
measure of the nonlocal effect. However, the scheme for est imating this error 
has certain ambiguity,  depending upon the choice of the parameter  used as 
a measure of the error. This ambiguity can be avoided by directly incorporating 
the notion of partial collapse and by properly taking the probabili ty conserva- 
tion into account through a formal density matr ix t reatment ,  as claimed by 
D H R  in their subsequent paper [108]. Of course, if one chooses to confine one's 
a t tent ion only to s tandard quan tum measurements  involving, for example, the 
invariant  masses of the individual and mutual ly  orthogonal decay product  
components  of l~L)  and [~s ) ,  then there will be no nonlocal effect at the 
statistic level [109]. However, the new feature in this case is whether  one can 
envisage nonor thodox or generalized measurements  in the sense of selection 
processes to t inker with the overlap between t ~L ) and t 4)s ) which contributes 
to the flux of undecayed kaons on the other side. One such possibility, albeit at 
the gedanken level, is to exploit the difference in the lifetimes of the states 
I M L )  and I M s )  to select out  partially the decay products  corresponding to, 
say, the I r ) state. This may  be done, for example, by using an apparatus,  on 
the one side, which registers only the decay products  originating within the 
specified t ime interval (say, AT) around the t ime of the order of the lifetime of 
I ML )  (*). These decay products will come predominant ly  from I ML) .  There 
will also be a small but  nonvanishing probabili ty (which can be made as small 

(*) This can be viewed as a nonorthodox measurement of the decay times within a specific time 
interval; a simple model of the measuring apparatus which can register the decay products along 
with their time of origin has been discussed by Sudbery [110]. 
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as we like at the level of a thought experiment by assuming the lifetimes of 
]M L > and I M s > to be widely different) of the decay products from I Ms > being 
registered during AT. But the relevant point is whether the overlap between 
the common decay products from ]M s > (which originated well before AT) and 
those from ]M i > during AT can get affected by this process. 

H a l l [ I l l ]  and Ghirardi et al. [112] have argued on the basis of the opera- 
tion-effect formalism (using the first representation theorem[l l3])  that  the 
type of wave function collapse envisaged in the DHR example necessarily 
corresponds to a measurement which simultaneously affects the two separated 
subsystems; this would ensure that  no action at a distance is involved here. 
Relationship of this abstract mathematical t reatment with specific selection 
processes like the one mentioned above and its generality to cover all possible 
realistic models of nonorthodox measurements need to be carefully examined 
for further clarification. 

To sum up, the DHR example raises the issue of nonorthodox measurements 
and of their compatibility with locality in the context of the E P R  paradox, in 
arena hitherto left unexplored. Since CP noninvariance implies time-reversal 
asymmetry (given the C P T  theorem) one may also wonder whether time- 
irreversible interaction, in general, may introduce a new element in the quan- 
tum-mechanical t reatment  of the EPR-type  situations. 

2"6.5. E P R  c o r r e l a t i o n s  a n d  n o n l o c a l  s i g n a l l i n g .  There are 
formal proofs of a no-go theorem in quantum mechanics which rules out the 
possibility of signalling (nonlocal effect at the statistical level) using EPR-type  
correlations. These proofs are of two types, one based on the use of the 
operation-effect formalism [114] and the other on the standard formalism of 
quantum mechanics [115]. 

The first type has recently been critically analysed by Home and Srini- 
vas [116]. Since the operation-effect formalism is too abstract, we will confine 
our attention to the second type, with reference to an elegant version given by 
Eberhard and Ross Ill7].  

The proof uses the usual formalism of nonrelativistic quantum mechanics. 
Let the initial pure state be 

(2.166) 1 7 " ( 0 >  = ~ e a l a >  
Q 

with < 7' (t) I 7" (t)> = 1. Then, for any observable A we have 

(2.167) < A > = < 7" (t) lA 1 7" (t) > = < 7" (0) IA (t) l 7" (0) > 

with A (t) = U*(t) A U (t) and 1 7" (t) > = U (t) 1 7" (0) >. Let a measurement M be 
performed at S on 17" > at time t~. After an infinitesimal time lapse t, this will 
turn 17" > into a mixed state with components 

(2.168) 
P. 

l a > - , / p  (t) > , 

where Pa = l a><al  is the projection operator for the state l a> and 
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p ( a )=  [% [2. Note that  here one assumes ideal measurement and applies the 
standard form of the collapse postulate. The conditional probability of an 
outcome A (a) for a measurement of A performed by R at time t, on the 
collapsed state [a > (t~ + t) is given by 

(2.169) Pa = < a (t~ + t) l U*,,,,s A Ut, t~ l a (t~ + t) > , 

where U t r ,  t s is the evolution operator between times t~ and t,: 

(2.170) Ut,,t ~ = U (t,) Ut(ts). 

Using eq. (2.168), we obtain 

1 
(2.171) Pa -- 

p (a) 
- - - <  ~(t~)IP~U*~,,t AU,r, ,  P~I ~ ( ~ ( t ~ )  >. 

Since R does not know the result of the measurement made at S, the relevant 
expectation value of A is 

(2.172) <A>'  = ~ p ( a ) p  a = 
a 

= ~ ( ~ ( t s ) l P a U ( t s )  U*(t , )A U( t , )Ut ( t~)Pal  T(t~) > = 
a 

= ~ (  ~ (0) IP ,  ( t~ )X( t , )D  a (t~)I T (0)>, 
a 

where 

(2.173) 71 fir) = Ut(tr) A U fir) 

and 

(2.174) fia (t,) = Ut(ts) PaU (t,). 

Using the commutation relations 

(2.175) [~ (tr) ' / 5  (ts) ] = 0, 

which are valid whenever the spatial separation between the subsystems is 
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such that  they are no-interacting and their Hiibert spaces are disjoint, we get 

(2.176) ( A ) ' =  ( T  (0)] (~/Sa (4))A (t,)] T(0) ) .  

Notice that  spacelike separations are sufficient but not necessary to guarantee 
eq. (2.175): while in relativistic field theory eq. (2.175) is, in fact, not valid for 
timelike separations, in nonrelativistic quantum mechanics eq. (2.175) is valid 
also for timelike separations as long as the subsystems are noninteracting, 
which is indeed the case in the EPR-type examples. 

Comparing eqs. (2.167) and (2.176), we can see that  ( A ) ' =  ( A )  provided 

(2.177) ~./3a (4) = 1. 
G 

This completes the proof given by Eberhard and Ross. 
A critical analysis of this proof has been given by Ghose and Home[ l l8 ]  

who have argued that  condition (2.177) can be circunvented for timelike 
separated orthodox or ideal measurements within the framework of nonrelativis- 
tic quantum mechanics or for nonorthodox measurements. Ghose and Home 
have pointed out that condition (2.177) holds for orthodox measurements 
provided the post-measurement ensemble comprises entirely the incoherent 
components given by eq. (2.168). However, measurements are possible which 
do not necessarily conform to this ideal situation. For example, one can 
conceive of an incomplete measurement (recently designated as incomplete 
collapse by Peres and Ron[ l l9] )  which does not completely destroy the 
coherence of the original state. For such measurements, the summation over 
the collapsed states occurring in eq. (2.177) does not include the entire 
post-measurement state and so eq. (2.177) does not hold good. To what extent 
the no-go theorem in its usual form can be reformulated to cover such nonideal 
cases requires further careful studies. 

One can, of course, take the attitude that  there is nothing to worry about 
having superluminal signals in a nonrelativistic theory. As Pearle [120] puts it: 
(tit is surprising that  nonrelativistic quantum theory does not allow super- 
luminal communication to take place via correlated particles (e.g., EPR phe- 
nomena) when it can take place by other mechanisms (e.g., wave packet travel 
or spread)~). What prevents such superluminal signals in the usual EPR-type 
situations (subject to ideal measurements) in ordinary nonrelativistic linear 
quantum mechanics is the commutativity of the measurement operators for 
noninteracting subsystems. In this context it should be mentioned that  the 
formulation of hidden-variable theories satisfying the no-signalling condition, 
(,a condition weaker than the Einstein-Bell locality conditiom), has been dis- 
cussed by Roy and Singh [121]. An interesting step in the direction of develop- 
ing realistic treatments of field theory has also been taken by Roy and 
Singh [122] who have analysed a possible framework of what they call (,general- 
ized beable quantum field theory,). 

Here it is important to stress that  the issue of superluminal signalling in 
quantum-mechanical treatment of the EPR-type examples and its incompati- 
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bility with special relativity can be meaningfully discussed on the basis of 
a rigorous formulat ion of the E P R  problem in quan tum field theory. Bohm et 
al. [123] have analysed the E P R  problem in quan tum field theory using the 
SchrSdinger picture. However, in the SchrSdinger as well as in the Heisenberg 
pictures, the theory is divided into two sections, one giving the kinematical 
relations between various quantit ies at the (~same instant  of time)~ (for example, 
equal-time commuta t ion  relations) and the other determining causal relations 
between quantities at different instans of t ime (e.g., the SchrSdinger equation). 
This way of separating the theory into two sections is nonrelativistic in spirit. 
The situation becomes more acute in the case of collapse involving the notion of 
a universal time, an inherently nonrelativistic concept. Ghose and Home [124] 
have suggested tha t  the Tomonaga-Schwinger formalism in the interaction 
picture should be more appropriate in this context. In  this formalism the 
earlier-mentioned separation can be carried out in a manifestly covariant 
fashion and as shown by Ghose and Home it provides a manifestly covariant 
description of an E P R  correlated state defined on a curved spacelike surface. 
This avoids the notion of a universal time, and clearly demarcates between the 
completion of the measuring process on a member  of an E P R  pair, and its 
nonlocal effect on the state of its dis tant  partner.  

Fur ther  investigations are called for to analyse the E P R  problem in more 
detail and critically within the framework of quan tum field theory. 

3. - A t t e m p t e d  s o l u t i o n s  o f  t h e  EPR paradox .  

3"1. The quantum potential approach. - In  the quantum-potential  model, 
originally proposed by Bohm [125] and later elaborated by Bohm an Hiley [126], 
an a t t empt  is made to formulate a self-consistent causal interpretat ion of 
quan tum mechanics on the assumption tha t  an individual microphysical en- 
tity, such as an electron, follows a casually determined trajectory and has an 
associated wave field which satisfies the SchrSdinger equation. The underlying 
motivat ion has been expressed by Bohm [127] as follows: ((We should say that  
quan tum mechanics does not  explain anything; it merely gives a formula for 
certain results. And I 'm  trying to give an explanatiom>. The central idea is tha t  
quan tum mechanics can be understood in a realistic spirit and conceptually 
clear way by assuming tha t  an individual electron, for example, is subject not  
only to the classical potential  V but  also to the quan tum potential  Q, which 
depends on the wave field T (x, t) causally determined by the SchrSdinger 
equation in any particular case: 

(3.1) Q = 
h 2 V2R 

2m R ' 

where R 2 = I T 12 and m is the mass of the particle. The action of the quan tum 
potential  Q is regarded as the key source of difference between classical and 
quan tum theories. I T 12 is interpreted as the probabili ty density for the particle 
to be at a certain position, in contrast  with the s tandard interpretat ion tha t  it 
corresponds to the probabili ty of finding the particle there in a suitable 
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measurement.  I t  should be noted tha t  Q is not  changed when T is multiplied 
by an arbitrary constant.  This means tha t  the effect of Q depends only on the 
form of the guiding wave field T and is independent  of its s trength (i.e. the 
amplitude) unlike the case of classical waves. Another  striking feature of the 
quan tum potential  Q is tha t  in the case of the many-body system it cannot be 
expressed as a fixed and pre-assigned function of the individual particle 
coordinates; rather it depends on the quan tum state T of the system as 
a whole. To see this explicitly, let us consider the case of two particles with 
mass m. The wave function T ( x l ,  x2, t) satisfies the SchrSdiner equation 

a T  h 2 
(3.2) ih a--/= - 2-m [17~ + 17~] T + V T ,  

where I71 and 172 refer to particles 1 and 2, respectively. Writ ing 

(3.3) T = Rexp  [iS~h] 

and defining 

(3.4) P = R 2 = T ' T ,  

we obtain from (3.2) 

(3.5) at + Vl VlS)+ V2 �9 V2S) = 0  

and 

a s  ( v l s )  2 ( v2s)  2 
(3.6) + - -  + - - +  V + Q = O, 

at 2m 2m 

where 

V,2R  
(3.7) Q = Q(Xl, X2, t) = -~ ~ 

2 m \  R + - - n / "  

Evident ly  eq. (3.5) describes the conservation of probability with density 
P = T * T  in the configuration space of the two particles. Equat ion  (3.6) is the 
Hamil ton-Jacobi  equation for the system of two particles, acted on not  only by 
the classical potential  V, but  also by the quan tum potential  Q. The latter 
depends on the coordinates (x 1 and x2) of both particles in such a way tha t  it 
does not  fall off as Ix 1 - -X21-- - -~  (30. One, thus, obtains the possibility of 
a nonlocal interaction between the two particles. Bohm [128] presents his out- 
look as follows: (~This sor~ of nonlocality would, for example, give a simple and 
direct explanation of the paradox of Einstein, Podolsky and Rosen, because in 
measuring some property of one of a pair of particles with correlated wave 
functions, one will alter the (~non-local,) quan tum potential  so tha t  the other 
particle responds in a corresponding way,>. 
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However, the above response is instantaneous and hence it would appar at 
first sight to contradict the theory of relativity, which requires that  no signals 
be transmitted faster than the speed of light. To annul this possibility of 
a casual paradox within the framework of the principle of relativity, it is 
argued that  the state dependence and fragility of the instantaneous connection 
between the two spatially separated particles is such that  it is not controllable 
in the way required for transmitting a signal (or, coded information). The 
nonlocal connection is manifested only in the correlations (revealed through 
a comparison of the experimental data independently gathered at each of the 
two particles) and not at the level of statistical properties of the particles at 
each end of the connection. I t  is generally believed that  these nonloeal correla- 
tions can never be used as a signalling device. Mermin [129] has commented: 
((While it is wrong to suggest that  EPR correlation will replace sonar, it seems 
to me something is lost by ignoring them or shrugging them off~). The propon- 
ents of the quantum potential school maintain the following standopoint, as 
expounded by Hiley[130]: ((... relativity in the quantum-potential approach 
comes out as a statistical effect, not as an absolute effect... The problem is how 
are we going to design experiments which will go beyond the statistical level to 
see these instantaneous connections. That 's not clear at the moment~>. Here it 
may be noted parenthetically that  Einstein was not sympathetic to the 
quantum-potential point of view, primarily because he insisted on a description 
of physical reality in space-time with only local interactions. According to 
Bohm and Hiley [131], the ((most fundamentally new ontological feature)) im- 
plied by the quantum theory and illustrated in the EPR paradox is that  an 
independent dynamical significance can be attr ibuted to the whole system, 
which is not reducible to the properties of its components and their interre- 
lationships. I t  is this notion which Bohm refers to as unbroken wholeness that  is 
associated with a system of two correlated quantum particles. This may seem 
similar to Bohr's idea of individed wholeness but there is an important differ- 
ence. Bohm's approach implies that  the ((whole~> is analysable in thought (e.g., 
through the concept of nonclassical but causal trajectory of a particle acted on 
by the quantum potential); in constrast, Bohr maintained that  the entire 
experimentally relevant situation was inherently an unalysable whole about 
which nothing could be said at all. I t  is interesting to recall here the comment 
made by Gell-Mann[132]: ((Niels Bohr brainwashed a whole generation of 
physicists into believing that  the problem had been solved fifty years agog>. 

Finally, we should like to mention the simple but instructive example of 
a hologram used by Bohm [133] to illustrate the essence of his interpretation of 
the EPR paradox. The hologram of two spheres, for instance, contains the 
information of each sphere over the entire hologram. I t  can, therefore, be said 
that  in the hologram the two spheres are really amalgamated in a way that  it is 
impossible to separate them (this is related to the fact that  by illuminating 
only a part of the hologram one can get information about the entire object, 
even if less detailed). Similarly, Bohm views the EPR paradox as a manifesta- 
tion of a truly interconnected wholeness characterizing a quantum system of 
two apparently separate yet correlated particles. 

3"2. Other nonlocal solutions. Many of those who believe that  the quan- 
tum-mechanical predictions for the situation dealt with in the EPR paradox 
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have been conclusively confirmed ((under experimental conditions essentially 
equivalent to those needed for the E P R  argument~) tend to conclude, as 
articulated by d 'Espagnat  [134]: (~To the extent  tha t  the notion an independent  
reality has a meaning, such a reality must  be nonlocab. However, the advo- 
cates of this outlook have widely divergent views as regards how to formulate 
the nonlocal picture of microphysical reality. This state of affairs carries 
reminiscence of the remark made by Pauli [135]: ((I th ink the impor tant  and 
extremely difficult task of our t ime is to t ry to build up a fresh idea of reality~), 
a l though of course Pauli 's view of reality was the opposite of the one advocated 
by the present authors. 

D'Espagnat[136] observed tha t  in the usual approach the Bell-type in- 
equalities could not  be derived from the locality condition alone, but  only from 
the union of tha t  assumption with another  one, namely the one according to 
which counterfactual assertions are meaningful at least in some well-defined 
cases. One may, therefore, infer that  the empirical violation of these inequali- 
ties would not  hinge on the violation of the locality assumption,  but  on the 
denial tha t  any counterfactual extrapolation of a meaningful factual s ta tement  
can itself be universally valid. This is the s tandpoint  which, according to 
d 'Espagnat ' s  conjecture, Bohr would have taken with respect to Bell's the- 
orem. Relevant  to this issue, the model proposed by Stapp [137] is particularly 
instructive. Stapp concludes: ((...neither determinism, nor counterfactual defi- 
niteness, nor any idea of reality incompatible with orthodox quan tum thinking 
need be assumed in order to prove the incompatibili ty of the empirical 
predictions of quan tum theory with the E P R  idea tha t  no influence can 
propagate faster than  light,). Let us now look at the details of Stapp's  model. 

I t  contains certain hidden variables which represent all the deterministic 
and stochastic quantit ies which are not used to provide the basis for a Clau- 
ser-Horne factorization structure of probabilities. Stapp writes A = (A', A"), 
where A' is strictly predetermined, and A" is any stochastic variable. 

Fur thermore  in this theory it is assumed tha t  every act of measurement  
involves a choice. This choice ((picks the actual from among what  had previous- 
ly been mere possibilities: the choice renders fixed and settled something tha t  
had prior to the choice been undetermined~). A choice variable Z is also 
introduced and writ ten Z = (x, y), where x and y represent the choices of 
experiment  in the regions R~ and R~, respectively, where two correlated 
observations of the E P R  type are ma(m. The choices x and y are treated as 
independent  free variables. Each of them can assume an infinite number  of 
different values. 

Now, suppose there are two observables A and A' tha t  can be measured in 
R, and other two, B and B', tha t  can be measured in R~. The choice variable 
picks one observable before an act of measurement is made. More precisely, in R~, 
the chosen observable is 

(3.s) A, if x E X ,  A', if x e X ' ,  

where X • X' is the set of possible values of x. Furthermore,  in R~, the chosen 
observable is 

(3.9) B, if y e  Y, B', if y e  Y', 
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where Y u Y' is the set of possible values of y. Depending on the values of 
x and y there are so four possible experiments tha t  can be chosen to be 
performed in R~ and in Rp, corresponding to the four pairs of observables 

(3.10) (A, B); (A, B'); (A', B); (A', B').  

Now, in a general nonlocal model, the results of the measurements  are assumed 
to be 

(3.11) r~ (x, y, ~) in R~; r~ (x, y, ~) in Rp, 

while if instead locality is assumed, r~ does not  depend on y and r~ does not  
depend on x. 

Stapp could prove tha t  the local choice in (3.11) directly leads to incompati- 
bility with the empirical predictions of quan tum mechanics, which justifies his 
conclusion quoted earlier. An impor tant  point  to be noted is tha t  in Stapp's  
model the fixing of x, y and A fixes the value only of the observable that  is 
actually measured - -  the values of the other three observables remain com- 
pletely indefinite. This indicates the absence of a ~counterfactual definiteness~ 
in the above model. 

However, as regards this type of hidden-variable models, d 'Espagnat  [138] 
raises a pert inent  question: ~Through what  process are the supplementary 
variables directly connected with perception and determine it causally while, at 
the same time - -  still according to the model - -  these variables are completely 
dependent  on fields of forces, classical and quantum,  which they in turn  do not  
influence at all?~> I t  seems tha t  in interpreting these hidden-variable models one 
arbitrarily bestows on the hidden variables an ontological status which is 
superior to tha t  of fields, whereas their complete dependence on the latter 
suggest the opposite. I t  is argued tha t  only the explicit introduction of 
a postulate according to which (~we perceive supplementary variables and not  
fields~ would allow us to justify such a difference in status. 

D 'Espagnat  [139] takes the s tandpoint  tha t  there is a sign of some (,great 
truth,~ in the mismatch between the quan tum rules and the notion of locality: 
~...it would mean that  we are wrong when we believe the notions we have of 
space, of time, of spacetime, of the positions of things and events, are faithful 
descriptions of features possessed by independent  reality~. He advocates tha t  
a distinction between empirical reality (the set of phenomena to which we have 
a strictly cognitive access) and knowable or unknowable independent reality is 
conceptually relevant and useful. While the notion of empirical reality involves 
all tha t  is precisely knowable, d 'Espagnat  cites the example of Bell's model (in 
terms of beables) [140] as indicating the possibility of a self-consistent descrip- 
tion of independent reality which reproduces all the observed features of 
empirical reality correctly predicted by quan tum mechanics. However, d'Es- 
pagnat  believes tha t  the conventional notions (such as tha t  the space-time) 
reflect something of the independent reality in such an inherently incomplete 
way tha t  it is impossible to reconstruct  on their basis, with full clarity, what  
(dndependent reality~) really is. In  short, according to d 'Espagnat ,  some aspects 
of independent reality will inevitably remain veiled to us. Detailed elaboration of 
this viewpoint can be found in his recent book [141]. 
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Penrose [142, 143] interprets the E P R  paradox as a manifestation of the 
difficulty associated with the idea of ascribing a certain physical objectivity to 
the state vector and of taking the state vector reduction to be a real p h y s i c a l  
process. I f  we have an EPR- type  system of two particles A and B with 
a spacelike separation between them, the observation at either A or B results 
in a state vector collapse, but  the collapse which takes place earlier - -  say, tha t  
at A - -  provides the state which is to be observed in the other measurement  
- -  say at B. However, the temporal  order in which these collapses take place 
- -  i.e., whether A or B is considered to be the earlier - -  depends upon the 
overall reference frame and, therefore, according to relativity, is not  an objec- 
tive property.  Penrose points out  tha t  if the collapses were to take place along, 
say, the future light-cones of A and B, then there would be an inconsistency 
with the correlations predicted by quan tum mechanics. This impies an incon- 
sistency with the sp i r i t  of relativity if we wish to regard the collapse of state 
vector to be phys i ca l l y  real. On the other hand, Penrose argues tha t  so long as 
the rules of quan tum mechanics are presumed to hold rigorously and the 
formalism does not  in itself specify which measurement  is possible in practice, 
the state vector does represent some objective property of an individual system 
in the following counterfactual sense: the state of an individual system is 
characterized by the results of experiments tha t  one migh t  perform on it. This 
contention is in sharp contrast  to the ensemble  in terpre ta t ion  of quan tum 
mechanics [144] which asserts that  the state vector describes only statistical 
properties of ensembles of systems and does not  represent any objective aspect 
of physical reality associated with a single system; the latter viewpoint was 
reflected in Born's succinct remark [145]: (~To say tha t  T describes the (,state~> of 
one single system is just a figure of speech,). This outlook is, however, contested 
by Penrose using the following argument.  

Suppose the state vector is [ T (t)). At any istant we can consider, at least 
in principle, making an observation on a single system (in a state represented 
by [T  (t))) corresponding to the observable represented by a (bounded) Her- 
mit ian opeator 

Q -- I T ( t ) )  ( T ( t )  

The state I T  (t)> is (up to a phase) the only state pertaining to the single 
system for which the observable Q yields the result uni ty  with certainty. 
Penrose infers: <~The state must  "know" tha t  it has to produce this result in the 
event  tha t  the observation Q is actually performed. This is a completely 
objective property,>. This in turn  suggests tha t  one must  have, in some 
appropriate sense, an objective physical description of the state vector reduc- 
tion process. What  the E P R  paradox shows, according to Penrose, is tha t  such 
a description <~must be nonlocal in a way tha t  fundamental ly  affects even the 
very fabric of space-time... The space-time must  itself become subject to this 
nonlocal description~>. 

How to reconcile such a counterintuit ive nonlocal picture of physical reality 
with the sp i r i t  of relativity is a delicate issue. How can one develop a nonlocal 
quan tum space-time theory with the relativistic invariance built-in? Penrose 
holds the opinion tha t  the formalism of twistor theory, which is essentially 
a nonlocal t rea tment  of space-time, ought to provide an impor tant  input  in this 
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direction[146]. I t  is conjectured tha t  the theory of spin-networks[147] may 
also be relevant. However, as Penrose himself points out, neither the twistor 
theory nor the spin-network formalism has any t ime-asymmetrical  ingredient, 
whereas the realistic view of the state vector reduction necessarily entails t ime 
asymmetry.  This indicates the necessity of new physical inputs  to such theor- 
etical models in order to provide a satisfactory understanding of the issues 
related to the E P R  paradox. 

As a possible solution of the E P R  paradox one can develop the idea, 
originally proposed by Dirac [148], tha t  the aether, with appropriate proper- 
ties, can be a permissible concept even by the special theory of relativity, if one 
takes into account the probabilistic nature  of quan tum phenomena.  The basic 
assumption, underlying this approach, is tha t  the velocity distribution of the 
particles consti tut ing the aether has a constant  value over the hyperboloid 

(3.12) v i  - = 1 .  

In  this case the velocity distribution is the same for all the observers and 
there is perhaps no physical effect on moving bodies. In  such a model one 
presumes tha t  this aetherlike physical vacuum is made of extended rigid 
particles which can support  signals, with superluminal velocity. The real 
random fluctuations of the aether are reflected in the statistical properties of 
quantum objects. 

Within the framework of this theory one also postulates quan tum waves 
which propagate as real physical collective excitations (i.e. as density waves) 
on the top of the foregoing Dirac's aether. In  this way, information originating 
on the boundary of the T wave acts with superluminal velocity (via the 
quan tum potential) on the particle motions which propagate with subluminal 
group velocities along the flow lines of the quantum-mechanical  T waves [149]. 

Now one may raise the following objection against such a theory: consider 
two particles propagating in two widely separated regions of space R 1 and R 2 
and having EPR- type  correlation. Let their propagat ion take place according 
to precise deterministic equations containing nonlocal potentials like, for in- 
stance, Bohm's  quan tum potential. Then each particle knows instantaneously 
what  the other particle is doing. I t  is therefore tempt ing to infer tha t  the 
switching on or off of a magnetic field in R 1 must  have instantaneous conse- 
quences on the particle located in R E. One can then set up an arrangement  such 
tha t  the particle in R:  enters a detector D 1 (a detector DE) if the magnetic field 
in R 1 is off (is on). The observer in R:  can therefore instantaneously learn what  
the other observer is doing in R 1. Using ensembles of such pairs it then seems 
possible to t ransmit  instantaneous information from R 1 to R:.  

The above objection was tackled by Cufaro Petroni  [150]. His contention 
was tha t  it does not  make any sense to consider modifications of the properties 
of our world (such as the one introduced above through the switching on and 
off of a magnetic field) because we live ((in a completely deterministic world>). 

3"3. Action of the future on the past. - A solution of the E P R  paradox based 
on the idea tha t  it is possible to modify past  events by means of retroactions 
from the future was developed in detail by Costa de Beauregard [151-153]. He 
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noted that twice in classical physics, contradictions were discovered between 
factlike irreversible processes and lawlike reversibility of the physical theory: 

i) When Boltzmann used statistical mechanics for deducing the Second 
Law of thermodynamics: the paradox inherent in extracting time symmetry 
from a theory like Newtonian mechanics that  is intrinsically time symmetric 
was exposed by Loschmidt and Zermelo. 

ii) When the principle of retarded waves was used in physical optics and 
in classical electrodynamics in order to exclude one-half of the mathematically 
permissible solutions of the wave equations. 

Costa de Beauregard contends that  retroactions in time do play a role and 
should not be discarded like in i) and ii). One way to see this is to consider 
modern cybernetics. In computers and other information-processing machines 
the chain 

(1) (2) 
information ) negentropy ) information 

means that  a concept is coded and sent as a message, before being decoded and 
received. Negentropy is entropy with a minus sign. The step (2) above is the 
learning transition, where information shows up as an increase in knowledge, 
while step (1) is the willing transition, where the concept of information 
manifests as an organizing power. 

In  the theoretical framework (de jure) there is a complete symmetry 
between the two transitions. In  spite of this, there is an asymmetry in practice 
(de facto) because of the fact that  irreversibility is generated by misprints in the 
coding, noise along the line, mistakes in decoding, and so on. The relationship 
between the variation of negentropy ANand the variation of information A/is 

(3.13) AN= k In (2 A/). 

I f  N and I are both expressed in practical units, it turns out that  the factor 
multiplying A/is very small, of the order of 10- ~6 I t  is therefore very difficult 
to produce significant increases of negentropy (decreases of entropy) by in- 
creasing the information. Vice versa, even a very small increase of negentropy 
can give rise to a large gain of information. If  one lets k--* 0, one obtains 
a situation where gaining knowledge is absolutely costless, but producing order 
is utterly impossibile. In  this limit, consciousness is made totally passive. 

While the roots of this idea go deep into classical physics, it is in quantum 
theory that  de Beauregard thinks the most important effects of retroaction can 
be seen. Here the theory is completely time symmetrical, but only until the 
idea of collapse of wave function is introduced. As regards the E P R  paradox, 
de Beauregard argues that  the problem is essentially that  of tayloring the 
wording of the EPR situation after the mathematics. In his opinion, there has 
been in our century an irreversible victory of formalism over modelism. 

Costa de Beauregard's analysis entails acceptance of the EPR paradox as 
a true fact and he attempts to formalize it within the framework of relativistic 
quantum theory using Jordan-Pauli  propagators. In this formalism, the com- 
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pleteness of the basis for expanding the wave function at any instant in terms 
of orthogonal propagators requires the presence of both retarded and advanced 
waves. This is shown by de Beauregard to imply that  the wave function 
collapse in a certain space-time region produces consequences propagating both 
towards the future and towards the past; in the latter case, the propagation is 
through negative energies. However, in view of some unresolved basic problems 
associated with the formulation of a fully consistent relativistic quantum 
theory, one is inclined to view this type of approach with caution. 

The conclusion that  one can draw from this type of analysis is that  the 
elements of reality introduced in the formulation of the EPR paradox are 
created by acts of measurement, and they propagate backward in time with 
one of the two correlated quantum objects from the place of measurement to 
the source. 

In particular, this approach dismisses any question of associating elements 
of reality with observables that  are not actually measured. In this sense, the 
solution of the EPR paradox using the idea of retroaction towards the past has 
some philosophical similarity with that  of Bohr. For the sake of completeness it 
should be noted that  several other authors have also proposed similar solutions 
of the EPR paradox: Stapp [154], Davidon [155], Rayski [156], Rietdijk [157], 
Cramer [158] and Sutherland [159]. 

3"4. T h e  nonergodic  in terpre ta t ion .  - The key idea underlying the noner- 
godic interpretation of quantum mechanics is that  a sequence of quantum 
systems, even if separated by large time intervals from one another, do not 
behave independently, while interacting with the measuring apparatus. To 
illustrate this idea let us consider the double-slit experiment. 

The indirect interaction postulated above is such that  a particle passing 
throung a slit knows whether the other slit is open through information coded 
in the intervening medium between the two slits. The particles which emerged 
earlier from the other slit modified the physical properties of space and gave 
rise to the recording of the relative information. Interference happens after 
a sufficiently large number of particles have passed through the apparatus and 
conditioned the medium. This is how the particles are pictured to interfere with 
other particles indireclty through the medium [160]. 

As a more general situation, consider a quantum experiment being repeated 
a large number of times; let us call every repetition a run .  The number of runs 
be denoted by R and N be the number of quantum objects in every run; for 
simplicity, we take N to be the same for every run. We represent the state of 
the n-th particle in the r-th run by 2r, and st, denotes the state of the 
measuring apparatus just before interacting with the n-th particle of the r-th 
run. Once 2r, and s~, are given, the result of the measurement, At,, is assumed 
to be completely fixed. We have therefore 

A,. = A (2,,, 8,,). 

Now, two types of averages are possible: 

1 N 1 R 
( 3 . 1 4 )  = = A , , .  

n = l  r = l  
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A~ is called the run average, while A, is the ensemble average at t ime as 
Buonomano observed tha t  the ergodic assumption implies 

(3.15) A, = .4, 

but  tha t  one should not  take for granted the validity of such a strong 
assumption,  but  rather  check it experimentally. However, to do this it is 
necessary to avoid the medium polarization effects which means tha t  one has 
to keep the runs separated in t ime from one another, and eventually also in 
different regions of space where no experiments have been carried o_ut previous- 
ly. I t  is therefore clear tha t  the ensemble average for n = l, A,= 1, should 
represent e_vents placed in conditions where there is no medium effect on the 
particles. A,= 1 represents a situation where_there is no quan tum effect and 
classical physics holds good. I_n contrast, A r describes quantum-mechanical  
situations for all r. The case of A n for not  too large values of n, but  with n ~ 1, 
represents situations where transit ion between classical and quan tum physics 
takes place. 

I t  is claimed tha t  in principle the nonergodic interpretat ion of quan tum 
mechanics can solve the E P R  paradox. I t  explains the apparent  violations of 
local realism as due to nonergodic effects within the framework of a strictly 
local theory. As an illustrative case let us consider the left-hand side of an 
EPR- type  polarization correlation experiment and divide the space between 
polarizer and source into M cells, numbering them from left to right; the 
polarizer is in cell 1 and the source in cell M. One then presumes tha t  the state 
of the cell M depends on the previous state of the neighbouring cells. I t  is then 
clear that  after the passage of one photon, the state of cell 2 depends on tha t  of 
the polarizer. After the passage of two photons, the state of cell 3 depends on 
tha t  of the polarizer. Hence after the passage of M photons, the cell M, tha t  is 
the source, depends on the state of the polarizer. 

Similarly one can treat  the r ight-hand side of the polarization-correlation 
experiment.  Then one obtains a situation where the source produces pairs of 
photons  in a state which is dependent  on the configuration of the analy- 
sing-detecting apparatus.  Bell's type inequality cannot be obtained in such 
a case and hence it is in the sense tha t  one claims to avoid the E P R  paradox. 

In  all eases Buonomano's  ideas can be put  to an empirical test as shown in 
a recent paper by Buonomano and Bar tmann  [161] who propose an experiment  
with a laser for studying experimentally the validity of the ergodic assumption.  
The experiment has been performed and has given a negative result, as 
acknowledged by Buonomano [162]. 

3"5. Negative probabilities. - The notion of negative probabilities was dis- 
cussed by Dirac in 1942[163]. Dirac commented: (~Negative energies and 
probabilities should not  be considered as nonsense. They are well-defined 
concepts mathematically,  like a negative sum of money, since the equations 
which express the impor tant  properties of energies and probabilities can still be 
used when they are negative. Thus negative energies and probabilities should 
be considered simply as things which do not  appear in experimental  results~>. 

Feynman  [164] asserted tha t  the essential difference between a probabilistic 
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classical world and the quantum world (ds that  somehow or other it appears as 
if the probabilities would have to go negative...)) 

These ideas were developed by Miickenheim in 19821165] in order to 
propose a solution of the EPR paradox. In  this context it is important to note 
that  in the proofs of Bell's inequality one always assumes that  probabilities are 
positive and not larger than one. If  this condition is relaxed, Bell's inequality 
cannot be deduced anymore. 

Let the spin vector be S for one member of the EPR-type  pair of particles, 
and - S  for its partners, where S is assumed to have a random distribution 

over the sphere of radius - -  h pertaining to a statistical ensemble of such 
2 

/ T  

pairs. The length --x/3 h is chosen in order to reproduce the quantum-mechanical 
2 

eigenvalue of S 2, which is -3 h2" Note that  if d is a unit vector, the projection of 
4 

S over a satisfies the following condition: 

(3.16) x/~li<_S'd< + V/3h. 
2 2 

In this model it is assumed that  the probabilities o)(d+, S) and (o (d_, S) of 
measuring S" d and finding the positive and negative eigenvalue, respectively, 
are linear functions of S" d, and that  their expressions satisfying 

(3.17) o~ (d+, S) + (o (d_, S) -- 1 

are given by 

(3.18) 
o)(d+, S) = 0.5 + S" d, 

(o(d , S ) = 0 . 5 - S  d. 

I t  should be noted that  these probabilities can assume negative values because 
of (3.16). 

Now, considering the case of correlated spin measurements along d and b for 
the first pair, respectively, we have the correlation function given by 

(3.19) P(d,  ~,) = /d•  [co(d+, 8) - (o(d_, S)][~o($+, - S )  - (o(~ - S ) ] .  
16nJ  - '  

Using eq. (3.18) one obtains from the above expression 

h 2 
(3.20) P(d,  b) = - - - d .  b, 

4 
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which agrees with the quantum-mechanical correlation function for the singlet 
state. I t  is therefore demonstrated that  a local realist model can reproduce the 
quantum-mechanical violations of Bell's inequality provided one allows for 
negative probabilities. Ivanovic [166] has furthermore shown that  by incorpor- 
ating complex probabilities as well one can obtain agreement between the 
quantum-mechanical predictions and local realism in the context of the 
EPR-type  examples. 

The possibility of a negative-probability solution of the EPR paradox has 
also been studied by Polubarinov [167]. 

We will now give a general argument, following Home, Lepore and Selle- 
ri[168], showing that  one can always reproduce the quantum-mechanical 
results for nonfactorizable state vectors of correlated systems by hidden-vari- 
able models using nonphysical probabilities. 

In order to develop the argument, let us show that  any state vector 

(3.21) I ~ >  = ~ f . , l  ~= > I ~ > ,  
nl 

where I~P, > 's and I~, > 's are orthonormal sets of eigenstates corresponding to 
the correlated systems I and II ,  respectively, can be written in the form 

(3.22) ] ~ >  = ~ ~/-~t ] T,>] ~,>- 

From the normalization condition of l ~ >  as given in (3.21) one has 

(3.23) ~ If., 12 
nl 

whence, by defining 

= 1 ,  

(3.24) ~,  = Y~ If., 12 , 
/1 

one sees that  co, = 0 only if f,~ = 0 for all n, a possibility that  can be excluded 
from the beginning in (3.21), by limiting ] ~  > to that  part  of the Hilbert space 
where its coefficients f"l are not all zero for fixed n and variable 1. With this 
restriction we have, for all l 

(3.25) o,  > 0 

and 

(3.26) 

Defining 

(3.27) 

~,= 1. 
! 

1 E I~ ,>  - ~ ,  f" , l~ ,> ,  

one easily obtains eq. (3.22) from eq. (3.21). 
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To proceed further, we take up two dichotomic observables A (pertaining to 
I) and B (pertaining to II) with eigenvalues= + 1 and eigenvectors 
{[A+ ) ,  [A_ >} and {[ B+ >, [B_ >}, respectively. Consi-dering joint probabili- 
ties 

(3.28) p a , ( A =  _ I , B =  _+ I ) = I < A + B •  2, 

we obtain by using eq. (3.22) 

pAs(A = _ 1, B =  _+ 1 )=  ~ x / ~ I < A •  ] T ,><B+ ]~,> " 

o r  

(3.29) 

Defining 

(3.30) 

�9 ~x /~v  < ~v IA_+ >< ~v, IB_+ > 
l '  

pAB(A = __ 1, B = + 1) = ~ V / - ~ v < A +  IT,> < ~v lA+  >" 
l l '  

�9 <B_+ I ~t> < ~,,IB_+ >. 

and the single probabilities 

(3.31) 

and 

One can write eq. (3.29) in the form 

B_.+ >. 

(3.33) 

with 

pAs(A = +_ 1, B =  _ 1) = ~p(1 ,  l ' )p (A  = _ 1; l, l ' ) q ( B =  _ l; l, l') 
11" 

(3.34) 

which follows from eq. (3.30). 

~ p ( l ,  l') = 1, 
IV 
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Equation (3.33) shows that  the joint probabilities obtained from a nonfac- 
torizable state of the type given by eq. (3.21) can always be written in forms 
similar to the expressions used in local realistic models based on the Clau- 
ser-Horne factorizability condition. I t  is, however, evident from eq. (3.26) that  

(3.35) ~ ~ > 1 
k 

if at least two wk's are nonzero. If  only one ~o k ~ 0 (and then ~0 k = 1) the state 
vector (3.22) is factorizable and is fully compatible with local realism, as is well 
known. I t  follows, in general, from (3.31) and (3.32) that  p (A = _ 1; l, l') and 
q(B = _ l; l, l') may be complex and even if they are real they do not, in 
general, satisfy the conditions 

(3.36) 0 _< p (A = _ 1; l, l'), q (B = _ 1; l, l') _ 1. 

One is therefore led to the conclusion that  the general validity of eq. (3.33) 
ensures that  we can always reproduce the quantum-mechanical results for 
nonfactorizable state vectors with probabilities of the Clauser-Horne type 
provided one allows for nonphysical probabilities violating the conditions 
(3.36). 

3"6. Variable probabilities. - The notion of variable probabilities as a poss- 
ible solution of the E P R  paradox is provided by the results of the performed 
experiments with atomic photon pairs, which indicate that  the inequalities of 
the strong type (deduced from local realism and from additional assumptions) 
are violated. This result seems very likely to be correct even though there is 
a protracted debate on the role of rescattering in the atomic source (see Sanz 
and Sanchez Gomez [77] and the references quoted therein). 

I t  perfectly logical to adopt the viewpoint that  it is not local realism but 
the additional assumptions which should be blamed for the violations of the 
strong inequalities. To follow this outlook one must then study local realistic 
models in which the logical negation of the additional assumptions is explicitly 
taken into account. The relevant models should then satisfy the following 
conditions: 

1) If  a pair of photons emerge from the regions of space where two polarizers 
can be located the probability of their joint detection from two photomultip- 
liers depends on the presence and/or on the orientations of the polarizers 
(CHSH property). 

2) Pertaining to a photon in the state 2, the probability of its detection with 
a polarizer interposed on its path can be larger than the detection probability 
with the polarizer removed (CH property). 

3) For a photon in the state 2 the sum of the detection probabilities in the 
ordinary and in the extraordinary beams emerging from a two-way polarizer 
depends on the polarizer's orientation (GR property). 

A comprehensive overview of this line of research can be found in the recent 
review articles by Pascazio[169] and by Ferrero, Marshall and Santos [170]. 
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From this point of view it follows tha t  the issue of quantum theory vs. local 
realism can be settled only if weak inequalities {deduced from local realism 
alone, without any auxiliary assumption) can be experimentally tested. This 
appears not to be possible in near future in the context of the experiments 
involving pairs of photons. This situation can be better in the case of some 
proposed particle physics experiments and in the case of experiments using 
pairs of atoms where the detectors have higher efficiency. 

The interesting point to be stressed here is that  it is possible to do 
meaningful studies, even for the case of low-efficiency detectors, by replacing 
the usual additional assumptions (called CHSH, CH and GR) by more physi- 
cally appropriate conditions. I t  is very much unlikely that  the large disagree- 
ment between quantum theory and local realism for the ideal high-efficiency 
detectors would reduce to perfect agreement for the low-efficiency detectors. 

In this connection it should be interesting to study the use of symmetrical 
functions for describing the detection processes of the two photons in view of 
the demonstration by Caser [171] that  the quantum-mechanical predictions for 
such a case cannot agree with the factorizable probabilities of Clauser and 
Sorne.  

Along this line of thought there remains a lot of work to be done beyond 
the proof that  such models can indeed reproduce exactly the quantum-mechan- 
ical predictions for low-efficiency detectors. What is still missing is a great 
physical idea about the true nature of photon pairs and of their interactions 
(local or nonlocal) with polarizers and detectors. An at tempt  of this type was 
made by Garuccio and Selleri [81], but  their predictions turn out to be incom- 
patible with the recent experiments. 

Selleri and Zeilinger [172] generalized the deterministic model proposed by 
Wigner[34] by incorporating additional variables which determine whether 
a specific photon will trigger the detector or not. In this approach, each 
individual photon pair is described by the set of ten variables 

( s , s ' , a , a ' , ~ , t , t ' ,  z, z',e) 

with the first five pertaining to photon a and the second five pertain to photon 
ft. Each of these variables can only be either zero or unity: s = 1 (s' = 1) It = 1 
(t' = 1)] determines that  photon a [photon fl] will traverse its polarizer oriented 
along direction a (a') [b (b')], a = 1 (a' = l) [z = 1 (z' = 1)] determines that  pho- 
ton a [photon fl] will be registered by its detector after having passed the 
polarizers oriented along direction a(a')[b (b')], 5 = 1 [e = 1] determines that  
photon a [photon fl] will be registered by its detector if no polarizer is in its 
beam path, s, s', o, a', 5 = 0 It, t', z, z', e = 0] determines that  photon a [photon 
fl] will not pass its polarizers or will not be registered by the detector. This 
model leads naturally to the violation of the strong inequalities, but, being 
local, naturally always satisfies the weak ones. 
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