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ABSTRACT 

We s t u d y  Lq-Liouville proper t ies  of nonnega t ive  p - supe rha rmonic  and,  

respectively, p - subha rmon ic  funct ions  on a comple te  R i e m a n n i a n  manifold  

M.  In  par t icular ,  we prove t ha t  every p -harmonic  funct ion  u E Lq(M) is 

cons t an t  if q > p - 1. 

1. I n t r o d u c t i o n  

Liouville-type problems for harmonic functions on noncompact Riemannian 

manifolds have been extensively studied since the fundamental works of Cheng 

and Yau [CY], Greene and Wu [GW], and Yau [Y1-2] in the mid-70's. In 1975 

Yau [Y1] proved that  complete manifolds with nonnegative Ricci curvature have 

the strong Liouville property, that  is, every nonnegative harmonic function on 

such a manifold is constant. In [CY] Cheng and Yau showed among others that  

a complete manifold is parabolic if lim inf~-.o~ V(r) /r  2 < co. Here and in what 

follows V(r) = tB(o,r)l is the volume of geodesic ball of radius r centered at 

a fixed point o E M. Recall that M is called p a r a b o l i c  if every nonnegative 

superharmonic function on M is constant or, equivalently, M does not carry a 

positive Green's function. On the other hand, LP-Liouville properties for (con- 

tinuous) nonnegative subharmonic functions were studied e.g. in [GW], [Y2], 

and in [K2-3]. Greene and Wu [GW] proved that  on a complete manifold M, 

whose sectional curvature is nonnegative outside a compact set, every continuous 

subharmonic function u _> 0 is either constant or fM up = co for every p >__ 1. 
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A similar result was obtained by Yau [Y2, Theorem 3 and Appendix] for p > 1 

without any curvature assumption. More precisely, he showed that on a complete 

manifold every such u is either constant or l iminf ,~oo(1/r)  fB(o,r) up > 0 for ev- 

ery p > 1. Karp [K2-3] obtained essentially optimal growth rate for fS(o,~) up by 

showing that either u is constant or both 

l i r m ~ f ~ / s  uP=co  and limsup l I B  uP=co  
(o,r) r-~o~ r2--~(r) (o,~) 

hold for every p > 1 and every positive nondecreasing function F satisfying 

f oo dr/rF(r)  = co for some a > 0. He also refined the result of Cheng and Yau 

by showing that  M is parabolic if there exists a function F as above, with 

. 

lm sup ~ < co. 
r - ~  r F(r) 

There is a vast literature on various Liouville type results and therefore we just 

refer to the excellent survey articles [G3] by Grigor'yan and [L] by Li for further 

references and results concerning these and related topics. 

Some of the above-mentioned Liouville results have their counterparts for p- 

harmonic functions as well; see e.g. [H1-4]. For instance, the p-parabolicity of 

manifolds is studied in [H4] in terms of the growth of V(r). Here a manifold 

M is called p -pa rabo l i c  if every nonnegative p-superharmonic function on M is 

constant. On the other hand, several authors have simultaneously extended Yau's 

strong Liouville result to the p-harmonic case by showing that  every nonnegative 

p-harmonic function on a complete manifold M is constant if a global volume 

doubling condition and a weak Poincar@ inequality hold on M; see [CS], [HR], 

and [RSV]. 

In this paper we consider Lq-Liouville properties of p-harmonic functions. A 

step in this direction was recently taken by Rigoli, Salvatori and Vignati in [RSV]. 

See also [K1] for earlier related results. Our treatment covers not only p-harmonic 

functions but also solutions to so-called A-harmonic equations which we introduce 

next. Let G be an open subset of M and let TG = [.J~ea TxM. Suppose that 

we are given a map A: TG --+ TG such that Ax = A I T~M: T~M ~ TxM is 

continuous for a.e. x E G and that the map x ~ A , ( X )  is a measurable vector 

field whenever X is. We assume further that there are constants 1 < p < co and 

0 < a < t3 < co such that  

(1.1) (Ax(h),h) > alhl p 



Vol. 115, 2000 

and 

(1.2) 

Lq-LIOUVILLE THEOREM 

I,Ax(h)l ~_ ~lhl p-1 

365 

(1.5) 

in G if 

(1.6) vv> = 0 

for all ~ C C ~  (G). Continuous solutions of (1.5) are called A - h a r m o n i c  (of type 

p). It is well-known that  every solution of (1.5) has a continuous representative 

by the fundamental work of Serrin IS]. In the special case .Ax(h) - IhlP-2h, .A- 
harmonic functions are called p - h a r m o n i c  and, in particular, if p = 2, we obtain 

harmonic functions. 

A function u E Wllo'P(G) is a s u p e r s o l u t i o n  of (1.5) in G if 

(1.7) - divA~(Vu) _> 0 

weakly in G, that  is 

(1.8) > 0 

for a.e. x E G and for all h E TxM; in addition, for a.e. x E G 

(1.3) (,4x(h) - A~(k), h - k} > 0 

whenever h -~ k, and 

(1.4) Ax(Ah) = IA[p-2AAx(h) 

whenever A C R \ { 0 } .  

We say that  A is of type p if it satisfies conditions (1.1)-(1.4) with the constant 

p. The class of all such A will be denoted by .Ap(G). 
Let WI,P(G) be the Sobolev space of all functions u E LP(G) whose distri- 

butional gradient Vu also belongs to LP(G). We equip WI,v(G) with the norm 

[[u[[1, p = []ul[ p + [[Vu][p. The space W~'P(G) will be the closure of C~(G) in 

wl,p(C). 
1,p A function u C Wlo r (G) is a (weak) solution of the equation 

- div A~ (Vu) = 0 
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for all nonnegative qv E C~(G) .  A function v is called a s u b s o l u t i o n  of (1.5) 

if - v  is a supersolution. It is worth pointing out that  the class C~~ of test 

functions ~v in (1.6) and (1.8) can be replaced by WI'V(G) if Vu E LP(G); see 

[HKM, 3.11]. 

We present our main theorem (Theorem 2.1) for so-called A-superharmonic 

and A-subharmonic functions which are closely related to super-and subsolutions 

of (1.5). These functions form the basis for the nonlinear potential theory of 

solutions of (1.5) that  is developed in [HKM]. A function u: G --+ R U {cr is 

A - s u p e r h a r m o n i c  in G if 

(i) u is lower semicontinuous, 

(ii) u ~ cr in each component of G, and 

(iii) for each open D ~ G and each A-harmonic h E C( / ) ) ,  the inequality u > h 

on OD implies u _> h in D. 

Similarly, a function v is called A - s u b h a r m o n i c  in G if - v  is A-superharmonic 

in G. Finally, A-superharmonic (resp. A-subharmonic) functions are called p- 

s u p e r h a r m o n i c  (resp. p - s u b h a r m o n i c )  if A~:(h) - Ihlp-2h. 

Throughout  the paper c will be a positive constant whose actual value may 

vary even within a line. 

2. M a i n  r e s u l t s  

In this paper  we prove the following Lq-Liouville property for solutions of the 

A-harmonic equation (1.5). For the formulation of our main result we make a 

convention t o = 1 for every t E [0, oo]. We assume from now on that  M is a 

complete, noncompact  Riemannian manifold. 

2.1. THEOREM: Suppose that 1 < p < oo, A E Ap(M) ,  q E JR, and o E M.  Let 

u: M -+ [0, col be a measurable function and write 

Assume that 

f 
= = / 

JB (o,,-) 

(2.2) k v(t) ) = 

for all r > O. Then u is constant if  either 

(i) q < p - 1 and u is A-superharmonie in M; or 

(ii) q > p - 1 and u is A-subharmonic in M.  
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2.3. Remarks: (1) Observe that (2.2) is required to hold for all r > 0. This is 

necessary since a nonnegative, nonconstant A-subharmonic function may vanish 

identically in a ball B(o, r0), say, in which case v(t) --- 0 for t _< r0 and so (2.2) 

holds for all r < r0. 

(2) The case q = 0 is related to the p-parabolicity of M. Indeed, if u is a 

nonnegative A-superharmonic function in M, then u q - 1 by our convention, 

and so v(r) = IB(o, r)i. The condition (2.2) then implies that M is p-parabolic 

and hence every nonnegative A-superharmonic function on M is constant; see 

e.g. [H4] and [H1]. We also remark that  the definition of V~,o(r) makes sense 

for a nonconstant nonnegative A-superharmonic function u regardless of our 

convention since u < oo a.e. by e.g. [HKM, 2.10 and 10.2] and, on the other 

hand, u is positive by [HKM, 7.12]. 

2.4. COROLLARY: 

(i) I f  q < p - 1 and u is a nonnegative A-superharmonic function in M ,  with 

fM uq ~ (X:), then  u is cons tan t .  

(ii) If  q > p - 1 and u is a nonnegative A-subharmonic function in M ,  with 

fM uq < c~, then u is constant. In particular, i f  u is A-harmonic (not 

necessarily > O) in M and u E Lq(M),  with q > p - 1, then u is constant. 

Theorem 2.1 is known for sub- and supersolutions of the usual Laplace equa- 

tion. In fact, Sturm [St] proved 2.1 for solutions of equations Lu = 0 associated 

to Dirichlet forms thus generalizing and further refining the works of Greene and 

Wu [GW], Yau IV2], and Karp [K2]. Although the formulation of Theorem 2.1 

and the main idea of its proof come from [St], we feel that it will be useful to 

present this generalization. Furthermore, it is worth pointing out that we prove 

Theorem 2.1 not only for sub- and supersolutions of (1.5) but for A-sub- and 

A-superharmonic functions as well. 

The exponent q -- p - 1 in Theorem 2.1 is critical in the following sense. 

2.5. THEOREM: Given 1 < p < oc and an integer n > 2, there exist a complete 

Riemannian n-manifold M and a nonconstant positive p-harmonic function g in 

M ,  with fM gp-1 < c~. 

In the case p -- n -- 2, such examples of M and g were constructed by Li 

and Schoen in [LS]. In their example M is the punctured unit disc B 2 \ { 0 }  

equipped with a suitable conformal change of the standard Euclidean metric and 

g(x) --- - l o g  Ixt. It is possible to modify their examples and obtain solutions 

to 2.5 in the case where p _> 2 is an integer and n > p. Another example was 

given by Grigor'yan in [G2]. We choose his approach since we are interested in 
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all possible values of p E]I, cxD[ and n ~ 2. It is worth observing that the notion 

of Green's function for (1.5) will be useful in our construction. 

3. Lq-Liouvil le p r o p e r t y  

This section is devoted to the proof of Theorem 2.1. We start the proof by 

collecting some facts from [HKM] in order to create suitable test functions. 

3.1. LEMMA: Let u be a nonnegative nonconstant A-superharmonic function in 

M,  ~ E R, o C M, and R > O. For each k = 1, 2 , . . . ,  write uk ---- rain(u, k). Then 
1,p (a) uk belongs to W:o c (M) and is a supersolution of (1.5); 

(b) there exists a constant c > 0 such that uk ~_ c in/~(o, R); 

(c) u~ is bounded in [~(o, R) and belongs to Wi'p(B(o, R)); 

P WI'p(B(o, if  r a function vanishing (d) ~k := ukr  E R)) is nonnegative C ~ 

identically in M \ B(o, R). Furthermore, 

V~k = pu~r162 + ~r 

Proof." The claim (a) follows from [HKM, 7.2, 7.12]. In order to prove (b), 

let c -~ inf{u(x): x E /~(o, R)}. Since u is lower semicontinuous and/~(o,  R) is 

compact, there exists a point x C/3(o,R),  where u(x) = c. By [HKM, 7.12], a 

nonconstant A-superharmonic function in a domain f~ cannot attain its infimum 

in fL Hence c > 0 and (b) holds. The claim (c) now follows from [HKM, 1.18] 

since 0 < c ~ uk <_ k in B(o, R). Finally, (d) follows from (c) and [HKM, 1.24]. 
| 

Similarly, one can prove the following lemma for A-subharmonic functions. We 

omit the details. 

3.2. LEMMA: Let u be a nonnegative nonconstant A-subharmonic function in 

M, ~ C ~, o E M, and R > O. For each k = 1 ,2 , . . . ,  write uk = max(u, 1/k). 

Then 

(a) both u and uk belong to Wllo'P(M) and are subsolutions of (1.5); 

(b) there exists a constant c < c~ such that 1/k < uk <_ c in/}(o,  R); 

(c) u~. is bounded in [~(o, R) and belongs to wi 'p(B(o,  R)); 

(d) ~k := u~t bp e wl 'V(B(o ,R) )  i r e  is a nonnegative C ~176 function vanishing 

identically in M \ B(o, R). Furthermore, 

V~ok = p u r e r - i r e  + ~r 

The proof of 2.1 hinges on the following refinement of a Caccioppoli-type 

inequality. For positive A-harmonic functions such an inequality was proven 

in [H2]. 
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3.3. LEMMA: Fix o C M and R > r > O. Let r C C ~ ( M )  such that 

0 < r <_ 1, r -- 1 in /7(o,r), and r ==- 0 in M \ B ( o , R ) .  Let k > 1 and 

suppose tlfat either 

(i) u ~_ 0 is a nonconstant A-superharmonic function in M, uk = rain(u, k), 

and q < p - 1 ,  q ~ O; or 

(ii) u ~_ 0 is a nonconstant A-subharmonic function in M,  uk = max(u, 1/k), 

and q > p -  1. 

Then in both cases 

(3.4) 
.~ 1/p (p-1)/p 

where A(r ,R)  = B (o ,R )  \ [~(o,r) and c = c(a,~,p,q) .  

_ t ~  p Proof'. W r i t e n = q  p + l  and~k  = u k r  �9 In the c a s e ( i ) , n < 0 a n d u k  i s a  

supersolution of (1.5) by Lemma 3.1 (a). Respectively, in the case (ii), tr > 0 and 

uk is a subsolution of (1.5). We can use ~k as a test function by the condition 

(d) in Lemma 3.1 (resp. Lemma 3.2). Thus in both cases 

and so 

(3.5) 

-P~  SA(~,R) 

,~f. (A=(Vuk),V~) < o, 
(o,R) 

The right hand side has a lower bound, 

JB (o,R) J B(o,R) 

iB  v q/; v _  >_ ~2~lp/qlP ~ IV(uk )1 > 0, 
(o,R) 

by (1.1). On the other hand, we use (1.2) and HSlder's inequality to estimate 

the left hand side from above, 

- ;'~ ._.lA(r,.)u~+p-'(..4~(vuk), v+) _< pl,<ln S~(r,.)u~r 
1/p ~ (p-1)/p 
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This proves the lemma. II 

Proof of Theorem 2.1: The case q = 0 is already established in Remarks 2.3. 

We may thus assume that q r 0 and u > 0 is nonconstant. Let P0 > 0 and k0 _> 1 

be so large that  uk is nonconstant in B(o, po) for every k _> ko. Here uk is as 

in Lemma 3.3, that is, u is A-superharmonic and uk = min(u, k) if q < p - 1, 

and, respectively, u is A-subharmonic and uk = max(u, 1/k) if q > p - 1. Fix 

R > r > P0 and let ~b be a cut-off function as in 3.3. Since uk is nonconstant in 

B(o, R), all terms in (3.4) are positive. Hence 

(3.6) /A u~lVr ~ c 
(r,n) 

(f.(o,.) ~Plv(~/')lP) p 

(fA(r,.) r ~-~" 
Set 

Vk(t) = s U~, K~ = fA ~AP,V(uqk/P), p, and Fk(t) = /B 'v(uqk/P)IP" 
(o,t) (r,n) (o,t) 

Choose r such that IVr _< 2~(R-r) .  As in [St] we conclude from (3.6) by using 

properties of ~b that  

[ ~: > c(R-r)' [ ~:IVr Vk(R) Vk(r) 
JA (r,R) JA(r,R) 

= c(R - r) p (Fk(r) + Kk) p 

(Fk(r) + 1) p-1 
>_ c(R - r)PFk(r) \ Kk 

= c ( R -  r)PFk(r)( Fk(R)_ p-1 
\ Fk(R) - Fk(r) ) 

Hence 
(R : / ' )P  "~ 1/(p-1) Fk(R) - Fk(r) 

vk(R) - vk(r) ] <- C Fk(R)Fk(r)U('-li " 

On the other hand, a simple computation shows that 

(__._~1 ~ /(p-l) ( 1 )  1/(p--1) 1~ Fk(R)-Fk(r )  
Fa(r),] - ~ > _ m i n ( i , i / ( p - j j F k ( ~ k ~ ) ~ - - ~ _ l  ) , 
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and so 

\Fk(r)](l ~ll(p-i) (1-rklfl%j)ll(p-1) ((R_r)p)l/(p-1) (3.7) - ~ > c 
- \ v k ( R ) - v k ( r )  
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This holds for every R > r > P0. Set ri = 2it, i = 0, 1 , . . . .  Then  (3.7) implies 

tha t  

m--1 
Fk(r)t/(1-P) = E (Fk(ri) l / (1-p) - -  Fk(ri+l)l /(1-P))  + gk(rm)l/(1-P) 

i=O 
m-1 ( ( r i + l - ~ r i )  p ~1/(p-1) m-1 ( rp+l ~ l / (p - l>  

(3.8) ~__ C E tVk( r /+ l  ) _ Vk(ri) ) ~ C E \vk(ml)) i=O i=0 

m--lir '+2 cL:m+lr ( ~ )  1/(p-1) 
dt -- dt. >_ C 

i~O Jri-F1 

The rest of the proof  can be divided into two parts. Consider first the subcase 

0 < q <: p - 1 of (i). Recall tha t  now u _> 0 is a nonconstant  A-superharmonic  

function and uk = min(u,  k). Then  vk(t) = fB(o,t) u~ < fB(o,t) uq = v(t).  This 

together with the assumption (2.2) and the estimate (3.8) imply tha t  

r 1 "~I/O-P) f 2~+'r ( t ~ l/(p-1) 
> dt--+oc t, Fk(r) ) - c~ r  t,v(t) ) 

as m --+ oo. Hence Fk(r) = 0 for every r > P0 and k :> k0, and thus uk is constant  

for every k > k0. This leads to a contradict ion with the assumpt ion tha t  u is 

nonconstant .  Hence the theorem holds for 0 < q < p - 1. The  cases q < 0 and 

(ii) can be t reated simultaneously. Indeed, u q ~ "" �9 ~ Uk+ 1 q _ < U q __ < ' ' "  < _ U q in 

bo th  cases q < 0 and (ii). Hence 

v(t) = f u q =  lim f u~ = lim vk(t) 
JB (o,t) k-~oo J B(o,t) k-+oo 

by the Lebesgue Convergence Theorem. On the other hand, 

We conclude from the Monotone Convergence Theorem tha t  

L co' ( V___..~. ) 1/(p-l) Lex) (V___~(t)) 1/(p-1) (3.9) t = lira 
r k---+ oo r 
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Hence 

(3.10) Fk(r) --+ 0 

Isr. J. Math. 

as k --+ cr by (2.2), (3.8), and (3.9). I t  remains  to show tha t  (3.10) forces u to 

be cons tant  and thus leads to a contradiction.  First  we observe tha t  Po[ncar6 's  

inequali ty s ta tes  tha t  

(3.11/ f  o,r> lu /p-a lp <_ c 

where 

q/P p IV(uk )1 

ak = / B ( o ? )  uqklp 

and c is some constant  depending on M, p, o, and r. Next  we conclude tha t  

ak -+ a : = - f  uq/P 

J B(o?) 

and, fur thermore ,  

as k ~ oo. Combining this w i th  (3.10) and (3.11) yields 

B luq/P -- air = 0. 
(o,r) 

Since this holds for every r > P0, u is constant ,  which leads to a contradict ion.  

Hence the  theorem is proven. | 

4. L P - l - i n t e g r a b l e  p - h a r m o n i c  f u n c t i o n  

In this section we const ruct  examples  in order to prove Theo rem 2.5. We also pose 

a quest ion on sufficient proper t ies  of M tha t  forces nonnegat ive  LP- l - in teg rab le  

A-supe rha rmon ic  functions to be  constant .  

Proof of 2.5: Let M = I~ • S ~-1 equipped with a metr ic  

ds 2 = dt 2 + Q2(t)dv~2, 

where p: R --+]0, cr is a smooth  function and d~ 2 is the s tandard  metr ic  of the  

uni t  sphere  S ~-1 normalized so tha t  m#(S  ~-1) = 1. The  manifold M is clearly 
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complete. Let a(t) be the (n - 1)-measure of {t} x S '~-1. Thus a(t) = p'~-'(t). 

Then we choose p(t) so that 

f t -( l+~)exp(-tq) ,  if t _> 1, 
a(t) 

( - t ) - ( l+~)exp(( - t )q) ,  if t < -1 ,  

where e >_ 0 and 
p + e  

q -  
p - l "  

We claim that  M carries a noneonstant positive p-harmonic function g and, 

furthermore, g E LP-I(M) if e > O. We construct g so that it depends only on 

the t-coordinate, i.e. g = g(t), and, furthermore, 

(4.1) g(t) --+ 0 as t --+ -co ,  

(4.2) 

and 

(4.3) 

g(t)-+oo as t -+ co, 

capp({a} • S '~-', {b} • S ~ - ' )  = (g(b)-  g(a)) 1-p 

for all - c ~  < a < b < co. Here the so-called p-capacity 

Capp({a} • S n- l ,  (b) • S n- l )  

is defined by 

(4.4) capp({a} x S n- l ,  {b} • S n- l )  = inf f IWl ~, 
u J M  

1,p where the infimum is taken over all functions u E Wlo c (M), with u -= 0 in 
] - oc, a] x S ~-1 and u -- 1 in [b, c~[xS '~-1. In particular, (4.1) and (4.3) imply 

that  

(4.5) 

g(t) 1-p -- lim capp({a} • S ( t )  • S "-1)  
a--+--c~ 

=: capp({-co} • S n- l ,  {t} • S'~-1). 

Observe that  the limit above exists by basic properties of capacities. Thus g is 

a sort of Green's function for (1.5) with the pole at "{oc} x S~-I" ;  see [HI]. 
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By modifying a standard reasoning (cf. e.g. [HKM, 2.11]), we conclude that the 

limit in (4.5) is given by 

<...((_.o> • .~ ~,~ • ..-1)(i' ( ~ )  ''<'-') )l--p 
= ds , 

and so 

f" ( • ~ 'I('-'> (4.6) g(t) = oo \ a ( s ) ]  ds. 

On the other hand, it is also easy to see that the function g, defined by (4.6), 

satisfies conditions (4.1)-(4.3) and that a function v, 

0, 

v(t) = g(t) - g(a) 
g(b) g(a) '  

1, 

if t _< a, 

if a < t < b, 

ift_> b, 

is extremal for (4.4) for every - o c  < a < b < co. Thus g is p-harmonic in 

M. Another way to construct g is to write the p-Laplace equation for functions 

depending only on t and then simply solve the equation; see [G2] for the case 

p = 2. We have chosen the approach above in order to emphasize the role of 

Green's function in this context. To verify that 

F gp-1 = g( t )P- la( t )  dt < oo 
O 0  

if E > 0, it is enough to show that 

j~ - I  

(4.7) g( t )P- la( t )  dt < 
O 0  

and 

E (4.8) g( t )p - la ( t )  dt < c~ 

for some T > 0. Suppose that E > 0. Consider first the case t _< -1 .  Recall that  

p + e  a(8) = (--s)-(x+e)exp((--s)q), q -  
p - l '  
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for s < -1 .  Then 

,I,> :/;~ (~)"'-1> 

So, 

Lq-LIOUVILLE THEOREM 

ds = ( - s )q - l exp  ds 
\ p - l ]  

( P - l )  2 [-_(-t)_q~. 
-- p--~-~ e x p ~  P - 1  ] 

/;' ( W ? ) " f  ~ g(t)P-la(t) dt . . . .  exp ( - ( - t )  q) ( - t ) - 0 + S ) e x p ( ( - t )  q) dt 
o o  o o  

( p -  1)2(p-11 
- -  < (:X:). 

e(p + e)p-1 

for all t >_ T. Hence 

p + e  
a(s) = s-O+~)exp(-sq), q-- 

p - l '  

for s >_ 1, we get 

]1~ ~_~ ~'-1~ /~ ( ' )  g(t) = g(1) + \ a ( s ) ]  ds = g(1) + sq-lexp ~ ds 

= g(1) + p~--~ 

In particular, there exist T > 1 and c such that 

g(t) p-` < cexp(t q) 

E g(t)p-la(t) dt <_ c exp(tq)t-O+~)exp(-tq) dt 

c 
- -  ~ o o .  

eT e 

This proves Theorem 2.5. | 

OPEN PROBLEM. Here we study the existence of nonconstant, positive, L p-1-  

integrable A-superharmonic functions in terms of the volume growth. Grigor'yan 

proved in [G2] that every nonnegative superharmonic function u E L 1 (M) is 

375 

Suppose then that t _> 1. Since 
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constant if M is geodesically and stochastically complete. On the other hand, he 

proved in [G1] that a complete manifold is stochastically complete if 

/ ~ rdr 
log V(r) - oo. 

It is therefore natural to study whether there exists a similar condition in terms 

of the volume growth that forces every nonnegative .A-superharmonic function 

u E L p- 1 (M) to be constant. Unfortunately, we are not able to solve this problem 

here but we make the following guess. 

4.9. CONJECTURE: Let M be a complete manifold such that 

(4.10) / o o  ( /. .~ p-1 d r - -oo .  
\ log V(r) ] 

Then every nonnegative A-superharmonic function u E L p - I ( M )  is constant for 

every A C Ap(M) .  

We justify the condition (4.10) through the following example. Let M be a 

spherically symmetric manifold M = R n equipped with the metric that  is given 

in polar coordinates (t, O) C]O, c~[• ~-1 as 

ds 2 = dt 2 + ~b:(t)d9 2, 

where dO 2 is the standard Riemannian metric in S '~-1 and r is a positive smooth 

function defined in [0, cc[ such that r = 0 and ~b'(0) = 1. Fix ~ > 0 and 

choose • such that aft), the (n - 1)-measure of {t} x S n- l ,  satisfies 

aft) = t-(l+e)exp(tq), 
p + c  

with q - 
p - l '  

for t > 1. Write 
fleO ( X_L _,~ 1/(p--l) 

c0 = \ a(8) ] ds. 

Then the spherical function 

( ) g(t,O) = min co, ~(s) ds 

is positive and p-superharmonic in M. In fact, g is p-harmonic in M \ /~ (0 ,  1). 

Observe that B(0, r) = {(t, 0): t < r}. In order to study whether M carries 
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any nonconstant, nonnegative, LP-l-integrable p-superharmonic function, it is 

enough to consider g, the reason for this being the same as in the linear case; 

see [G2]. For completeness we include the short reasoning. Suppose that  u is a 

nonconstant, nonnegative p-superharmonic function in M. As in Lemma 3.1 we 

conclude that  inf{u(x): x E/3(0,  1)} > 0 and hence u > cg in/~(0,  1) for some 

positive constant c. For each sufficiently large i, we write gi = max(0, g - 1/i). 

Then gi is p-harmonic in a relatively compact set Di := {g > 1/i} \ / 3 ( 0 ,  1). 

F~rthermore, u >_ cgi in OD~ and hence u >_ cgi in D~ by definition. Letting 

i -4 oc, we conclude that  u >_ cg in M. Hence there exists a nonconstant, 

nonnegative p-superharmonic function u E LP- I (M)  if and only if g E L p - I ( M ) .  

Next we distinguish the cases e = 0 and E > 0. In both cases 

exp(cr q) <~ V(r) <~ exp(rq), 

w h e r e 0 < c <  l a n d  
p + e  

q -  
p - l "  

Here V(r)  = ]B(0, r)l and A(r) <~ B(r) means that  A(r) < cB(r) for some 

constant c and for sufficiently large r > 0. We obtain 

l o g Y ( r ) ]  dr and gp-1 = c~ 

if c = 0. On the other hand, 

\ l o g V ( r ) /  dr < cx~ and gp-1 < 

if E > 0. Thus this example gives some indication that  4.9 might be true. 

R e f e r e n c e s  

[cu 

[cs] 

[cw] 

[G1] 

S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds 
and their geometric applications, Communications on Pure and Applied Math- 

ematics 28 (1975), 333-354. 

T. Coulhon and L. Saloff-Coste, Harnack inequality and hyperbolicity for the 
p-Laplacian with applications to quasiregular mappings, preprint. 

R. Greene and H. Wu, Integrals of subharmonic functions on manifolds of 
nonnegative curvature, Inventiones Mathematicae 27 (1974), 265-298. 

A. Grigor'yan, On stochastically complete manifolds, Soviet Mathematics 
Doklady 34 (1987), 310 313. 



378 

[G2] 

[G3] 

I. HOLOPAINEN Isr. J. Math. 

A. Grigor'yan, Stochastically complete manifolds and summable harmonic 

functions, Mathematics of the USSR-Izvestiya 33 (1989), 425-432. 

A. Grigor'yan, Analytic and geometric background of recurrence and non- 
explosion of  the Brownian motion on Riemannian manifolds, Bulletin of the 
American Mathematical Society 36 (1999), 135-249. 

[HKM] J. Heinonen, T. Kilpels and O. Martio, Nonlinear Potential Theory of 

Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon 
Press, Oxford-New York-Tokyo, 1993. 

[H1] I. Holopainen, Nonlinear potential theory and quaziregular mappings on 

Riemannian manifolds, Annales Academiae Scientiarum Fennicae. Series A I. 
Mathematica Dissertationes 74 (1990), 1-45. 

[H2] I. Holopainen, Positive solutions of quasilinear elliptic equations on Riemannian 

manifolds, Proceedings of the London Mathematical Society (3) 65 (1992), 
651-672. 

[H3] I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet 

integral, Revista Matemgtica Iberoamericana 10 (1994), 143-176. 

[H4] I. Holopainen, Volume growth, Green's functions, and parabolicity of  ends, 

Duke Mathematical Journal (to appear). 

[HR] I. Holopainen and S. Rickman, Rieei curvature, Harnaek functions, and 

Picard type theorems for quasiregular mappings, in Analysis and Topology 

(C. Andreian-Cazacu, O. Lehto and Th. M. Rassias, eds.), World Scientific, 
Singapore, 1998, pp. 315-326. 

[K1] L. Karp, Asymptotic behavior of solutions of elliptic equations I, II, Journal 
d'Analyse Math~matique 39 (1981), 75 102, 103-115. 

[K2] L. Karp, Subharmonic functions on real and complex manifolds, Mathema- 
tische Zeitschrift 179 (1982), 535-554. 

[K3] L. Karp, Subharmonic functions, harmonic mappings, and isometric 

immersions, in Seminar on Differential Geometry (S. T. Yau, ed.), Annals of 
Mathematics Studies, Vol. 102, Princeton University Press, Princeton, N.J., 

1982, pp. 133-142. 

[L] P. Li, Curvature and function theory on Riemannian manifolds, preprint. 

[LS] P. Li and R. Schoen, L v and mean value properties of subharmonic functions 

on Riemannian manifolds, Acta Mathematica 153 (1984), 279-301. 

[RSV] M. Rigoli, M. Salvatori and M. Vignati, A note on p-subharmonie functions on 

complete manifolds, Manuscripta Mathematica 92 (1997), 339-359. 

IS] J. Serrin, Local behavior of solutions of-quasilinear equations, Acta Mathe- 
matica 111 (1964), 247-302. 



Vol. 115, 2000 Lq-LIOUVILLE THEOREM 379 

[st] 

[Y1] 

[u 

K.-T. Sturm, Analysis on local Dirichlet spaces I. Recurrence, conservativeness, 

and LP-Liouville properties, Journal ffir die Reine und Angewandte Mathe- 

matik 456 (1994), 173-196. 

S. T. Yau, Harmonic functions on complete Riemannian manifolds, Communi- 

cations on Pure and Applied Mathematics 28 (1975), 201 228. 

S. T. Yau, Some function-theoretic properties of complete Riemannian 

manifolds and their applications to geometry, Indiana University Mathematics 

Journal 25 (1976), 659 670. 


