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ABSTRACT 

In this  note  we exhibi t  bases  of  the  polynomial  identi t ies satisfied by the  

G r a s s m a n n  algebras over a field of posit ive characteris t ic .  This  allows us 

to answer  the  following ques t ion  of Kenmr:  Does the  infinite d imens iona l  

G r a s s m a n n  algebra  wi th  1, over an  infinite field K of character is t ic  3, 

sat isfy all identi t ies of the  a lgebra  M~(K) of all 2 x 2 matr ices  over K ?  

We give a negat ive  answer  to this  quest ion.  Fur ther ,  we show tha t  cer- 

t a in  finite d imens ional  G r a s s m a n n  algebras do give a posit ive answer  to 

K e m e r ' s  quest ion.  All this  allows us  to ob ta in  some informat ion  abou t  

the  identi t ies satisfied by the  a lgebra  M2 (K)  over an  infinite field K of 

posit ive odd character is t ic ,  and  to conjecture  bases  of  tile identi t ies of  

M2(K). 
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1. I n t r o d u c t i o n  

The Grassmann algebras and their identities play an important role in the theory 

of PI algebras. Over a field of zero characteristic, these algebras are the "building 

blocks" for the T-prime T-ideals (see [9]) and, when the base field is of positive 

characteristic, they turned out to be crucial too (see for instance [10], [11], [12], 

[13]). 

Let X = {xl, x2, . . .}  be a countable infinite set of symbols (variables), and 

let KI(X)  and K(X)  be the free associative algebra with 1 and without 1, re- 

spectively, over a field K.  In 1962, Latyshev [16] proved that if char K -- 0 

then the T-ideal of KI(X)  generated by the commutator Ix1, x2, x3] is Spechtian. 

Here [a,b] -- a b -  ba, and [a,b,c] = [[a,b],c] for every a, b, c �9 KI(X).  In 1973, 

Krakowski and Regev [15] proved that the polynomial Ix1, x2, x3] forms a basis of 

the polynomial identities of the infinite dimensional unitary Grassmann algebra 

G over a field of characteristic 0. In 1991, Di Vincenzo [4] gave a different proof 

of this result and he also exhibited, for any k, finite bases of the identities of Gk, 
the Grassmann algebra of a k-dimensional vector space. 

Concerning positive characteristic, in 1980, Stojanova-Venkova (see [22]) found 
finite bases of the identities satisfied by the non-unitary finite dimensional Grass- 

mann algebras, over an arbitrary field K.  In 1981, Siderov [3] did the same in the 
infinite dimensional case. Further, he proved that for an arbitrary field K,  every 

T-ideal of K(X) ,  the free associative algebra without 1, containing Ix1, x2, x3] 
is finitely based. In 1991, Regev [19] studied properties of the multilinear parts 

of the T-ideal of the infinite dimensional Grassmann algebra (unitary as well as 

non-unitary), over a finite field. 

Further results on the Grassmann algebras, their polynomial identities and 

related topics have been obtained in recent years by several authors (see for 

instance [7], [14], [2], [17], [5]). 

In this paper we deal with algebras over a field of positive characteristic p > 2. 

In the next section we give some preliminary notation and results. Section 3 

deals with the identities of the infinite dimensional Grassmann algebra G with 

1. We give a basis of the polynomial identities of G over an infinite field and 

we describe the corresponding relatively free algebra. As a corollary we exhibit 

a basis of the polynomial identities of the Grassmann algebras Gk defined by a 

k-dimensional vector space, k < co, and we prove the Specht property for the 

T-ideals of G and of Gk. In section 4 we show that the Grassmann algebra G 

does not satisfy all the identities of the matrix algebra of order 2 when the base 
field K is of characteristic 3. This answers in the negative for the case p -- 3 a 
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question of Kemer (see [12]) asking whether G satisfies all the identities of the 

matrix algebra of order (p + 1)/2 in characteristic p. We feel that  with some 

"adjustment" the question remains still open in its generality. The main tool in 

this section is Specht's reduction of the study of T-ideals to the study of their 

commutator polynomials. Finally, in section 5 we give a brief account of the 

results of [22] and [3] since it seems they are not readily accessible. 

2. Prel iminaries  

All algebras and vector spaces considered here are over a field K of positive 

characteristic p. If A is an algebra and a, b C A then [a, b] -- ab - ba stands 

for the commutator of a and b, and a o b = ab + ba. All higher commutators 

are left normed, i.e., [a, b,c] = [[a, b],c] etc. If L(X) is the free Lie algebra 

freely generated by Z then L(X) can be naturally embedded in KI (X) .  Denote 

by B(X) the associative subalgebra of KI(X) generated by all homogeneous 

elements of L(X) of degree >_ 2. Then B(X) is spanned over K by all products 

of (long) commutators in the free generators X. Call the elements of B(X) 
commutator (or proper) polynomials. 

If we deal with infinite fields then every polynomial identity is equivalent (as 

an identity) to a finite collection of multihomogeneous identities. Hence, when 

the base field is infinite we may consider multihomogeneous polynomials only. 

It is well known that  in this case, every T-ideal T in KI(X) is generated as a 

T-ideal by its commutator polynomials, i.e., by T V1B(X), see [21]. 

If A is an associative algebra over K,  we denote by var(A) the variety of 

algebras generated by A and by T(A) the T-ideal of A and of var(A). The 

variety var(A) is Spechtian if its T-ideal T(A) is finitely based and every T- 

ideal containing T(A) is finitely based too. Sometimes we say that  A or even 

T(A) is Spechtian. A celebrated theorem of Kemer (see, e.g., [9]) states that 

when char K --- 0 every T-ideal is Spechtian. There exist examples of varieties 

of associative algebras over fields of positive characteristic that are not finitely 

based. When the base field is finite, such an example is given by Belov in [1]; 

and for an infinite field, examples are due to Grishin [8] and to Shchigolev [20]. 

Let V be a vector space over K of countable infinite dimension with basis 

e l ,  e2 ,  . . . ,  and denote by Vk the subspace spanned by el, e2 ,  . . . ,  ek. The 

Grassmann algebra G of V is the associative algebra with K-basis consisting of 

1 and all products of the form 

{eilei2""eim l i l  < i 2 < . . . < i , ~ ,  r e = l , 2 , . . . }  
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2 = 0, eiej - e j e i .  The algebra Gk is and with multiplication induced by ei = 

the subalgebra of G generated by 1 and Vk. Analogously, one defines the non- 

unitary Grassmann algebra H as the subalgebra of G generated by the products 

eitei2 " " e l m ,  il  < i2 < "'" < ira, m > 1, and also Hk = H N Gk. Denote 

by G O the subspace of G spanned by 1 and by all basic elements of the form 

eilei2 ""e i2m,  m >> 1, and let G 1 be the subspace spanned by all elements of the 

form eilei2 �9 "" ei2m+l, m > 0. Then G O is the centre of G, and ab = - b a  for every 
a, b E G 1. 

When char K = p = 2, then obviously all these algebras are commutative and 

hence they are not very "interesting" from the PI point of view. Therefore, we 

restrict our attention to the case p > 2. 

3. Unitary Grassmann algebras 

Throughout this section K will be an infinite field. We now derive some useful 

polynomial identities for the Grassmann algebras G and Gk. Since Gk C G, 

H C G and I lk  C Gk these identities must hold for Gk, H and Hk, respectively. 

The Grassmann algebra G satisfies the identity 

(1) [x~, x2, x3] - 0. 

Let T be the T-ideal of the free associative algebra K I ( X )  generated by the 

polynomial Ix1, x2, x3], and denote by F = K I ( X ) / T  the corresponding relatively 

free algebra of countable rank in the variety determined by the identity (1). 

Denote by s= = sn(Xl, x2 , . . . ,  xn) = ~ E s ,  (-1)~x~(1)xa(2) "'" x~(~) the stan- 

dard polynomial of degree n. Here Sn stands for the symmetric group acting 

on the set {1, 2 , . . . ,  n}, and ( -1 )  ~ is the sign of the permutation a C Sn. The 

following fact is well known; we give its proof for completeness. 

LEMMA 1: The polynomial  [xl, x2][xl, x3] belongs to the T-ideal T.  

Proof: The polynomial [xl, x2, Xl, X3] belongs to T, and the equality 

[Xl, X2, Xl, X3] =[Xl, X2][Xl, X3] "~- [Xl, X2, X3]Xl 

--  X l X l X 2 X  3 -~- X l X 2 X l X  3 --  X 3 X l X 2 X  1 -~- X 3 X l X l X  2 

holds in the free associative algebra. On the other hand, 

X l X l X 2 X  3 - - X l X 2 X l X  3 ~ - X 3 X l X 2 X l  - - X 3 X l X l X 2  = [Xl, X l X 2 , X 3 ]  C T ,  

= x l ,  + xlz , - e T .  
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The following corollary was proved in [16, Lemma 1] using a slightly different 

approach. 

COROLLARY 2: The polynomials: 

[Xl, X2][X3, X4] -k IX1, X3][X2, X4], [Xl, X21 IX3, X4] zr- Ix3, X2][Xl, X4], 

belong to T. 

Proof: Linearise the polynomials [x2, xll[Xl, x3], [Xl, x2][Xl, x3], Ix2, Xl][X3, Xl], 
[Xl, x2][x3,Xl] (all of them belong to T), and afterwards change appropriately 
the indices. Since char K = p > 2 and the degree of xl equals 2, the linearisation 

is harmless. | 

PROPOSITION 3: The equality 

(2) 2'%2,~(xl, x2 , . . . ,  x2n) -- (2n)! [xl, x2][x3, x4] . . .  [x2n-1, X2n] 

holds in the algebra F. 

Proof: Apply the previous corollary, using the representation 

 ~ x2, . . . ,  = Z 
crC S2,~ 

This proposition shows that if p < 2n then s2n is an identity on G. One 

can use the polynomial [xl, x2][x3, x4].." [x2,~-l,x2,~] instead; if char K = 0 or 
char K > 2n, then the latter polynomial and s2~ are equivalent as identities 

modulo the identity (1). 

LEMMA 4: The polynomials t2n = [Xl,X2][x3,x4]"" [X2n-l,2C2n] do not vanish 
on the Grassmann algebra G, n = 1, 2, . . . .  

Proof: Observe that t2n(el, e2 , . . . ,  e2n) --- 2nele2""e2n r 0. | 

LEMMA 5: Let char K = p. The standard polynomial Sk is a polynomial identity 

of G if  and only i f  k > p + 1. 

Proof: By Proposition 3, Sp+l vanishes in G and 

8p(ele2,e3, . . . ,ep+l)  ---- ele28p-1(e3, . . . ,ep+1) ---- (p-- 1 ) [e le2"-ep+l .  
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(Note that  p - 1 is even.) | 

Hence Sp+l is the standard identity of minimal degree satisfied by the 

Grassmann algebra G when char K = p. 

THEOREM 6: Over an infinite field K of characteristic p ~ 2 all polynomial 

identities of the infinite dimensional Grassmann algebra G are consequences of  

the single identity [xl, x2, x3]. 

Proof: As mentioned above in the case of char K = 0, the theorem was proved in 

[16] and in [15]. The proof in our case is similar to that  in [16]. We may assume 

that  c h a r K  = p > 2. Since 1 C G it is sufficient to prove that  all commutator 

identities of G follow from the above identity. 

Let f ( x l ,  x 2 , . . . ,  x•) E B ( X )  be an identity on G. Write f = y~ ozuulu2. . .u  k 

where uj are commutators  of length > 2. Due to the identity (1) we may assume 

that  all commutators  u~ are of the form [xa, Xb], and they are central. Using 

Lemma 1 we may consider f multilinear. Applying Corollary 2, the polynomial 

f can be reduced to the form 

f ( x l, x2, . . . , xn) = o~[xl,t~2][x3,x4]'" [Xn--l,Xn] 

where cr E K and n is even. Hence if a # 0 in K then Lemma 4 yields that  f is 

not an identity on G. Therefore c~ = 0, and we are done. | 

Denote by T(G) the T-ideal of the Grassmann algebra G in K I ( X ) ,  hence 

T = T(G),  and F TM K I ( X ) / T  is the relatively free algebra of countable rank in 

the variety of unitary algebras generated by G. 

COROLLARY 7: The T-ideal T = T(G) is Spechtian. 

Proof: Let T1 be a T-ideal containing T(G). According to the proof of Theo- 

rem 6, every homogeneous polynomial f C T1 can be reduced, modulo T(G),  to 

the form a[xl, x2][x3, x4] .- .  [xn-1, x,~]. Choose the least n such that  

ol[xl,X2][x3,x4]'"[Xn-l,Xn] e T1, a # 0. 

Then T1 is generated as a T-ideal by the above product of commutators  and by 

[xl, x2, x3]. | 

Now we describe bases of the identities for the Grassmann algebras Gk. No- 

tably certain difference arises in the cases k < p and k > p. 
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COROLLARY 8: Let p <_ k < cx~ and t = [k/2] + 1, [a] being the integer part of 

the number a. Then the identities 

form a basis of the identities of the algebra Gk. 

I f  k < p, one substitutes the last identity for the standard identity sk+l when 

k is odd, and for sk+2 when k is even. 

Proof: If s < t then obviously [el, e2][e3, e4]'" [e2s-1, e2s] ~ 0 in Gk. It can 

be verified easily that  [xl, x2][x3, x 4 ] ' "  [x2t-~, x2~] is indeed an identity of Gk. 

Since the latter polynomial is multilinear and alternating modulo the identity 

[Xl, X2,X3] , then one can substitute in it only distinct elements from the basis 

of Gk. But in this polynomial every variable appears in a commutator,  hence 

we cannot substitute central elements for xi. Now the statement for k _> p is 

obvious. 

A similar reasoning proves the statement when k < p, using the fact that when 

k is even then 

sk+l(1, el,e2 . . . .  ,ek) = sk (e l , e2 , . . . , e k )  = k !e l e2 . . . e k .  | 

Remark: The last Corollary implies that one cannot distinguish the Grassmann 

algebra G2k from G2k+l by means of polynomial identities since they satisfy the 

same identities, T(G2k) = T(G2k+I). 

4. T h e  a l g e b r a  of  2 • 2 m a t r i c e s  

Denote by M2 the algebra of 2 • 2 matrices over K and by sl2 the Lie algebra 

of all traceless 2 • 2 matrices over K.  In [18, Section 4], Razmyslov proved the 

following theorem. 

THEOREM 9 ([18, Theorem 4]): Let K be an infinite field and let ch a rK  r 2. 

I f  all multilinear identities of the Lie algebra sl2 follow from a finite number of 

them, then the multilinear identities of the associative algebra M2 also follow 

from a finite number of such identities. 

On the other hand, Vasilovsky in [23, Theorem 1] proved that whenever K is 

an infinite field of characteristic r 2 then the identities of the Lie algebra sl2 

follow from the single identity 

(3) 
x4, x3]+[xl, x4], 



312 A. GIAMBRUNO AND P. KOSHLUKOV Isr. J. Math. 

Hence the multilinear identities of M2 when char K ~ 2 follow from some finite 

collection of multilinear identities of M2. 

In [12] Kemer posed the following question: Does the infinite dimensional 

Grassmann algebra G satisfy all polynomial identities of the matrix algebra 

M(p+l)/2 where p = char K?  

We can now answer this question in case char K = 3. In fact we prove 

THEOREM 10: Let K be an infinite field of characteristic 3. Then G does not 

satisfy all polynomial identities of the matrix algebra M2 over K but G4 (and 

G5) does. 

Proof'. First, since both G and M2 are unitary algebras we may consider com- 

mutator identities only. On the other hand, we have already proved that every 

commutator polynomial that is not multilinear is an identity on G. 

Now we trace Razmyslov's proof of Theorem 9 given in [18, Section 4], in order 

to prove our theorem. Essentially, Razmyslov's theorem proves the following. All 

multilinear identities of M2 follow from the identities 

4[xl,  x2](v3 o v4) - Ix1, v3, v4, x2] - Ix1, v4, v3, x2] 

(4) +Ix2, v3, xl, v4] + Ix2, v4, xl, v3] = O, 

(5) [v~ o v~, ~ ]  = o, 

(6) [Xl, X2] O IX3, X4] -- [Xl, X3] O IX2, X4] ~- [Xl, X4] O [272, X3] : 0, 

Ix1,52, Ix3, 54], 55] + [51, x~, [53, ~5], x4]+ 

(7) [51, X4, Ix2, 55], 53] ~- [Xl, X5, IX2, X4], X3] : 0, 

(8) ~ ~i(u~ o Ivy, x6]) = 0. 
i 

Here ui and vi are commutators of lengths _> 2. The last but one identity is 

Vasilovsky's identity. The last identities are obtained by the following procedure. 

Write Vasilovsky's polynomial as ~ i  ai[ui, vi] for a~ C K, ui, vi commutators 

and deg(u~) _> 2, and substitute them in the left-hand side of the last expression. 

Now clearly the identities (7) and (8) hold in G. The identity (6) also holds in 

G since it is equal to the standard identity 84. The identity (5) is satisfied by G, 

too, since the commutators are central in G. Now, the identity (4) is not satisfied 

by the Grassmann algebra G since the summands except for the first vanish on 

G, and the first does not: 

4[el,  e2]([e3, e4][e5, e6] -~- [e5, e6][e3, e4]) = 64ele2e3e4ese6 ~ O. 
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Since in G4 and in G~ the polynomial (4) is an identity, this completes the 

proof of the theorem. | 

Remark: Note that when char K = 0 it was shown in [6] that the standard 

identity s4 and Hall's identity [[xl, x2] 2, x3] form a (minimal) basis of the iden- 

tities of M2 over a field of characteristic 0. This does not contradict our last 

theorem since the result of [6] does not imply that  all multilinear identities of M2 

can be obtained as consequences of these two identities using only multilinear 

consequences if the characteristic of K does not equal 0. 

Now we state as an open question a weak version of Kemer's problem. 

O p e n  ques t ion :  Does the Grassmann algebra G2p-2 satisfy all polynomial 

identities of the matrix algebra M(p+l)/2 where p = cha rK?  When p = 3 the 

answer is "Yes" due to our last theorem. 

LEMMA 11: The equality 

[y,z, [t,x],x] + [y,x, [z,x],t] =s4(z,y,x,  tx) + xs4(z ,y ,x , t )  

- -  84(xz, y , x , t ) -  S4(z, xy, x,t) 

holds for every x, y, z, t in the free associative algebra. 

Proof: Expand both sides and cancel all terms. . .  | 

Remark: Note that  the linearisation of the polynomial on the left-hand side is 

Vasilovsky's identity (7). The above expression does not depend on the charac- 

teristic of the field and thus Vasilovsky's identity belongs to the T-ideal generated 

by the standard polynomial s4. 

We have already proved that the identity (4) does not follow from (5) and (6) 

if the characteristic of the field K equals 3. It is not difficult to see that it does 

follow from these two identities when char K > 5. These considerations lead us 

to the following conjecture. 

Conjecture: The identities (5) and (6) form a basis of the polynomial identities 

in the matrix algebra M2(K) when K is an infinite field of characteristic _> 5. 

When char K = 3 a basis of the identities for M2(K) consists of these two iden- 

tities and the identity (4). 
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5. Non-unitary Grassmann algebras 

In this section we briefly describe the results of the papers [22] and [3] concerning 

the identities of the non-unitary Grassmann algebras H and Ilk. Note that in this 

case one cannot use commutator identities. But, on the other hand, even over 

a finite field K,  the T-ideal T(H) is multihomogeneous, see [19, Lemma 5.1(b)]. 

This means that  it is sufficient to consider multihomogeneons polynomials even 

when K is finite. 

LEMMA 12 ([19, Lemma 1.2(b)], [3, Lemma 2.9]): The Grassmann algebra H 
without 1 satisfies the identity X p, where char K = p. 

Remark: It is worth mentioning that all partial linearisations of x p are 
p - 1  ' " consequences of Ix1, x2, x3]. In fact, consider Y~i=o xP-l- 'Y x', the first partial 

linearisation of x p. An easy induction shows that the following equality holds in 

every characteristic: 

rt--1 

i = 0  

where the length of the commutator equals n. Thus if n = p = char K the 

binomial coefficients satisfy the congruence ("31) - ( -1)  i (mod p). It follows 

that [y, x , . . . ,  x] equals the first partial linearisation of x p when char K = p. 

Since p > 3, the p-th commutator follows from [Xz, x2, x3] and therefore the 
first lineaz'isation (and, so, every linearisation) of x p is also a consequence of 

the identity [ X l , X 2 , X 3 ] .  Notice that the complete linearisation of x p equals 

~oesp x~(1)x~(2) " " x~(v). 
Denote vk = ( . . . ( (x l  ox2) oX3).. .OXk_l) OXk. 

LEMMA 13 ([22, Corollary 3]): (a) The a]gebra H~k satisfies the identity vk+l. 

(b) The algebra H2k+l satisfies the identities Xk+2Vk+l and vk+zxk+2. 

Denote by Q the T-ideal in K(X)  generated by the polynomials x~ and 

[xl, x2, x3]. Let T(H) stand for the T-ideal of H in K(X) .  

THEOREM 14 ([3, Theorem 3]): For every field K of characteristic p > O, one 

has Q = T(H). 

Let Q2k be the T-ideal generated by Q and by the polynomial Vk+l. 
Denote by Q2k+l the T-ideal generated by Q and by the polynomials xk+2vk+l, 

Vk+lXk+2, and in case s ---- (k + 1)/(2(2p - 1)) is an integer, add the polynomial 

1-[;=1[x2j_z, x2j]x~j-l_lxP; 1. Let T(Hk) stand for the T-ideal of Hk in K(X) .  
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THEOREM 15 ([22, Theo rem 1]): I l K  is an arbi trary  field o f  characterist ic p > 2 

then Qk = T ( H k ) .  

THEOREM 16 ([3, Theo rem 2]): The variety  generated by the  non-uni tary  

Grassmann algebra H is Spechtian.  
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