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ABSTRACT 

This paper is the first step in the proof of existence of equilibrium 

payoffs for two-player stochastic games with finite state and action sets. It 

reduces the existence problem to the class of so-called positive 

absorbing recursive games. The existence problem for this class is solved 

in a subsequent paper. 

1. I n t r o d u c t i o n  

This paper* is the first of two papers devoted to the proof of existence of equi- 

librium payoffs in two-player stochastic games. In this introduction, we briefly 

sketch an overview of the topic. Stochastic games are games played in stages, 

over a set S of states. In any stage, the players are fully informed of the past 

play, including the current state s, and choose actions from given sets A and B. 

The state of the game changes from one stage to the next one, as a (random) 

function of the current state and the actions selected by the players. In any stage 

n, the players receive a payoff, which also depends on the current state and the 

* This is a thoroughly revised version of a discussion paper which circulated under 
the same title [22]. I wish to thank Eilon Solan, Sylvain Sorin and an anonymous 
referee for many helpful comments. 
Received January 28, 1998 

55 



56 N. VIEILLE Isr. J. Math. 

actions selected. The game never ends. We assume that the sets S, A and B are 

finite. 

This model was introduced by Shapley [17], who proved that, when payoffs 

are zero-sum, and the infinite stream of payoffs (gn)n_>l is evaluated according 

to a geometric average )~ )-]~ 1 (1 - n-1 = A) gn, the game has a value v~, and, for 

both players, stationary optimal strategies do exist. This was extended to the 

non zero-sum case by Fink [8]. Many results followed, relaxing the finiteness 

assumptions on S, A and B; see Mertens and Parthasarathy [13] for general 

conditions. Unlike the one-player case (Blackwell [5]), the optimal strategies 

vary with )~, even when A is arbitrarily close to 0. This dependency has been 

investigated by Bewley and Kohlberg [3, 2, 4]. Using the algebraic structure of 

the graph of the equilibrium correspondence, they proved that vx has a Puiseux 

expansion in a neighborhood of 0, and that similar properties hold for optimal 

strategies. 

Shortly after Shapley, the undiscounted evaluation was introduced by Gillette 

[9], in the zero-sum case. The type of requirement introduced by Gillette has 

been strengthened by Aumann and Maschler [1] in the framework of games with 

incomplete information. Assume the game is stopped after the n-th stage, and 

each player wishes to maximize the arithmetic average of the payoffs he received 

up to that  stage. This defines a finite game F~, which has a value v~. Does limv~ 

exist ? If so, does there exist a single strategy which is optimal (or e-optimal) in 

every F,~, for n large enough ? If the answer is positive, then v = lim,~-~o~ v,~ is 

called the value of the game. In the same volume, Milnor and Shapley [15] and 

Everett [7] studied particular models of stochastic games. In the games of survival 

of Milnor and Shapley, two players, with some initial wealth, play repeatedly a 

given zero-sum game until one of them is ruined (which may never happen). In 

Everett 's  recursive games, the payoff received is zero until an absorbing state is 

reached (this is a state which the play cannot leave, whatever the players play). 

Everett proves the existence of the value and of e-optimal stationary strategies. 

An important step has been the influential analysis by Blackwell and Ferguson 

[6] of a game, the Big Match, exhibited by Gillette. To quote them, 

"every day player 2 chooses a number, 0 or 1, and player 1 tries to 

predict 2's choice, winning a point if he is correct. This continues as 

long as player 1 predicts 0. But if he ever predicts 1, all future choices 

for both players are required to be the same as that day's choices: if 

player 1 is correct on that day, he wins a point everyday thereafter; 

if he is wrong on that day, he wins zero every day thereafter". 
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In this game, optimal strategies of player 1 do not exist, and e-optimal strate- 

gies of player 1 are complex (player 1 needs to adapt his probability of predicting 

1 in any given stage to the whole sequence of past choices of player 2). 

Blackwell and Ferguson proved the existence of the value. This result was 

extended by Kohlberg [10] to the so-called absorbing zero-sum games. These 

are games in which all states are absorbing but one (thus, the state of the game 

changes at most once). The study of the zero-sum case culminated with the 

proof by Mertens and Neyman [11], [12], that the value exists in every stochastic 

game with finite S, A and B; their result is actually more general, and uses the 

algebraic properties obtained by Bewley and Kohlberg. 

This left the non zero-sum case open. Using a variation on the Big Match, 

Sorin [19] proved that the set of equilibrium payoffs could be disconnected from 

the limit set of discounted equilibrium payoffs. The existence of equilibrium 

payoffs was obtained by Thuijsman and Vrieze [24] for the class of games with 

absorbing states. Various existence results have also been obtained, under specific 

assumptions on the transition and payoffs structure (see for instance [16, 20, 21]). 

We prove, in this paper and in [23], that every two-player stochastic game has an 

equilibrium payoff: in the present paper, we establish that solving this existence 

problem is equivalent to solving it for a subclass of the class of recursive games, 

and [23] solves the latter problem. 

Finally, let us mention that our result does not subsume Mertens and Neyman's 

result. Rather, our proof makes strong use of it. Section 2 contains the model 

and the statement of our main result. Basic definitions and preliminary results 

are collected in section 3, which also contains the exposition of the steps which 

lead to the main result. 

2. M o d e l  a n d  m a i n  r e su l t  

2.1 MODEL. A t w o - p l a y e r  s t ochas t i c  g a m e  F is given by (i) a finite set of 

states S, (ii) finite sets A and B of available actions for the two players, (iii) a 

transition function p: S x A x B ~-~ A (S), where A (S) is the space of all probability 

distributions over S, and (iv) a daily payoff function g = (g 1, g2): S x A x B --+ R 2. 

The game is played as follows. The set of stages is the set N* of positive inte- 

gers. The initial state Sl is given. At stage n, the current state Sn is announced 

to the players. Player 1 and player 2 choose an action an and bn respectively, in- 

dependently and possibly at random. The action combination (an, bn) is publicly 

announced, Sn+l is drawn according to p(. I sn, an, bn) and the game proceeds to 

stage n + 1. Perfect recall is assumed: at each stage, both players remember the 
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whole sequence of past states and past action choices. 

We denote by H,~ = S x (A x B x S) n-1 the set of histories up to stage n, 

by H -- (Jn>l Hn the set of finite histories, and by Ho0 = (S • A x B) N the 

set of plays. A strategy of player 1 is a map a: H --+ A(A), with the usual 

understanding: a(hn) is the distribution used by player 1 to select his action 

in stage n, when the past history of play is h,~. Strategies of player 2 are maps 

r: H --+ A(B).  Stationary strategies of player 1 are strategies that depend on the 

history only through the current stage. Thus, a stationary strategy of player 1 

can be identified with an element x = (x8)8~3 E A(A) s, with the understanding 

that  xs is the lottery used by player 1 to select his action whenever the current 

state is s. 

Each h,~ E Hn is identified with a cylinder set of Ho0. We denote by 7-/n the 

induced algebra over Ho0, and we set 7-lo0 = a(t-l, , ,n >_ 1). Given an initial 

state s, any pair (a, T) of strategies induces a probability distribution Ps,a,~ over 

(Ho0,7-/o0). Es,a,~ stands for the corresponding expectation operator. 

All norms in the paper are supremum norms. W.l.o.g., we assume I[gll -< 1. 

All proofs and results in the paper can be adapted in an obvious way to the case 

of state-dependent action sets, at the expense of more cumbersome notations. 

2.2 PAYOFFS AND EQUILIBRIA. For n _> 1, denote by 9n = g(s,~,an, bn) E R 2 

the vector of the payoffs received in stage n and by 

the expected average payoff up to stage n induced by the profile (a, r ) ,  given the 

initial state is s. 
If P is a zero-sum game, i.e. g 1 + 9  2 = 0, we set "/,~(s,a,r) = ~/~(S,a,r). 

Definition 1: Let r be a zero-sum game and s be the initial state. The number 

v(s) is the value of r if, for every e > 0: 

�9 there exist ~, and N E N such that 

V n  ~_ N , ' ! /T , 'Tn (S ,~ ,  T ) ~ V(S) -- s 

�9 there exist ~, and N E N such that 

Vn >_ g ,  va, 7 , ( s , a ,  ~) <_ v(s) + c. 

The strategy 5 ensures that the average payoff to player 1 will never fall below 

v(s) - e, from a certain stage on. The strategy ~ has the symmetric property. 

We recall the existence result. 
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THEOREM 2 (Mertens-Neyman, [11, 12]): Every zero-sum stochastic game has 

a value. 

The corresponding notion for non zero-sum games is that of equilibrium payoffs. 

Definition 3: Let s be the initial state. A vector 7(s) E R 2 is an equilibrium 

payoff of r starting at s if, for every r > 0, there exist a pair (a*,r*)  and N E N* 

such that,  for every n _> N: 

VT-, 

k/a, 

and 

a*, T) < + e, 

We say that  (a*, ~-*) is an e -equ i l ib r ium profile associated w i t h  7(s). The 

last condition asserts that  the average payoffs induced by the pair (a*, ~-*) depend 

little on the length of the averaging period. Together with this condition, the 

first two imply that  (a*, T*) is a 2e-equilibrium in the n-stage game, provided 

n _> N. It is also a 2e-equilibrium in every discounted game, where the discount 

factor is close enough to one. 

The set of equilibrium payoffs of r given the initial state s is denoted by Es ( r ) .  

We set E( r )  = • 

2.3 MAIN RESULT. We aim to show the following existence result. 

THEOREM 4: Every two-player stochastic game has an equilibrium payoff. 

In the present paper, we show that it suffices to solve the existence problem 

for a restricted class of stochastic games. In the companion paper [23], we solve 

the restricted problem. We now explain the link between the two papers. 

A state s E S is a b s o r b i n g  if p(s[s, a, b) -- 1 for every a E A, b E B: once in 

an absorbing state, the game cannot move to a different state. For such a state, 

we assume w.l.o.g, that  g(s, a, b) is independent of a and b. The set of absorbing 

states is denoted by S*. 

The game F is r e cu r s ive  if g(s, a, b) = 0 as long as s ~ S*. A recursive game 

r is pos i t i ve  if g2(s,-,.) > 0, for eve ry s  E S*. Let t =inf{n>__ 1, sn E S*} 

be the absorption stage (inf @ = +oo). A recursive game is a b s o r b i n g  if there 

exists a stationary strategy y such that 

t < +co,  Ps,x,y-a.s. for every initial state s and every stationary strategy x. 

In the present paper, we prove the following result: 
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THEOREM 5: Let F be a stochastic game such that gl < 0 < g2. There exists a 

positive absorbing recursive game F, with the same state space as r ,  such that 

E(r) c_ E(r). 

We prove in [23] the next result. 

THEOREM 6: Every positive absorbing recursive game has an equilibrium payoff. 

Clearly, rescaling or adding a constant to the payoff function of either player 

results in the same operation on the equilibrium payoff set. Therefore, Theorem 

5 follows from Theorems 5 and 6. 

3. S o l v a b l e  s e t s  a n d  c o n t r o l l e d  s e t s  

3.1 PRELIMINARY DEFINITIONS. Given s E S, and C C S\S*, we denote by 

ec = inf {n > l, s ~ C }  

the exit stage from C, and by r* = es\{8} = inf {n > 1, sn = s} the arrival t ime 

at s. 

3.1.1 Associated zero-sum games. It  is customary in the theory of repeated 

games to construct strategies by a device of the form: play some simply described 

strategy until the other player fails some statistical test, then switch to another 

strategy that  is designed to minimize the other player's subsequent payoffs. The 

strategy in the second phase is thus defined as an c-min max strategy in a related 

stochastic game, that  we now proceed to define. 

Given a stochastic game F, we let F 1 and 1 "2 be the zero-sum games obtained 

from F by replacing its payoff function g respectively by (gl, _g l )  and (_g2, g2). 

Denote by v I and - v  2 the values of these two games (the convention used for F 2 

is such that  player 1 is able to bring player 2's payoffs down to v2). 

Given c > 0, we denote by ae an c-optimal strategy of player 1 in the game 

F 2, and by re an E-optimal strategy of player 2 in F 1. Thus, the strategies a~ 

and rE should be thought of as p u n i s h m e n t  strategies. We will denote by Ne 

an integer such that  for every s, a, T and n > Ne, 

7~(s,a,r~) <_vl(s)+c and 7~(s, ae, r)_< v2(s)+E. 

These notations will be in use throughout the paper. 

The bilinear extensions of g and p to S x A(A) x A(B) are still denoted by g 

and p. 
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We now introduce an important piece of notation, that we motivate as follows. 

Assume that,  given some past history, the current state is s, player 2 selects his 

move according to Ys E A(B), while player 1 is about to play a and to fail some 

statistical test designed by player 2. Given player 2 will immediately switch to 

an ~-minmax strategy, an approximate upper bound on player l 's  future payoffs 

is given by the expectation E [vlls, a, ys] of v 1 under p(.Is, a, ys). Thus, the 

quantity maxaeA E [vlls, a, Ys] measures somehow the punishment level, i.e. the 

incentive to deviate of player 1 at that stage. If, as long as the test is satisfied, the 

game visits states in C c_ S, and player 2 follows y, the corresponding measure 

is 
Hi (y ,  C) = m a x m a x E  [vli 8, a, y~]. 

aEA sEC 

Similarly, we set H2(x, C) = maxbes max~ec E [v21s, Xs, b], and we summarize 

the two in the vector H(x, y, C) = (Hi(y, C), H2(x, C)). 

3.1.2 Communication. Given an initial state s and a pair (x, y) of stationary 

strategies, the sequences (sn)n>l and (s,~, a,~, b,~)n>l follow Markov chains. For 

simplicity, we will say that  a set is closed (resp. irreducible, recurrent) under (x, y) 

if it is closed (resp. irreducible, recurrent) for the Markov chain on S induced by 

(x,y). 
We now introduce a notion of communication that differs from that associated 

to the Markov chain. The support of a probability distribution # is denoted by 

Supp #. Expectations with respect to # are written E , .  

Definition 7: Let # and ~ be two distributions over a finite set M. ~ is a 

p e r t u r b a t i o n  of # if Supp # C_ Supp ~. 

Given any pair (x, y), and a subset C of S, we define a directed graph Gc(x, y) 
as follow~: 

�9 the set of vertices is C; 

�9 for any two states s ,s  ~ E C, there is an arc from 8 to s I if and only if 

there exist perturbations ~ ,  y~ of Xs, y~ such that p(s~ls, ~ ,  Ys) > 0 and 

p ( c L s ,  = 1. 

Thus the graph Gc(x,y) describes the transition properties offered by (x, y) 

within C. 
Recall that  a directed graph is strongly connected if given any two vertices, 

there is a path joining the first to the second. 

Definition 8: Let (x,y) be a pair of stationary strategies. A set C C_ S 

c o m m u n i c a t e s  u n d e r  (x,y) if the graph Gc(x,y) is strongly connected. The 

set of sets that  communicate under (x, y) is denoted C(x, y). 
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This notion captures the idea that, by using appropriate perturbations of (x, y), 

and starting anywhere in C, the players will eventually reach any given state in 

C, without leaving C, i.e., that the players are able to visit an infinite number 

of times any given state in C. Clearly, any recurrent set under (x, y) (i.e., closed 

and irreducible under (x, y)) belongs to C(x, y). Clearly also, any set in C(x, y) 
is closed under (x, y), and contains at least one recurrent set under (x, y). 

Let C E C(x, y), and $ E C be given. It is possible to select, for each s E C, 

exactly one arc of Gc(x,y) incident out of s so that all paths of the resulting 

graph end in ~. This proves the following result. 

LEMMA 9: Let C E C(x, y) and ~ E C be given. There exists (~, y--) such that: (i) 

for each s E C, (xs, Ys) is a perturbation of (xs, Ys); (ii) C is closed under (~, ~;  
(iii) ~ is reached a.s. in finite time under (~, y-) for every initial state s E C. 

3.2 SOLVABLE SETS. Let (x,y) be a pair of stationary strategies. Since 

(s,~, a,,, bn)n>_l is a Markov chain, the sequence (Tn(s, x, Y))n>l of average payoffs 

has a limit 7(s, x, y). Moreover, if s and s' belong to a given recurrent set R, one 

has ~'(s, x, y) = 7(s', x, y). We denote by "y(R, x, y) this common value. Given 

C C_ S, we denote by Tic(x,y) the set of sets that are both subsets of C and 
recurrent for (x, y). 

Definition 10: Let (x,y) be stationary strategies, C E C(x,y) and # be a 

distribution over Tic(x, y). The triplet (C, (x, y), #) is solvable if 

(1) ~ #(R)'y(R, x, y) > H(x, y, C). 
R 

The inequality in (1) involves vectors: it is required to hold for each coordinate. 

We refer to the left-hand side of (1) as the solvable payof f  on C. When no 

ambiguity may arise, we simply say that C or (C, (x, y)) is solvable. Clearly, an 
absorbing state is solvable. 

One may require in Definition 10 that v(s) is independent of s E C. No single 

change would be required in the paper. 

3.3 CONTROLLED SETS. Given C C_ S, an exi t  d i s t r i bu t i on  from C is a 

distribution q E A(S) such that q(C) < 1. 
We recall a terminology that was first used by Solan [So199]. Let (x, y), and 

C C_ S be given. A pair (s, a) E C x A is a un i l a t e ra l  exi t  of player 1 (from 

C given y) if p(Cis, a, ys) < 1. Given a unilateral exit e = (s,a) of player 

1, we abuse notations and write p(-I e) instead of p(.is, a, ys). Unilateral exits 
(s, b) of player 2, from C given x, are defined by exchanging the roles of the two 
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players. For such a pair e = (s,b), we write p(.le) instead ofp(.Is , xs, b). A triplet 

e = (s, a., b) E C x A x B is a jo in t  exi t  (from C given (x, y)) if neither (s, a) 

nor (s, b) is a unilateral exit, and if p(C]s, a, b) < 1. In that case, we also write 

p(.]e) = p(.]s, a, b). 
For simplicity, we use the letter e for the three different types of exit. 

Definition 11: Let (x,y) be stationary strategies, C E C(x,y) and (5, a) be a 

unilateral exit of player i from C. The triplet (C, (x, y), (~, a)) is a set  con t ro l l ed  

by p layer  1 if 

E[vllS, a,y~] > HI(y,C) and E[v21$,a,y~] > H2(x,C). 

The condition can be summarized by the vector inequality E [vl$,a,y~ ] > 
H(x, y, C). Observe that qc = P('IS, a, y~) is an exit distribution from C. We 

refer to it as the exit distribution associated with the controlled set. When no 

ambiguity may arise, we simply say that C is controlled by player 1. We also say 

that (C, (x, y)) is controlled by player 1 if there exists (8, a) E C x A such that 

(C, (x, y), (8, a)) is controlled by player 1. 

We now motivate this notion. Let 3' = (3'(s)) C (R2) s, such that 3'(s) _> v(s) 
for every s. We argue informally that, given % the exit distribution p(.18,a, y~) 
can be implemented in the sense of Vieille [23]. Let the initial state belong to a 

set C, controlled by player 1. Define a profile (ac, TO) with the following features: 

�9 whenever the current state is 8, TC plays y~ and ac plays x~ but perturbs 

to a with probability 5; 

�9 between two passages in 8, (ac, TC) plays a perturbation (~, y~ of (x, y), 
such that  C is closed under (5, y-) and g is reached in finite time. 

In addition, the players switch to (a~, r~) 

�9 if a player ever plays an action that has zero probability given the above 

description; 

�9 or the empirical distribution of the actions played by player 2 in the suc- 

cessive passages in g ever gets far from yg (after a large number of passages 

in ~); 
�9 or if exit from C fails to occur within some large number of stages. 

Provided the various parameters are properly chosen, the distribution of sec is 

qc (assuming qc(C) = 0), and player i -~ 1, 2 cannot get an expected exit payoff 

higher than Eqo [3,i] + g. 

The definition of a set controlled by player 2 is symmetric. We provide it for 

completeness. 
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Definition 12: Let (x,y) be stationary strategies, C E C(x,y) and ($,b) be a 

unilateral exit of player 2 from C. The triplet (C, (x, y), ($, b)) is a set  c o n t r o l l e d  

by  p l aye r  2 if 

E [ v k x ~ , b  ] >_ H(x ,y ,C) .  

As above, qc = P('[s, x~, b) is an exit distribution from C. 

A third notion of controlled set involves joint exits. 

Definition 13: Let (x, y) be stationary strategies, C E C(x, y), ,7 be a family of 

joint exits from C, and # be a distribution over `7. The four-tuple (C, (x, y), ,7, #) 

is a j o i n t l y  c o n t r o l l e d  set  if 

#(e)E [vie ] >_ H(x, y, C). 
e--'-(s,a,b)EJ 

We call qc = ~e=(s,a,b)eJ #(e)p(.[e) the exit distribution associated with C. 

As above, we motivate this notion by arguing informally that, given ~ _> v, the 

exit distribution qc can be implemented in the sense of Vieille [23]. Let the initial 

state belong to C. For simplicity, we assume in this heuristic description that 

for every two distinct e = (s, a, b), e' = (s', a', b') in ,7, the states s and s' are 

distinct. Define a profile (ac ,  re)  with the following features: 

�9 the exits in ,7 are tried cyclically: the corresponding states are reached in 

turn (all untimely passages to these states are declared non-admissible); 

�9 in each admissible passage to s with e = (s, a, b) E ,7, player 1 (resp. player 

2) plays a (resp. b) with a small probability ~e, and plays x8 (resp. y,) 

otherwise. 

In addition, the players switch to (a~, %) 

�9 if a player ever plays an action that has zero probability given the above 

description; 

�9 or if for some e = (s, a, b) E ,7, the empirical frequency of a (resp. of b) in 

the successive admissible passages in s ever gets far from ~/e after a large 

number of cycles; 

�9 or if exit from C fails to occur within some large number of stages. 

Provided the various parameters are properly chosen, the distribution of se c is 

qc (assuming qc(C) = 0), and player i = 1, 2 cannot get an expected exit payoff 

higher than Eqc [.yi]. 

4. O r g a n i z a t i o n  o f  t h e  p r o o f  

Recall that we aim at proving the next result. 
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MAIN THEOREM 1: Let F be a stochastic game such that gl < 0 < g2. There 

exists a positive absorbing recursive game F,  with the same state space as F,  

such that 

E ( r )  c_ E(P) .  

Let /~ be a stochastic game. Let C be a collection of disjoint solvable sets. 

For C E C, let "Yc be the solvable payoff on C. Let P be the game obtained 

from F by turning each state of C E C into an absorbing state with payoff 7c. 

Formally, S = S, A -- A ,B  = B, ~(.]s,a,b) = 1 if s E C for some C E C, and 

~(.Is, a, b) -- p(.I s, a, b) otherwise. Finally, .~(s, a, b) = 7c if s E C for some C E C, 

and ~(s, a, b) = g(s, a, b) otherwise. 

We prove in Section 5 that simplifying/" into P does not increase the set of 

equilibrium payoffs. 

PROPOSITION 14: One has 

E(~) c E(F). 

Given this preliminary result, we may and will assume that solvable sets 

coincide with absorbing states. The core of the proof follows in Section 6, where 

we construct a family of controlled sets with specific properties, that we now 

present. 

Let s be a family of disjoint controlled sets. For E E 8, let qE be an exit 

distribution from E, associated with E. Let P be the game obtained by first 

turning each state of E E s into a dummy state, with transitions given by qE, and 

second by turning the payoff function to zero in non-absorbing states. Formally, 

= S, action sets are state-dependent and given by ~,s = Bs = {*} if s E E 

for some E E s and As = A, Bs = B otherwise; ~(.Is,*, ,)  = qE if s E E for 

some E E $, and ~(.Is, a, b) = p(.Is, a, b) otherwise. Finally, ~(s, a, b) = g(s, a, b) 

if s E S*, and .~(s,.,-) = 0 otherwise. 

Clearly, the game ~ depends on the family of controlled sets. However, no 

ambiguity should ever arise. Since we assumed g2 :> 0, F is a positive recursive 

game. In general, it needs not be absorbing. 

In the following statement, .~ and .~ stand for stationary strategies in F (action 

sets are not the same in F and in F), P~,~,~ stands for the probability distri- 

bution over plays of F induced by an initial state s, and (~.,y~; ~2 ( s ,~ ,~  = 

l imn_~  ~Ss,~,.~ [~ ~--~=1 gk] is the limit of the average payoffs under (~, ~ .  

Set ~2(s) = EqE Iv 2] if s E E for some E E s and v-2(s) = v2(s) otherwise. 



66 N. VIEILLE Isr. J. Math. 

PROPOSITION 15: There exists a family of disjoint controlled sets s such that 
the game F has the following property. Given any initial state s c S, and any 5, 

there exists ~ such that: 

p l .  t < +co, Ps,~,5-a.s. 
p2. ~2(s,~,y~ _> v-2(s). 

Property p l  asserts that the game F has the absorbing property. The next 

result relates the equilibrium payoff set of F to that o f / ' .  

PROPOSITION 16: Let g be given by Proposition 15. One has 

E(r) c_ E(r). 

Clearly the Main Theorem follows from Propositions 14, 15 and 16. 

Proposition 15 is the main step in the proof. At this point, it might be useful to 

describe loosely its structure. We emphasize the fact that the description below 

is inaccurate in some important respects. 

Let x be a stationary strategy of player 1 and C C_ S\S*. The pair (x,C) 

is called b locking  if, for each unilateral exit (s, b) of player 2, E [v21s, xs, b] < 
maxc v 2. If y is a stationary strategy of player 2, blocking pairs (y, D) are defined 

accordingly. 

We let 2 and 9 be limits, as the discount factor goes to zero, of stationary 
optimal strategies in the discounted versions of the games F 1 and F 2 respectively. 

In a first step, we consider the subsets C of S\S* such that: (i) (9, C) is 

blocking, (ii) C c C(2, 9). We argue that such a set is jointly controlled if (2, C) 

is blocking, and controlled by player 2 otherwise. We replace each such maximal 

set by a dummy state, in which transitions are given by an exit distribution 

associated with that set. 

In a second step, we consider the subsets C of S\S*, such that, for some x: (i I) 

(x, C) is blocking, (ii I) C C C(x,9). A by-product of the first step is that each 

such set is controlled by player 1. 

Remark 17: The recursive game F that one obtains by Proposition 15 is such 

that gl(s) < 0 for each absorbing state s. This property is not used in [23]. 

Remark 18: One might think that, by starting with a stochastic game such that 

g > 0, one eventually obtains a recursive game such that g > 0 on absorbing 

states. This is not true. However, by pushing one step further the construction 

done in Section 6.4, one can probably get a stronger result, namely that it suffices 

to deal with recursive games such that g > 0. We omit this lengthy development. 
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Remark 19: It is not known whether the results can be extended to n-player 

games. 

Remark 20: Observe that Proposition 15, property p l  implies the existence of 

solvable sets. Indeed, the game F would have no absorbing state otherwise. 

Remark 21: One might wonder why the action sets are reduced to singleton 

sets in the states s E E, for E E $. One might think of defining F by keeping 

the action sets A and B, and by having action-independent transitions in the 

states s E E, for E E E. In that case, correlation possibilities are available to the 

players in F, which might not be in F, and the conclusion of Proposition 16 fails 

to hold. 

Remark 22: For the same reason, the set of equilibrium payoffs of a game usually 

increases when one duplicates actions, in contrast with most classes of repeated 

games. 

5. T u r n i n g  solvable s t a tes  in to  absorb ing  s ta tes  

This section contains the proof of Proposition 14. Let s E S, and 78 E Es(F). 

We prove that  % E E8 (r) ,  first if s E C for some solvable set (C, (x, y), #). By 

definition, 7s = ~-~R #(R)7(R,  x, y). We construct an c-equilibrium associated 

to 78 with the following features. The play visits cyclically all the recurrent 

subsets of C. Going from one recurrent set to the next one on the list is achieved 

by playing appropriate small stationary perturbations of (x, y). Whenever the 

players reach the recurrent set R they were aiming at, they switch to (x, y) for 

a large number nR of stages, thereby accumulating an average payoff close to 

7(R,x ,y) .  By choosing the numbers nR large enough, and the ratios nR/nR, 
close to #(R) /#(R ' ) ,  the average payoff converges a.s., and its limit is close to 

")'s- 

Statistical tests are used to deter deviations. They are twofold. First, at any 

stage, player 2 checks that the action player 1 just played had positive probability 

given'the past history. Second, player 2 checks that, for n large, the (empirical) 

average payoff earned by player 1 in the first n stages is close to 78. 

These tests are reliable, meaning that the probability that player 1 will ever 

fail one of the two tests is small, if he follows the required strategy. They are also 

effective at deterring deviations. Indeed, assume player 1 plays in some stage 

n an action that  fails the first test. Given the past history, the distribution of 

player 2's action is close to Ysn. Hence, players l 's  future average payoffs will 

eventually not exceed HI(y ,C)  <_ 7~. If player 1 fails the second but not the 
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first, the state in which punishment starts belongs to C, hence player l 's  future 

average payoffs will eventually not exceed maxsec vl(s) <_ ~/~.* If he never fails 

any test, his average payoffs remain close to 7~. The monitoring of player 2 by 

player 1 is similar. 

Let ~ > 0 be given. We first define the profile (Y, ~) followed by the players 

until the punishment phase. Let Ro,. . . ,  RM-1 be the elements of Tic(x, y). It 

is convenient to approximate # by a rational-valued distribution u, such that  

I[ u - #[I < e/8. For each m, fix a state s m E Rm. By Lemma 9 we can choose a 

profile (x m, ym) such that 

II(xm,y m) - (x,y)[ I < e, B is closed and rsm < +c~ under (xm, y'~). 

The profile (x m, ym) is used to reach R,~. It is straightforward to check that  rsm is 

Ps,xm,ym-integrable, for every m, and s E C. Let N* = supsec,mEs,xm,ym [rsm]. 
We now choose the total number N of stages per cycle in which (x, y) is played 

such that: 

�9 N _> ~7~N*; 
�9 for each m = 0 , . . . , M -  1, II~gv(,~)(s'~,x,y)-~/(Rm,x,y)ll < e. 

We denote by (Rm, (x "~, ym), s,~, u(m))meN the sequence with period M ob- 

tained by repeating cyclically the above elements, and by tm the beginning of 

the block m: 

to = inf{n _> 1, s,~ = s o } and tm+l = inf{n _> tm, sn = sin+l}, m E N. 

We set 

a(hn) = { xmxs.8" otherwiseiftm-l+NU(m-1)<n<tm 

and define ~ symmetrically. Thus, when Rm is reached, (~, ~) follows (x, y) 

during Nu(m) stages, then perturbs (x, y) in order to reach Rm+l. 

For any two stages p < n, we denote by 

g[p,n] = 
n 1 ~ gk 

n - p + l  
k=p 

the average payoff between stages p and n, and write gn = g[1,,~] for the average 

payoff up to n. 

* The fact that Hi(y, C) > maxc vl(-) is best proved with discounted games, which 
we find convenient to introduce later. No circularity is involved. 
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LEMMA 23: The sequence (gn)n converges P~,y,7-a.s., and its limit 18 is such 

that I1~ - l~II < ~/2. 

Proof: We set P = Ps,~,~ until the end of the proof. We denote respectively by 

Lk = tkM -- t(k-1)M and Xk = 9[t(,--1)M,tkM--1] 

the duration of the k-th cycle, and the average payoff over the k-th cycle. By 
construction, the (two-dimensional) variables (Lk,Xk)k>l are lid under (d,~) 
(but Xk and Lk are clearly not independent). Moreover, Lk is P-integrable. 
Observe that IXkl < 1. Therefore, by using twice the law of large numbers: 

XIL1 + . . .  + XqLq E [XIL1] P-a.s. 
(2) L1 + . ' . +  Lq -+q-~oo E [ L I ~ '  

Observe that 

M-1 tm+u(m)N-1 t,~+1-1 
KILl : E { E gi-~ E gi}. 

m=O i=tm i=tm+v(m)N 

Hence 

(3) 
M-1 M-1 tin+l-1 

m----O m=O i----tm+u(m)N 

and similarly 

M - 1  

(4) E [L1] = N + E E [tm+l - (tin § Nu(m))]. 
m----0 

By definition of N*, and the choice of N, it follows from (3) and (4) that 

c I N  I E [ L 1 ] - N  I<  ~ g  and IIE[X1L1]-N%I I< 8 " 

Hence 

(5) E[XILI] ~8 < ~- 
E[L1] - 2" 

For n >_ 1, denote by c~ = max{q, tqM < n} the number of cycles which have 

been completed by stage n. Clearly, cn -+ +oc, P-a.s. We now prove 

an ~k=l XkLk 
(6) gn c, ~ 0, P-a:s. 
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This will conclude the proof, given (2) and (5). 

There are to - 1 stages prior to the beginning of the first cycle and L'~+I = 

n + 1 - to - ~-~=1 Lk stages between the end of the last cycle and stage n. We 

decompose the average payoff as 

1 X~(to 1) + XkLk +Xc~+zLcn+l , (7) n 
k = l  

! ! 
where X 0 is the average payoff prior to to and X~.+I is the average payoff over 

! 
the last Lc~+l stages. 

Clearly, L'c~+I <_ Lc,+l. One has 

Lq+l 
~ = 1  Lk ~q~oo 0, 

hence 

since cn ~ +c~. Thus, 

LIc,+l 
Cn ~-~k=z Lk 

- -  -~n--,oo O, P-a.s., 

X I L t 
(8) Eck~=z Lk c.+1 c~+, § 1 and ~0, P-a.s. 

n n 

The convergence (6) follows from (7) and (8). | 

We now define the statistical tests used for monitoring purposes, and the first 

time r of failure. Choose N c e S such that P {SUPn_>Nc Ilgn -- ")'Nil > ~} < ~/2. 

In accordance with the heuristic description, we set ~r = min(r l ,  ~r2) where 

7rl = inf{n > g c, IIg,~-i - ")'811 > E}, 

r2 = inf{n _> 1, a,~-i r Supp~(hn-z)  or bn-1 r Supp~(hn-z)}.  

Observe that  7r is a stopping time (for (~,),~>1). 

We let a* (resp. 7-*) be defined as: follow ~ (resp. ~) up to lr; at stage 7r, switch 

to ae (resp. T~). For each n, 

_< Ps,a,7(~r < +c~) _< el2. 

In particular, I]%~(s,a*,r*) - %11 <- 3e/2, for each u _> W e. 

PROPOSITION 24: (as, T~) is a 4e-equilibrium pro/~le associated with %. 

We shall prove that player 1 cannot improve upon a* by deviating. The proof 

for player 2 is obtained by exchanging the roles of the two players. Let cr be a 

pure strategy. For simplicity, we write P and E instead of Ps,~,~; and Es,o,r;. 
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LEMMA 25: O n e  has  

E [vl(s~)l,=k] <_ (Hl (y ,C)  + e)P(Tr = k), 

[or each k. 

Proof: IfTr = k < 7r2, s~ C C, hence vt(s~) < HI(y ,C) .  Let now hk-1 C Hk-1, 

such that  a = cr(hk_l) ~ Supp~(hk-~), so that  7r2 = k. Conditionally on hk._~, 

bk-1 is distributed according to ~(hk-1). Hence 

E [vl(s~r)lhk-1] = E [vl lsk_l ,a ,Y(hk_l)] .  

Since [l~(hk_l) - Y~k-t ]! < e, the right-hand side is at most H 1 (y, C) + e. | 

Let n >_ max(N c, NE)/E. Write, if 7r _< n, 

(9) ~ _  7r-2_1 1 n - r + l _ l  
n g~-2 + g~-I + n g[lr,n]" 

By definition, 9~-2 - < 7~ +~/2 whenever rr >_ NC+ 1, and ---~9~-2"-2-:1 < r otherwise. 
t ~ 

Also ]~,n][7-/~] <_ vl(s,~)+ e, provided 7r <_ n -  N~, and ~_=z_+A~,n [~,~] _<c E 

otherwise. Hence (9) yields 

7 r - - 2  
E [g~lTt.] <__ % + vl(s~) + 3e. 

n n 

Proposition 24 follows, by taking expectations, and using the previous claim. 

Assume now that the initial state s does not belong to a solvable set. Let 
(a, T) be an e-equilibrium profile associated to % in the game l~, and denote by 

c = inf{n >_ 1, s n e  C for some C E C}. Define a* (resp. T*) by: follow (r (resp. 

T) up to stage c; at stage c, switch to a *  (resp. T:c ). It is straightforward to 

check that (c~*, T*) is a 6e-equilibrium profile of r associated with %. We omit 
the proof. 

6. Pr oo f  of  Propos i t ion  15 

This section contains the proof of the main result, Proposition 15. We first 

introduce a few tools: standard results on discounted games are recalled in Sub- 

section 6.1, and a by-product of Mertens-Neyman's proof is given in Subsection 

6.2. Subsection 6.3 is probably the most important step in the proof. It provides 

an articulation between solvable sets properties and subharmonicity properties 

of v. The construction of controlled sets is done in Subsection 6.4. 
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6.1 REMINDER ON DISCOUNTED ZERO-SUM GAMES. The results of this section 

are due to Shapley [17]. Let 0 < A < 1. The A-discounted evaluation of a sequence 

(g,~)~>l of payoffs is defined as 

oo 

and the A-discounted payoff induced by (a, T) given an initial state s is 

7~(s ,a,T)  =E~,~,~[~x]. 

We introduce operators acting on functions u : S ~ R. For 0 < A < 1, (x, y), 

and u: S --+ R, let ~ ,y(A,u) :  S --+ R be defined as 

(10) ~ , y ( A , u ) ( s )  = Agl(s, xs, ys) + (1 - A)E[ulS, Xs, y8 ] . 

The definition of ~2,~(A,u) is obtained by replacing gl by g2 in (10). Set now 

(11) q21(A,u) = maxmin ~ ,  (A, u) = minmax ~ ,y(A,  u), 
x y ~ y x 

�9 2(A, u) = myaX min k~,y(A, u) -- m i n m a x ~  2 ~  y y(A u) 

(observe that player 1 is minimizing in the definition of 92). It was first proved 

by Shapley that there is a unique solution v~ to the equation ~i(A,u) = u. 

Moreover, for i = 1, 2, v~ is the value of the A-discounted version /~  of F ~. 

Finally, a stationary strategy x:~ = (x~,8)~es is optimal in/':~ if and only if x~,~ 

achieves the maximum in (11), for u = v~ and every s E S. 

6.2 RESULTS ON ZERO-SUM GAMES. The purpose of this section is to state 

Theorem 26 and Corollary 28, which is used in subsection 6.3. Theorem 26 is a 

by-product of Mertens-Neyman's paper [11] but is not explicitly stated there. 

Let A0 > 0 be given. Let (~)~<~o be any family of stationary strategies 

indexed by A. Given c > 0, m > 0 and a0 _> m, let a~,m be the strategy 

that plays 2~,,~, in stage n, where A~ = A(~) ,  the sequence (a,~)~ is defined 

recursively by 

and A(c~) = 1/a  in 2 (~ for every c~. Observe that A(a~) < A(m) < A0 provided m 

is large enough, hence the strategy a~,m is well-defined. 

Mertens and Neyman actually prove the next result. 
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THEOREM 26 (Mertens-Neyman): Let E > 0. For m large enough, the following 

is true. Let  7 be any s trategy such that  for every ~ <_ A(m),  every n E N* and 

hn E Ha,  

>_ v (Sn). (12) 

Then 

liminf~/~(s, a~,,~, T) > v l ( 8 )  - -  E. 

There is a slight abuse of notation in (12) since x~ E A(A) s, while T(hn) E 

We use a slightly different result, that follows from exactly the same proof', 

or can be derived from Theorem 26. Let C C_ S be given. Let Pc(e) be the 

game obtained by replacing each state s ~ C by an absorbing state with payoff 

v(s)  + r Thus, in Fc(r the game stops as soon as the play leaves C, and 

the payoff received is slightly higher than the value of the state that has been 

reached. 

We denote by ~n the expected average payoffs in Fc(e). Observe that v~ <_ v + e  

provided A is small enough. 

THEOREM 27: Let  r > O. For m large enough, the following is true. Let  r be 

any s tra tegy  such that  for every A <_ ~(m) ,  every n E N* and hn E Hn that ends 

with s,~ E C, 

(13) ~2 l~,r(h~)(A, v~)(sn) _> v~(Sn). 

Then the average payof f  in Fc(e) satisfies 

l i m i n f ~ ( s ,  a~,m, T) _> v l ( s )  -- ~. 

We emphasize the fact that v~ and v are the values associated with F. They 

differ from the values associated with Fc(c). 

We use the following corollary. Let (~)x<_xo, (~)x)x_<~o be one-parameter fam- 

ilies of stationary strategies. Given c > 0, m > 0, and ao, flo _> m, define a~,,~ as 

above and T~,m in a symmetric way, by T~,m(hn) = Y,m,8,, where #(~) = 1//3 in 2 f3 

and J~n+l = max(m,/3n + (g2 n - v2(s,~)) + r 

COROLLARY 28: Let  r > O. For m large enough, the following is true. As sume  

that, for every s E C, 

VA, p _< A(m), qJ~,~,(A,v~)(s) _> v~(s) and ~ , ~ , ( # , v 2 ) ( s )  >_ v~(s). 
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Then the average payoffs in Fc (e) satisfy 

lim inf z/n(s, a~,m, T~,m) >_ V(S) -- e. 
n--+oo 

6.3 A RELATION BETWEEN SOLVABLE AND JOINTLY CONTROLLED SETS. 

6.3.1 Preliminaries. We introduce notions that will be used repeatedly, here 

and in later sections. 

Definition 29: Let C C S, and x be given. The pair (x, C) is blocking (for player 

2) if 

(Vs e C, Vb e B), p(Cls, xs, b ) < 1 ~ E [v21s, xs,b] < maxv2(.). 
C 

In words, any unilateral exit of player 2 from C (given x) strictly lowers the 

expected min max level of player 2. 

Similarly, we say that a pair (y, C) is blocking (for player 1) if 

(Vs e C, Va e A), p(CIs, a, ys ) < 1 ~ E [vlls, a, ys] < maxvl( ' ) .  
C 

We will omit the qualifier for player i. Clearly H2(x, C) _< maxc v2(.) if (x, C) 

is blocking. The converse is not true. 

It will be useful to consider transition probabilities that differ from p. Given 
a transition probability q, we say that (x, C) is blocking for q if 

(Vs e C, Vb �9 B), q(C]s, xs, b) < 1 ~ Eq [v2Is, xs,b] < maxv2(.). 
c 

Blocking pairs (y, C) for q are defined similarly. 

It is well-known that the set 

{(A, x) e (0, 1) x A ( A ) S x  is stationary optimal in F~} 

is a semi-algebraic set, and that this implies the existence of a selection A ~ xx 

of this set such that lim~_,0 xx exists (see [14], chapter VII). Similarly, one may 

choose for each A an optimal stationary strategy y~ of player 2 in / .2  in such a 

way that lim~_,0 y~ exists. These choices are made once and for all, and we set 

= limx~, ~ =  limy~. 
A-~O A~O 

We now derive useful and easy properties of 5. The strategy ~ has symmetric 

properties. First, we show that v 1 is subharmonic under (5, y) for every y. 
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The result follows by taking the limit A --+ 0. 

LEMMA 30: Let  s �9 S,  and y be given. One has 

E [vlls ,~. ,y.]  > vl(s). 

Proo~ By optimality of x~, 

~gl(s,x~,. ,ys) + (1 - ~)E [v~ls, x~,.,ys] > v~(s). 

I 

COROLLARY 31: 1. Let s �9 S, and y be given. There exists a E A such that 

E [vlis, a, ys] > vl(s). 

2. Let C C S, and y be given. One has H I ( y , C )  > maxc vl(.). 

Proo~ Claim 1 follows by observing that E [vlls,~8, Ys] is in the convex hull of 

the numbers E [vlis, a, ys], a �9 A and by using Lemma 30. Claim 2 follows by 

applying claim 1 to a state s �9 C such that v 1 (s) = maxc v 1 (.). I 

6.3.2 The property of the alternative. We prove here Proposition 32. 

PROPOSITION 32: Let  C C C(~,~).  Assume  that: (i) both (~ ,C)  and (~,C)  are 

blocking pairs, (ii) v is constant over C. Then (C, (~,y))  is solvable or joint ly  

controlled. 

We fix such a set C until the end of this section. For convenience, we shall 

assume that  for (s, a, b) E C x A x B, 

(14) p(CIs  , a, b) < 1 ~ p(C]s, a, b) = O. 

To see that this entails no loss of generality, define a game F d by adding a copy 

c(s) of each state s E C. Thus, the state space of F g is S d = S U c(C).  Define the 

transition probability pd of 1 ~d as follows. Given s E C, set pd(slis , a, b) : 0 and 

pd(c(s')  I s, a, b) = p(s ' is  , a, b) if s' �9 C and p(CIs,  a, b) < 1, and set pd(s' is  , a, b) = 

p(s ' ls ,  a, b) otherwise. Given s r C, s' �9 S, we set pg(s ' is , . ,  .) = p(s ' i s , . , . ) .  

Finally, the payoff function g is extended to a function gd defined on S d by 

setting gd(c(s) , . ,  .) -= g(s , . , - )  for every s �9 C. Clearly, C is solvable (jointly 

controlled) in F d if and only if C is solvable (jointly controlled) in F. 

We denote by J the set of joint exits from C given (~, Y) and by F j  the 

convex hull of (E [vls , a, b], (s, a, b) �9 fl}: the elements of F j  may be thought of 

as feasible exit payoffs given that  players play perturbations of (5, y) on C. 

The next lemma is a direct consequence of assumptions (i) and (ii) in 

Proposition 32. 
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LEMMA 33: (C, (5,~)) is jointly controlled if and only if there exists 7 e F j ,  
such that ,~ >_ v(s), for any s e C. 

We denote by 7r the set of recurrent (under (5,y)) subsets of C, and 

by Fn the convex hull of {7(R,~,y) ,  R e Tic(2, 9)}. The next lemma is a direct 

consequence of assumptions (i) and (ii) in Proposition 32. 

LEMMA 34: Let s e C. (C, (~,~)) is solvable if and only if there exists ~/ e FTr 
such that ~/>_ v(s). 

For s e C, set 

A~ = {a e A,p(Cls,  a,y~) = 1} and Bs = {be  B,p(CIs,5~,b ) = 1}. 

Since C is closed under (5,~), As contains the support ofhs,  for each s e C. For 

A > 0, s e S, denote by 5x,s the distribution over As induced by xx,s (where x~ 

is the optimal strategy in F~ that was chosen in the previous subsection): 

5~,~(a) - x~,~(a) for a e A~, and 5~,~(a) = 0 otherwise. 
x~,~(A~) 

Thus, ~ ,~  is obtained by deleting the unilateral exits of player 1 from C given 

~, and then by renormalizing. Since lima x~ = 5, the stationary strategy 5~ is 

well-defined for A small enough and lima 5x = 5. 

Define similarly ~,~ as the distribution over B~ induced by y~. 

LEMMA 35: There exists A0, such that 

�9 ~ ~ v~,(s) and % ~ , ~ ( ~ , v ~ ) ( s ) >  ~ ,~ (~ ,v~) (~)  > ~ ~(~)  

for every s e C, A <_ Ao, ~ _< Ao. 

Proo~ We prove the claim for player 1. Let s E C. By optimality of x~, 

~p~l ,~, (A'v~)(s) > vlx(s) f~ every A'# > If x~,s(As) = l, -~,s = x~,s, and we 
are done. Otherwise denote by x~,s the distribution over A\As  induced by xx,s, 

so that x~,s = x~,s(As)5~,s + (1 -XX,s(As))5~,s. By linearity, 

91x~,~ (A, v~) (s) = x ~ , , ( A s ) ~ , y , l  (A, v~) (s) + (1 - x~,~(As))~P~5(A,v~)(s ). 

To conclude, it is therefore enough to prove that 

(15) vl)(s) < vi(s),  
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for A and # small enough. For each a E A\A~, p (C[s ,a ,~ )  < 1 hence 

E [vlls, a,~s] < vl(s) since (~,C) is a blocking pair. Choose r />  0 such that  

E [vl]s,a, Ys] < vl(s) - 7) for every a C A\A~. 

Since the support of 5~,~ is a subset of A\As ,  this yields E [vl[s,~:~,s,~s] < 
- 

The inequality (15) follows for A and # small since 

~ S  (A, v l ) ( s ) - E [ v l I s , ~ , ~ , ~  ] <2A+(1-A)( I Iv  ~ - v 1 [  [ + l l y ~ - y . , ~ [ [ ) .  " 

From now on, we let a sequence (eq)q>_l be given, such that limq eq = 0. For 

each q, we let mq be given by Corollary 28, applied to the families (2~) and 

(~ ) .  We assume w.l.o.g, that  mq --+ +co. We set Pq = Ps,~q,,~q,~.,,q, and 

Eq = Es,a~q.~,~q.mq. Proposition 32 follows from the next two lemmas. 

LEMMA 36: Assume that Pq(ec < +c~) = 1 for every q. Then (C, (~,~)) is 
jointly controlled. 

Proof  By assumption and Corollary 28, one has for each q 

lim ~n(s, a~q,mq, T~q,m~) ---- Eq [v(s~c) ] + eq >__ v(s) - eq. 
n- -+ o o  

Clearly, Eq [V(Sec)] belongs to F j .  Hence F j  contains a point w with w > 

v(s) - 2ca. Since F j  is compact, there exists a point 7 in F j  such that 7 >- v(s). 
By Lemma 33, (C, (~,~)) is jointly controlled. | 

LEMMA 37: Assume that Pq(ec < +C<)) < 1 for every q. Then (C, (~,~)) is 

solvable. 

Proof'. We shall prove that q, >_ v(s) for some "y E FTr For each s E C, 

limn-~o~%(s,~,~) exists, and is a convex combination of "),(R,~,~) for R E 

T~c(5,~). Hence l i m n - ~  %(s ,~ ,~)  belongs to Fn  for each s e C. Let e > 0 be 

given, and choose an integer N such that the distance between ~'N(S, ~,~) and 

FTr is at most e, for each s E C. 

Since lim~_~0 5~ = 5, we may express 5~ as a perturbation of 5 for A small 

and write 

x.x,8 = (1 - fs(A))Xs + fs(/k)xA,s, 
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for some ~ E A(A) s, and where lim:~_~0 fs(A) = 0 for each s. Fix q large enough 

so that fs(A) < r  for each A < A(mq), and s. Since Pq(ec < +oo) < 1, there 

exists a history h such that 

(16) Pq(ec < +oo!h) < e. 

For notational simplicity, we denote by a and T the strategies induced by aeq,m, 

and TE~,m~ in the subgame starting after h. Observe that the definition of a (resp. 

of T) coincides with the definition of a~,mq (resp. of T~,,n,) except possibly for 

the initial value of (a,~) (resp. of (fin)). Therefore, 9,(s,  a, 7) _> v(s) - r for n 

large enough (s is the last state in h). 

We now argue that qn(s,a, T) is close to fin. We split in two steps the choice 

by player 1 of an action in any stage. Player 1 first chooses between the two dis- 

tributions ~8, and ~ , , s .  according to the probabilities 1 - f ~  (An) and f~. (A,~). 

We label these two outcomes as 0 and 1. In the second step, he chooses an action 

according to the distribution selected in the first step. This may be formalized 

by enlarging the probability space on which the randomization devices of player 

1 are defined. We proceed similarly for player 2 and we view P as defined over 

the enlarged measurable space (Hoo x {0, 1} N x {0, 1} N, ~oo | B | B), where B 

is the a-algebra induced over {0, 1} N by the cylinder sets. We denote by bin the 

outcome of the first step, in stage n, for player i, and we call success any stage 
= = b i n such that  b ~ 1 or b~ 1. Clearly, the variables ( ,~)n are not independent. 

We compute an estimate of E[yNp ] where p E N. Consider a sequence K = 
{k , . . . ,  k + N - 1} of N consecutive stages, that starts from stage k, and let h k 

be a history that ends with a state in C. Conditional upon the past play hk, the 

probability that  there is a success in some stage n E K is at most r Call F the 

complement of this event. Thus 

Since a and r coincide with the stationary strategies ~ and ~ on F, one deduces 

from (17) that  

Given the choice of N, the distance between "yN(Sk,~,~) and -~'n is at most e. 

Thus, for each such history, the distance between E[~ik,k+N_lllhk ] and Fr~ is at 

most ae. By (16), P(sk e C') _> 1 - e ,  hence the distance between E[~[k,k+N_~l ] 

and F~ is at most 4e, using the convexity of Fr~. Thus, there is a point 7 in Fra 
such that  3' >_ v(s) - 4s - eq. Since Fra is compact and e arbitrary, the result 

follows by Lemma 34. | 
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6.4 CONSTRUCTION OF THE CONTROLLED SETS. In subsection 6.4.1, we first 

exhibit a collection of sets that are jointly controlled or controlled by player 

2. Informally, this part takes care of the blocking pairs of the form (y, C). In 

subsection 6.4.2, we exhibit sets controlled by player I, which possibly include 

some of the previous ones. Informally, this part takes care of the blocking pairs 
of the form (x, C) for some x. We prove in subsection 6.4.3 that the family we 

obtain satisfies the conclusions of Proposition 15. 

6.4.1 A first family. The starting point of the construction is the following 

lemma. 

LEMMA 38: Let C be a subset of S\S*. Assume that: (i) v is constant on C, 
(ii) C E 6(7, y) and (iii) (~, C) is a blocking pair. Then (C, (~, ~)) is controlled 
by player 2 or jointly controlled. 

Proo~ We discuss according to whether (7, C) is blocking or not. If (7, C) 

is blocking, then, by Proposition 32, (C, (7, y)) is solvable or jointly controlled. 

Our basic assumption on the game is that no subset of S\S* is solvable. Hence 

(C, (7, y)) is jointly controlled. 

Assume now that (7, C) is not blocking: there exist (s, b) E C x B, with 

p(CIs, Ts,b ) < 1 and E [v21s,78,b] > maxv2(-). 
- -  C 

Among those unilateral exits choose a pair (s*, b*) that maximizes E [v2]s, ~s, b]. 

We now check that (C, (5, ~), (s*, b*)) is controlled by player 2. By construction, 

E [v ls*,Ts., b*] _> H2( ,C) 
As for player 1, E [vlls*,~s,,b *] >_ vl(s *) -~ maxc vl(.) by Lemma 30. Since 

(y, C) is blocking, maxc v 1 (.) > H 1 (~, C), and the result follows. I 

We describe an operation that will be used both in this section and in the 

next one. Let S be a collection of disjoint subsets of S\S*, and # c  be an exit 

distribution from C, for each C E S. For each C, let vc E A(S) be the uniform 

distribution over C. Define a transition function Ps on S by 

1 1 ps(.is, a,b ) = [ ~/~r + ~vv i f s E C f o r s o m e C E $ ,  
[, p(. Is, a, b) otherwise. 

Observe that transitions are independent of actions on each C E ~q. We denote 

by E s  [-Is, a, b] the expectation w.r.t, ps(.is, a, b). 
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Remark 39: Ps is defined both by $ and by the exit distributions (#c)ces.  
The notation Ps is thus a bit ambiguous. Which exit distributions are meant will 

always be obvious given the context. 

We thus have two transition functions on S, p and Ps. We therefore need 

to emphasize which transition function is used. For instance, we say that  a set 

C c_ S\S* is closed under Ps and (x, y) if ps(CIs, x~, Ys) = 1 for each s E C. 

Given a profile (x,y) ,  we have two notions of communication, for the graphs 

defined through the two transition functions p and Ps. The next lemma relates 

the two notions. 

To avoid confusion, we write C E Ca(x, y) whenever C communicates for the 

transition function Ps. 

LEMMA 40: Let (x, y) and a collection ,~ of disjoint subsets of S\S* be given. 

Assume ~hat C E C(x, y) for each C E ,~. For each C E S, let qc be an exit 
distribution from C, and let D C_ S\S* such that C C_ D for each C. Assume 

that the following holds: 

�9 e 

�9 for every C E 8, qc belongs to the convex hull of the set 

{p(.ie), e exit from C given (x ,y)} .  

Then D E C(x, y) for p. 

The lemma essentially says that,  given (x, y), any set that  communicates for 

p~ also communicates for p, provided the exit distributions are defined through 

perturbations of (x,y).  Observe that  the second condition holds as soon as 

(C, (x, y)) is a controlled set and qc is the associated exit distribution. 

Proof." We denote by Gb(x, y) and GS(x, y) the graphs associated with the two 

transition functions p and p~. Let (s, s t) be an arc of GSD(x, y). We need to prove 

that  there is a path  from s to s t in the graph GD(x,y). 

If s • C for every C E ,~, one has p.q(.[s,., .) = p(.Is,., .), hence the result holds 

since (s, s t) is then also an arc of GD(X, y). Assume now that  s E C for some 

C E 8. There are two possibilities. Assume first that  s t E C. Since C E C(x, y), 

there is a pa th  from s to s '  in Gc(x,y),  hence also in GD(X,y). Assume now 

that  s t ~ C. By assumption, there exists sc E C such that  (sc, s t) is an arc of 

Gv(x, y). Since C E C(x, y), there is a path from s to sc in GD(x, y). The result 

follows. I 

Denote by $ the set of subsets C of S\S* that have the following properties: 
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P1 C E C(~,,9); 
P2 v(s) is independent of s E C; 

P3 (9, C) is a blocking pair; 

P4  no strict superset of C satisfies P1 through P3. 

Clearly, if C and C ~ satisfy P1 through P3, C U C' satisfies P3. If moreover 

C n C '  r O, then C u C '  E C(~,~). Thus CUG' satisfies P1 through P3. Hence, 

distinct elements of S are disjoint. 

Let C E S. By Lemma 38, C is jointly controlled or controlled by player 2. Let 

qc be an associated exit distribution. Clearly, qc need not be uniquely defined. 

Which choice is being made is irrelevant. 

We introduce an auxiliary result before proceeding with properties of $. We 

state it for p. The same result holds for any transition function, provided the 

graphs are modified accordingly. 

LEMMA 41: Let (x, y) and a set D C_ S\S* be given. Assume that D is closed for 

p, (x,y). There exists a subset D o lD such that the graph Gb(x ,y  ) is strongly 
connected and GD(X, y) contains no arc incident out olD. 

Proof: Let 5 be a transition function on D such that 

~(s'ls ) > 0 ~ (s,s') is an arc of GD(x,y). 

Such a 5 does exist since D is closed. Any recurrent set for 5 will do. I 

Observe t h a t / )  E C(x, y). 

LEMMA 42: There is no subset D of S\S* such that the following three properties 
hold simultaneously: 

C1 D is closed under (2, Y) and Ps; 

C2 (9, D) is a blocking pair; 

C3 v(s) is independent ors E C. 

Proof: We argue by contradiction. Let D be such a set and set 

S = { C e S ,  CC_D}. 

Let b c_ D be a set obtained by applying Lemma 41 to D, (2, Y) and p$. By 

construction, /)  E Cs(~,fl), hence /) E C(~,~3) by Lemma 40. Therefore D 

satisfies P1 and P2. Let (s, a) be a unilateral exit from D given y. There are 

two possibilities. 
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Assume first that  s E C, for some C E S. In that case, since b is closed under 

Ps, it is also closed under ~'c- Thus, C C_/) hence (s, a) is a unilateral exit from 

C. Since (~ ,C) i s  blocking, E [vlls, a,~s] < m a x c v  1. 

Assume now that s ~ C, for each C E S. In that case, Ps and p coin- 

cide in s. Since no arc of GSD(2,~) is incident out o f / ) ,  it must be that  (s,a) 

is also a unilateral exit from D: p(Dis, a, Ys) < 1. Since (9, D) is blocking, 

E [v z I s, a, Ys] < maxD v 1. Hence (9, /))  is blocking and P 3  holds. 

We now argue that  this contradicts the definition of S. Either D M C = 0 for 

every C E S, in which case the maximal set (w.r.t. inclusion) that  con ta ins / )  

and satisfies P 1  through P3  is not in S, which is impossible. Or C c_/) for some 

C E 8. In that case, C C / )  since qc (C) < 1 and 

qc(D) = 2ps(/Sis,2s,~8) - v c ( b )  = 1, for s E C. 

This contradicts P 4  for C. I 

6.4.2 A second family. We consider the collection ~ of all subsets D of S\S* 
that  have the following property: for some x that coincides with 5: on each C E S, 

properties P ' I  through P '3  below hold: 

P~I v2(s) is independent of s E D; 

P~2 (x, D) is a blocking pair for Ps; 

P ' 3  D E Cs(x, 9). 
By Lemma 40, P ' 3  implies that D E C(x, 9). In particular, D is closed for 

(x,9). Observe also that, for every C E 8, D E 7), ( C M D  r 0) ~ C c_ D. 

Indeed, for s E C n D, ps(Dis , x, Y) = 1 implies re(D) = 1. By definition of r e ,  

this implies C _c D. 

We wish to take disjoint elements of 7) that are maximal in some suitable 

sense. Since x may depend on D E 7), two maximal elements of 7) may have a 

non-empty intersection. We use the next lemma. 

LEMMA 43: Let 7) be a set of subsets of S. There exists 7) C 7) such that the 
following holds: 

1. the elements ofT) are pairwise disjoint; 

2. VD E T),3D E T) such that D M D  ~O; 
3. V D E T ) , V D E I ) , ( D C _ D ~ D = D ) .  

Proof: We construct :D iteratively. Set 7)1 = 7), and let D1 be a maximal 

element of 7)1. For n > 1, let 7)n be the set of sets D E 7) such t h a t / )  M Dk = 0 

for k = 1 , . . . ,  n - 1 and let Dn be a maximal element of 7)n if 7),, r 0. Since 
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S is finite, this algorithm stops after some step n*. The set I) = { D I , . . . ,  Dn. } 

satisfies the conclusions of the lemma. | 

We let :D be the collection of subsets of S\S* obtained by applying Lemma 

43 to 9 .  For each D �9 :D, there exists x D such that x D coincides with 2 on 

each C �9 $, and properties P~I through PI3 are satisfied for x D. Since these 

properties involve only the components x D for s �9 D, and since the elements of 

:D are pairwise disjoint, we may and do assume that x D is independent of D �9 :D, 

and denote it by 5. 

LEMMA 44: (D, (5, 9)) is controlled by player 1, for each D �9 l). 

Proos By P'3,  D E C(5, Y) (Lemma 40). Assume that, for some (s, a) E D x A, 

(18) p(D]s,a, 9s) < 1 and E [vl[s,a,9s] > maxv 1. 
-- D 

Among the unilateral exits that satisfy (18), select a pair (s*,a*) such that 

E [vl[s,a, 98] is maximized. We now repeat part of the proof of Lemma 38 

with the players exchanged. By construction, E [vl[s*,a*,9,.] >_ g l (9 ,  D). 
On the other hand, H2(5, D) = maxD v 2 since (5, D) is a blocking pair, and 

E [v2]s*,a*,9s.] >_ v2(s *) by aemma 30. Since v2(s) is independent of s e D, 

one gets E [v21s*,a*,98.] >_ H2(5, D) which proves that (D,(5,9),(s*,a*)) is 

controlled by player 1. 

Hence, we need only prove that (18) holds for some (s, a), i.e., that  (9, D) is 

not a blocking pair. We argue by contradiction. Assume that there is no such 

pair. Let D1 = {s e D, vl(s) = maxDv 1} contain the states of D where v I is 

maximized. We prove now that D1 satisfies the above conditions C1 through C3 
which is impossible. 

Start with C1. We argue that D1 is closed under (~, Y) and Ps. Let s E D1. 

Assume first that  s E C, for some C E $. By construction, Eqc [v] _> maxc v (the 

maximum is taken coordinatewise), and E~ c Iv 1] = vl(s) since v 1 is constant on 

C. Hence Es  [vlls,5:~,98] >_ vl(s). Since D1 contains exactly the states of D 

where v 1 is maximized, one has ps(DllS, 5z8, Y,) = 1. 
Assume now that s ~ C, for every C �9 S. By Lemma 30, E [v[s, 5:8, 98] >_ v(s). 

Once again by definition of DI, this implies p(Dl[s, 28, 98) = 1. This proves C1. 

We now prove C2. Let (s, a) �9 D1 x A be a unilateral exit from D1 given Y. 

�9 If p(DIs , a, Ys) = 1, one has E [vlls, a, Ys] < maxD v I by definition of O1. 

�9 I fp(DIs,  a, 98 ) < 1, one has E [vlls, a, 98] < maxDV 1 since (s,a) does not 

satisfy (18). 

C2 follows. C3 is obvious. | 
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We emphasize the fact that for each pair (s, a) such that (18) holds, one has 

s ~ C, for every C E S. 

Let qD be an associated exit distribution. Clearly, qD need not be uniquely 

defined. Which choice is being made is irrelevant. 

6.3.3 The family s and its properties. Given C E S, either C C_ D for some 

D E :D, or C A D = 0 for each D E :D. We let s be the collection that consists 

of the elements of 7) and of the elements C of S such that C A D = 0, for each 

D E :D. Observe that the elements of s are disjoint. 

LEMMA 45: There is no subset F of S\S* and no x such that x coincides with 

on s and the following three properties hold simultaneously: 

C~I F is closed under (x,~) and pE; 

C'2 (x, F) is a blocking pair for Pc; 

C~3 v2(s) is independent ors E F. 

Proof." We argue by contradiction and let (x, F)  be such a pair. By Ct l ,  F is 

closed under (x, Y) and Pc. Let /~  be a subset of F obtained by applying Lemma 

41 to F,  (x, Y) and Pc. We now check that properties P~I through P~3 hold for 

x and/~.  

P~I and P~3 are obvious. In order to check P~2, let (s, b) E /~ • B be such 

that  ps(Fis ,  x~, b) < 1. By definition of/~, this implies 

(19) ps(r l s ,  b) < 1. 

There are two possibilities. 

Either s E D, for some D E T). By assumption, x8 --- x8 in that case. By 

(19), one has ps(Dis,  58, b) < 1 hence E s  [v2is,58, b] < maxFv 2 since (5, D) is 

a blocking pair for Pc. 
Or s ~ D, for every D E D. In that case, Ps coincides with PE in state s. 

Hence E s  [v2is, xs, b] = Ec [v2is, xs, b] < maxFv 2 since (x ,F)  is a blocking pair 

for Pc. P~2 follows. 

It remains to prove that this contradicts the properties of :D. We first argue 

that T' is closed under (x, Y) and Pc. Let s E/~. If s ~ D, for every D E :D, the 

transitions Ps and Pc coincide in state s, hence pe(FI s, x, Y) = Ps(-~[ s, x, Y) = 1. 

Assume now that s E D, for some D E :D. Since D E Cs(x, fl) it must be that 

D C_ /~, by construction of ~'. Hence up(/~) = 1. We show that qD(/~) = 1. 

By construction, qD = p(.is*,a*,fl~*), with s* ~ C, for every C E S. Since 

qD(F) = 1, the arcs of the form (s*, s'), where qD(s') > 0, all belong to G~(x, 9). 
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Since s* E /~, this implies qD(F) ---- 1, by construction of F. Therefore, _F is 

closed under (x, ~) and PE. 
We may conclude. For any given D E ~ ,  either F' n D = 0 or D C F,  since f '  

is closed under Pc. Moreover, P ~ :D. This is in contradiction with the definition 

of 1). I 

Define the game F as in Section 4: each state in E C s is replaced by a dummy 

state, with transitions qE, and the payoff function is set to zero on S\S*. We use 

tildes to avoid confusion between the games F and F. For instance, we denote by 

1~ [.i s, Xs, y~] expectations under ~(.Is, xs, y~) and by ~ average payoffs computed 

in ]~. 

LEMMA 46: In the game F, the following property holds. For every x, there 

exists y such that (x, y) is absorbing and ~2(s, x, y) >_ v2(s) for each s. 

Proof'. Let x be given. For s E S, define 

B(8) = {b e x.,b] > 

Observe first that B(s) ~ O for each s. Indeed, if s C E for some E E $, 

B(s) = {*} since 

, ,  .] = Eq. [v 2] > v2(s); 

otherwise, this follows from Corollary 31 (with the two players exchanged). 

Choose y such that Supp Ys = B(s) for each s. 

We now argue that  the Markov chain induced by (x, y) is absorbing (for every 

initial state). Let F C_ S\S* be such that E C_ F or E N F = 0 for every E E $. 

Set _P = {s E F, v2(s) = maxf  v2}. By Lemma 45, there exists s C F' and b E B, 

such that  ~(FIs, xs, b) < 1 and E [v2is, xs, b] >_ maxpv  2. By definition of/~,  

this implies ~(FIs, xs, b) < 1. Moreover, such a b belongs to B(s). We thus have 

proved that no subset of S\S* is closed under (x, y). 

Observe finally that  ~2(s, x, y) = Es,~,y [v2(st)] >_ v2(s), where the ineqt~ality 

follows since (v2(s,O),~ is a submartingale under (x,y). I 

7. Proof  of  Proposit ion 16 

We prove here that E(F)  C_ E(F).  We first compare the minmax values of F and 

F. For i = 1, 2, we denote by w~(s) the value of the zero-sum recursive game F~ 

with initial state s. 
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LEMMA 47: One has w(s) >_ v(s). 

Proof." We first prove w 2 _> v 2. Let 6 > 0 be given, and x be a stationary 

strategy of player 1 in ~2 such that ~2(s,x,y) <_ w2(s)+ 6, for every y. The 

existence of x follows from Everett [7]. By Lemma 46, there exists y such that 
(x,y) is absorbing and ~/2(s,x,y) > v2(s). Hence, V2(8) ~ W2(8) q-6. Since 6 is 

arbitrary, the claim follows for player 2. 

We now prove that ~l(s ,2,  y) >_ vl(s), for every y. Let y be given. Since 

(v 1 (s~))~ is a submartingale under Ps,~,y, it is also a submartingale under P~,~,y. 

1 < 0 since all payoffs to player 1 its limit. Observe first that voo _ We denote by voo 
1 vl(st) if t < +co. Hence, 1 are nonpositive. Clearly, v~ = 

~/l(s, Sc, Y) = Es,~,y [vl(st)lt<+oo] _> Es,~,y [v~] _> vl(s). , 

Let s 6 S, % 6 Es(F), and (~, ~) be an associated 6-equilibrium. We define 

a profile (a*, 7-*) that has the following feature: whenever the game enters some 

set E 6 $, the players switch to a profile that implements the exit distribution 

qE up to 6; whenever the current state does not belong to any E 6 E, the players 

play according to (~, ~) (some care is needed there; most histories in F have zero 

probability in F, since no passage in E 6 E lasts for more than one stage). In 

addition, a test is performed that essentially checks that S* is reached in bounded 

time. 
Let 6 > 0, 6 < ~//2 where r} = mins W 2 > 0. Let 0 < 6' < 6rl/5, and let (Y, ~) 

be a 6'-equilibrium associated with 3'8. 

LEMMA 48: One has Ps,~,7(t < +oo) >_ 1 - 6/2. 

Proof." If Ps ,~ j ( t  < +ce) = 1, the result holds. Otherwise, choose No such that  

Ps,~,7(t < + ~ [ t  >__ No) < 6'. 

Thus I[~(s, ~, ~) - Es,~,7 [g(t)lt<No] [I --< 6', where 

~(s, ~, ~) = lira X/n(s, ~, ~) = Es ~,7 [g(t)lt<+oo]. 
~,--~ 00  

Define T as: follow ~ up to No, and switch at stage No to an 6'-minmax strategy 

in ~2. 
By definition, 

~(S,~,T) >_ Es,~,;[g(t)l,<No] + (7 ' - -- - 6 )Ps,y,;(t > No). 
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By the e'-equilibrium condition, 

(~ - e')t)8,~,~(t >_ No) <_ e' + e', 

hence the result. 1 

We fix N such that  Ps,~,~(t < N) _> 1 - e, and set 6 = e/N.  For each E C C, 

we let (hE, TE) be a profile that implements qE up to (f and r ~  the associated 

punishment stage, i.e., we assume that  the following four properties are satisfied: 

1. r E  is a bounded stopping time: ~r~ _< NE, where N E E  N; 

2. for each s E E,  eE < +co, Ps,~,T~-a.s., and the law of se~ is qE; 
3. for every a, 

Es,a,rE [vl(S~rE)lrE<eE -b"/l(SeE)leE<TrE] ~_ Eq,"/1 +~;  

4. a symmetric condition holds for every T. 

A detailed proof of existence of (as, TE) and of ~rE is in [23]. 

We define a r u n  as follows. It is either a (maximal) sequence of consecutive 

stages in which the game remains in a single set E E E; or it is a stage for which 

the current state does not belong to any E C E. More formally, the beginning ri 

of the i-th run is defined by 

�9 r l  = 1; we let E1 denote the set E C E that contains st1, if any; we set 

E1 = * otherwise; 

�9 f o r i > l ,  wese t  

j" r~ + 1 if Ei = *, 
ri+l -- ~. inf{n > ri, sn q~ Ei} otherwise; 

we let Ei+l  be the set E E E that contains sr~+l if any, and Ei+l -- * 

otherwise. 

Thus, Ei -- * is a shortcut for the statement: "the i-th run is a stage such that 

the current state does not belong to any E E E". 

In order to formalize the informal description of (a*, T*) we need to define an 

operator from the set of histories H of F into the set of histories H of F that 

essentially deletes what occurs within any given run. We define Pro j :  H --+ 

as follows. Let hn = (sl, al ,  b l , . . . ,  sn) C H~, and call j the unique i C N* such 

that  ri _< n < ri+l on hn (i.e., given hn, the play is currently completing the j - th  

run). Set Proj(h,~) -- ( s l , a l , b l , . . .  ,s'j) where si = s~, and 

{(as,bi)  i f E i = * ,  
(hi,hi) = (*, , )  otherwise. 
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Define ~ as: from stage ri up to stage ri+~, play ~(Proj(h~,)) if Ei = *; and 

aE~ otherwise. We now define the punishment stage. 

We need to r a stopping time 7r(i) that stops if a player fails a test 

during the i-th run. Thus, one roughly needs to add ri to 7rE,. To do this 

properly, we introduce the shift operator 0 that operates on Hor as follows: 

O((s,~,a~,bn)n>l) = (s,,a,,b~),~>2: this is the play obtained by deleting the 

first stage and shifting the others one stage backward. 

Let u be any stopping time. In accordance with this notation, we set O~(hn) = 
(su, au, bu,. . . ,Sn),  for every hn = (sl ,al ,bl , . . . ,s ,~)  E {u < n}: O~(h,) is the 

history of play between the stages u and n. 

For i = 1 , . . . ,  N, we define 

7r(i) = { ri+cc + 7rE, o 0 ~ otherwise,~ the event ri < oc, Ei ~ *, 

and r = min{rg,  r(1),Tr(2),...,Tr(N)}. Observe that r _< N, ,  where N ,  = 

N • maxE6C NE. 
Finally, a* is defined as: follow # up to r ,  and switch to a~ at stage 7r. The 

definition of T* is symmetric. The remainder of the section is devoted to the 

proof of the following proposition. 

PROPOSITION 49: (a*, ~'*) is a lOs-equilibrium profile associated with 78. 

LEMMA 50: One has Ps,o*,~*(Tr < t) < 2s. 

Proof: By definition of 7r(i), 

Ps,~*,r*(Tr(i) < +oo17-/~,) = Ps~,,a~,,r~,(TrE, < +oo) < s i N  

on {ri < co, Ei # *}, 

and Ps,~.,~.(Tr(i) < +oolT-/r,) = 0 otherwise. Thus, Ps,~.,~.(Tr(i) < +oc) < s / g .  
On the other hand, the law of sr N under Ps,~# coincides with the law of sg under 

Ps,AT" Hence Ps,a,e(rN < t) < s. The result follows. | 

Observe that l im, 7n(s, ~, ~) = ~(s, ~, F). By Lemma 50, 

II'y,,(s,~,~)-'~,,(s,,~*,~-*)ll _< Ps,a,e(Tr < +oo) < 2s. 

Hence 

(20) - (s)ll < 4e for n large enough. 
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We now prove that  player 1 cannot improve upon .yl be deviating from a*. 

Although the two players do not have symmetric roles, the symmetric proof 

would show that  player 2 cannot improve upon .y2. We first compute an estimate 

of the expected level at which player 1 gets punished (or the play reaches S*). 

LEMMA 51:  For every a, 

Es,a, ~ [vl(smin(lr,t))] ~_ ")/1(8) -}- 4r 

Proof For n = 1 , . . . , N ,  denote by 

the maximal amount that player 1 can get in F, given the history up to stage 

n, and given player 1 gets punished from stage N on. Thus, (X~) is the value 

process of a stochastic control problem with horizon N, and thus satisfies the 

usual dynamic programming equation. Observe that X~ >_ v(sn). The result 

follows from the two claims below. | 

CLAIM 52: ns,a, ~ [vl(Smin(r,t))] ~_ X l  + C. 

Proof of Claim 52: Define 

-I ~ vi(s . )  if 7r <_ r~, 
v~ = ~ X. (Pro j (h~) )  i f r~ < ~r. 

-1 Let 1 <_ n < N. One can check that E~,m~ [Vn+l]~'~min(r~,Tr) ] ~_ Vn-1 if En = * and 
-1 Es,o,~ [V~+l]?-/min(~,,~)] <_ v n -~ + 5, since ~ coincides with TE~ from r~ up to rn+i. 

The claim follows by taking expectations. | 

CLAIM 5 3 : X 1  _< ~/1 + 3e. 

Proof of Claim 53: By definition of (X,~), one has Es,~,~ [XN] : Xi for every 

strategy 8 that  is optimal in the stochastic control problem that defines (X,).  

Define (r as: follow ~ up to stage N, and switch to an e-minmax strategy in ~1 

at stage N. By definition, 

 1(8, e )  -> [ w l ( s N ) ]  - -> - > x l  - 

where the second inequality is a consequence of Lemma 47. Since ~l(s, a, ~) _< 

~1 (s, ~, ~) + 6, the claim follows. | 
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Recall that min(~r, t) <_ N, ,  thus 

")'n(S, ff, T*) ~ Es,a,~ [vl(smin(~,t))] -~ 2~, 

provided n >_ min(N~/ t ,  NE). Using (20) and Lemma 51, one deduces that  
(a*, r*) is a 10G-equilibrium associated with 78. 
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