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ABSTRACT 

We study the ultrapowers L1 (tt)a of a L1 (tt) space, by describing the com- 
ponents of the well-known representation Ll(/~)a = Ll( t ta )  r  Ll(v~t), 
and we give a representation of the projection from Ll(/~)a onto L1 (tta). 
Moreover, the subsequence splitting principle for Ll(tt)  motivates the 
following question: if ~ is an ultrafilter on N and [fi] E Ll ( t t )~ ,  is it 
possible to find a weakly convergent sequence (gi) C Ll(tt)  following ~1 
and a disjoint sequence (hi) C LI(/~) such that  [fi] = [gi] + [hi]? If 

is a selective ultrafilter, we find a positive answer by showing that  
f = [fi] E Ll( t t )~  belongs to L1(#~3) if and only if its representatives 
{fi}  are weakly convergent following ~g, and f G Ll(U~3) if and only if 
it admits a representative consisting of pairwise disjoint functions. As a 
consequence, we obtain a new proof of the subsequence splitting princi- 
ple. If ~ is not a p-point then the above characterizations of L1 (tt~) and 
Ll(V~) fail and the answer to the question is negative. 
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1. I n t r o d u c t i o n  

The ultraproduct construction was introduced in Banach space theory by 

Dacunha-Castelle and Krivine [5], stimulated by the development of the local 

theory of Banach spaces. Besides the solution of several open problems, the 

ultraproducts of Banach spaces shed new light upon many known results and 

made the relation between finite dimensional and infinite dimensional results 

more transparent. We refer to the partially expository paper by Heinrich [8] for 

more details. 

Among other things, the authors of [5] proved that the ultraproduct of a L~ (It) 

space is another L1 space, and gave a representation of this ultrapower as 

Ll(#)tl  = Ll(#tt)  e l  Ll(Vll). 

Here we characterize the vectors f = [fi] E LI(#)~ which belong to tim 

components LI(#~) and Ll(v~), in terms of the representatives {fi}. Namely, 

f C LI(#~) if and only if it admits a relatively weakly compact representative 

{fi}, and f C Ll(vt~) if and only if it admits a representative {fi} so that 

lim~#({t: fi(t) ~ 0}) = O. Moreover, we give a concrete expression for the 

projection gf of f = [fi] C LI(#)~ onto the first component Ll (# t0 ,  by showing 

that gf(( t0 ~) = limt~ fi(t~), #~-a.e. 

As an application, we give in the last Section a proof of the fact that the 

reflexive subspaces of L1 (#) are superreflexive. Other applications can be found 

in [7] where, using some results of [6], we characterized the tauberian operators 

acting on L1 (#) spaces. 

Moreover, if ~ is a selective ultrafilter on N (namely, a rare p-point on N 

[CN]), whose existence may be obtained from the Martin axiom, we show that 

f E LI (p )~  belongs to LI (#~)  if and only if all its representatives {f~} are 

weakly convergent following the ultrafilter ~ ,  and f C L I ( ~ )  if and only if 

it admits a representative consisting of pairwise disjoint functions. Thus, for 

every bounded sequence (f,~) in LI(#) ,  there are a pairwise disjoint sequence 

(zn) and a sequence (y,~) which is weakly convergent following the ultrafilter gI, 

so that [f,] = [yn] + [z,~] in LI(#)~.  The s u b s e q u e n c e  sp l i t t i ng  p r inc ip l e  

states that every bounded sequence in L1 (#) admits a subsequence which can be 

decomposed as the sum of a pairwise disjoint sequence and a weakly convergent 

sequence. It was obtained by H. Rosenthal (see [2, Proof of Corollary 2.3]) as 

a refinement of an argument of Kadec and Petczyfiski [9], which showed that a 

bounded sequence in LI(#) has a subsequence which can be written as the sum of 

a sequence converging to 0 in probability and a weakly convergent sequence. Our 
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result can be seen as an ultrapower version of the classical subsequence splitting 

principle. Moreover, this principle is easily derived from our result. 

Finally, we show that if the ultrafilter s on N is not a p-point, then the results 

obtained using the ultrafilter 93 are not valid in LI(#)u.  We observe that the 

existence of rare p-points was proved by Choquet [3] by means of the Continuum 

Hypothesis, and further, by Booth [1] by just using Martin's axiom. In addition, 

Shelah (see 15) showed that the existence of p-points on N is undecidable in the 

Zermelo-Fraenkel set theory plus the Axiom of Choice. In the last sections we 

describe these facts and give a direct proof of the existence of selective ultrafilters 

on N, using the Continuum Hypothesis. 

We use standard notations: X is a Banach space and X* the dual of X. We 

identify X with a subspace of X**. We denote the set of all positive integers by 

N, and the set of all real numbers by R. 

Let (~, Z,  #) be a finite measure space. For a function f :  gt > R, we write 

D(f)  := {x �9 ~: f(x)  r 0}. We also use sometimes the short form {f  > c~} 

to represent {x: f(x)  > a}. A sequence (fn) C LI(#) is said to be d is jo in t  if 

fk(x) �9 f,~(x) -- 0 a.e. for k r  Note that,  since it is a finite measure, for each 

disjoint sequence (f~) C LI(#) we have lima #(D(f,~)) = 0. We denote by XA 

the characteristic function of A �9 ~.  

2. Pre l iminar ie s  

We recall some concepts about ultrafilters and ultrapowers. See [4] for more 

complete information. We denote by ~9(I) the family of all subsets of a set I.  

Let t2 and 93 be ultrafilters on I and J respectively. Given A C I x J ,  for every 

i �9 I we write Ai := {j �9 J: (i, j) �9 A} and IA :---- {i �9 I: Ai �9 93}. The product 

of s by 93 is defined as the subset of ~J(I • J)  given by 

g •  93:= { A c  I x J:IA e~l}. 

The product ~1 x 93 is an ultrafilter on I • J [13, Chapter 13, Prop. 1]. 

LEMMA i: Given the ultrafilters J2 and 93 on I and J respectively, and a bounded 
family (aij)(i,j)eIxJ of real numbers, we have that 

lim a i j  ~ lim lim aid. 
ux~ u(i) ~(j) 

Notice that the iterated limit in the identity of Lemma 1 does not commute. 

An ultrafilter II on I is said to be c o u n t a b l y  i n c o m p l e t e  if there is a countable 

partition {In}~=l of I verifying In ~ ~1 for all n E N. This partition {I,~}~=1 is 

said to be d i s jo in t  w i t h  ~l. 
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Evidently, non-trivial ultrafilters on N are countably incomplete. Moreover, 
every infinite set I admits a countably incomplete ultrafilter [8]. Henceforth, if 

there is not an explicit mention, all ultrafilters which appear here are countably 

incomplete. 

Let Ll be an ultrafilter on I, and X a Banach space. Consider the Banach 

space g~(I ,  X) which consists of all bounded families (xi)i~l in X endowed with 

the norm [[(xi)Hor := sup{]ixii[: i E I}. Let Nu(X)  be the closed subspace of all 
families (xi) E g~(I,  X)  which converge to 0 following s The u l t r a p o w e r  o f  

X following ~1 is defined as the quotient 

Xu . -  ~oo(I, X) 
Nu(X) 

The element of Xu including the family (xi) e / ~ ( I ,  X) as a representative is 

denoted by [xi]. Its norm in Xu is given by 

II[x,]ll: iix, ll 

Sometimes we use bold letters x, y , . . .  to denote elements of Xu. 

3. Ultrapowers of LI(#) 

The ultrapower L1 (#)u has been extensively studied in [5]. For the convenience 

of the reader, we give a description of it. Details and complete proofs can be 

found in [8] and [13]. 

Let (12, s #) be a finite measure space, and let 13(I, f~) denote the class of all 

families (xi)iel contained in ft. The ultrafilter s induces an equivalence relation 

,- on B(I, f~) given by ( X i ) i e  I "~ (Yi)iel if {i E I: xi = Yi} E U. We write 

~ := 13(1, gt) 

and (xi) ~ denotes the element of ~ whose representative is (xi)ie~. If {Ai: i E I )  
is a family of subsets of gt, we write (A~) ~ := {(xi)U: xi E Ai}. We consider the 

family Xu := {(Ai)a: Ai E X}, which is a Boolean algebra on ~t a [8, Proposition 

5.1]. The least a-algebra containing the algebra X~ will be denoted by a(Xu). 

The measure # induces a measure #u on a(5:a) univocally defined by its value 

on the elements (Ai) a E X~, given by #a((Ai) a) := limu #(Ai). Thus, given 
A C a(s its measure is 

#u(A) := inf{#u(C): A C C, C E s 
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Analogously, given f = [fi] E Ll (#)u  with fi > 0 for every i �9 I ,  we consider the 

measure ~f, defined on Zu  by 

vr(A) := lim f fi d#, where A = (Ai) u �9 Zu,  
U JA~ 

and extended to the whole of ~ ( ~ )  by 

vf(A) := inf{~,f(C): A c C, C �9 ~ } ,  where A �9 a ( ~ ) .  

For the general case f = [fi] �9 LI(#)u,  we write f = f+ - f - ,  with f+ := If+], 

and define vf := vf+ - Vr-. 

Next we give the description of Ll (#)u ,  which is the suitable context to intro- 

duce some additional notation. 

PROPOSITION 2: Given a finite measure space (~, ~,/~) and an ultrafilter L[, 

there exists a measure gu such that 

(1) L I (# ) a  = Ll (#u)  •1 Ll(vu).  

Sketch of the Proo~ Let us define an isometry J: Ll (#u)  ----+ Ll(/z)u. First, we 

define J on the characteristic functions XA, where A = (Ai) ~ �9 Zu,  by 

J(XA) := [XA,] �9 Ll(#)u. 

Since {~_.~=lakXAk: n �9 N, ak �9 R, A k �9 Zu} is dense in Ll(#~) ,  J can be 

extended to the whole of Ll (#u) .  

Now, we describe the projection P from Ll (#)u  onto Ll(/zu). Let ~f be the 

measure associated to f = [fi] �9 Ll(/Z)u. By the Radon-Nikodym Theorem, there 

exist unique measures wf, mf  and a function gf �9 Ll (#u)  such that  mr _1_ #u, 

Wf << ]ZL[ , / / f  : Wf -~- ?7~f, and 

wf(A) = / A  gf d#u, A �9 a(Eu). 

For each f �9 L~(#)u, we define P f  := Jgr. Clearly, J(XA) �9 R(P) for every 

d = (Ai) u �9 Zu; thus R(P) = g(Ll(#u)).  

That  N(P)  is isometric to a Ll-space is a consequence of the Bohnenblust-  

Nakano Theorem. | 

Observe that,  for each f = [fi] �9 L l (#a ) ,  we have Ifl = [IfiI] and ~lfi = I~'f[ �9 

Hence, vf 3_ #u is equivalent to ~'if[ d_ #xl. Moreover, f �9 R(P) if and only if 

~ f  ~ 0 .  
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One of our goals is to give a more practical and pleasant representation of the 

elements of the components LI(#U) and Ll(t4~). We recall that each measure 

space (f/, ~ ,  #) can be enlarged to its completion, denoted by (f~, ~ ,  ~). First we 

give a technical Lemma based on the fact that ~ is a boolean algebra. 

LEMMA 3: Let ~A and 93 be a pair of ultrafilters on I and J respectively. For 

A E c~(Zt~) and f = [fi] E LI(#)~I, we have: 
(a) if  fi >_ 0 for all i, then 

ur(A) = sup{t/f(C): C E Zu, A D C}; 

(b) i f  ~f(C) = 0 for every C E Zu contained in A, then ~f(A) = 0; 

(c) #~• and (#~)~ have the same completion. 

Proo~ Parts (a) and (b) are trivial. In order to prove (c), we only need check 

that ((f2~) u, ~r(cr(S~)u), (#~)u) = ( f2~xu, a ( ~ x u ) ,  ~---~x~)- 

First, note that (~2m) u = ~2 uxm by identifying each ((tij)jeJ)ieI with 

(tii)(id)~IxZ. So, we may identify (57m)u = Xuxm, and the inclusion 

c~(~• C a(a(~m)tt) is clear. For the converse inclusion, it is enough to realize 

that each (Ai) ~ E a(Sm)u (here A~ E a(~m)) is contained in a set of ~ x m  with 

the same measure. Indeed, let {In: n E N} be a partition of I disjoint with 

li. For each positive integer n and i E In, there is Bi E Z m  so that Bi D Ai 
and pu(Bi \ A~) < n -1. Write B~ = (B~j) m(j), with Bij C ~.  It is immediate 

that (Ai) u C (Bij)il(i)x?~ besides, since Lemma 1 leads to (#~)u [z~L• = 

#~x~ I~:~• we have that (#~)~t((Ai) tL) = (#~)~((B~)~t). I 

Weis [14, Proposition 11] obtained a characterization for the ele,nents of the 

first component of L1 (P)u for ultrafilters on N. It is possible to adapt his proof to 

the case of the countably incomplete ultrafilter 11. However, we prefer a different 

proof. 

THEOREM 4: An element f E L~(#)u belongs to Ll(/Ztl) i f  and only f l i t  has a 
relatively weakly compact representative. 

Proof Let f E LI(#)a ,  having a relatively weakly compact representative 

(fi)ieI, and take ~ > 0. Since {fi: i E I} is equiintegrable, there exists 5 > 0 so 

that fA IfiI d# < c for all i E I and all A E Z with #(A) < 5. Let C = (Ci) ~ E Zt~ 

with #u(C) = 0. Then we have that J := {i E I: #(Ci) < 5} E ~1; hence 

/ c  ]fiid# < ~ f o r a l l i E J .  
i 
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Therefore ulfl(C ) = liinu fc,  Ifil d# = 0, and an appl icat ion of L e m m a  3 shows 

tha t  uf << ltu so mf  = 0, hence f E Ll(l*~). 

For the converse, take f = [f~] E L t ( p a )  with LlklL = 1 for all i, and denote 

fik := f i .X/j l([_k,k]) ' fk := If/k] and A~ := {t: Ik( t ) l  > k}. Then  ((Ak)U(0)k is 

a decreasing sequence in Xa.  So, denoting A := Nk~__I(A~) ~(0 E a ( ~ ) ,  we have 

#u(A)  = lira(lira #(A~)) _< lim k -1 = 0. 
k ~(i) k 

Now, by hypothesis ,  we have tha t  ~qfl << #~, so 

0 = ulf I (d)  = limk u f, ((Ak) u(0) = li~n Hf -- fk II" 

Let {I,,}n~=~ be a par t i t ion  of I disjoint with 12. We write rk := IIf - fkll and 

take 
H1 := {i: I]fi - f/ll} < 2rl} r t2, 

O<3 

Hk := ( U  Ii) N {i e Hk- l :  I I f ~  - fill < 2rk} r 12, for k > 2. 
i = k  

Moreover,  we denote L0 := I \ H1 and Lk := Hk \ Hk+l  for k r N. For every 

i C I ,  there exists a unique ni E N so tha t  i r Ln~. 
n i  Let us see tha t  [ f i ] =  [f~ ]. In fact, given e > 0, there exists an integer n �9 N 

so tha t  2rk < e for all k > n. Thus 

o o  

{i: Ilfi - f~"~ 1] < e} D U Lk �9 12, 
k : n  

n i  hence l im~ I lk  - k II = o. 
n i  Now, we claim tha t  {f.~ }ir is equiintegrable. Indeed, given e > 0, we take 

as beibre n �9 N so tha t  2rk < e for k > n. Observe tha t  each i belongs either to 
n - - 1  n - - 1  n i  Uk=l  Lk or to Hn.  If  i �9 Uk=l  Lk then Ifi (x)l < n, hence 

and if i E H~ then  

f{I/~ ~ I>n} 

n i  Thus  {f~ }iCI is equiintegrable; equivalently, it is relatively weakly compact .  
| 

Now we s tudy  the elements  of the second componen t  of L10t )u .  
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THEOREM 5: Let f E Ll(#)u.  Then f E Ll(v~) i f  and only if  there is a 
representative (fi)ier o f f  for which # u ( ( D ( f i ) )  ~) = limu # ( D ( f / ) )  --- O. 

Proo~ Assume tha t  # u ( ( D ( f i ) )  u) = 0. Then  uf _L #u, and consequently, 

f E LI(u~). 
For the converse, let f = [fi] E Ll(UU). For every i E I ,  we consider the 

measurable  sets Ai := { ] f i ] <  1}, Bi := ft \ A i ,  A := (Ai) ~ and B := (Bi) u, and 

the functions gi := fi "XAi, hi := fi" XB,, g := [9i], h := [hi]. 
Since f E L l (ug) ,  we have vlf I _L #tt. Note tha t  the measures  Uig I and ulf I are 

concentra ted  in A and (D( ] i ) )  u respectively. So Ulg I << Ulfl, hence Ulg I _L #u, 

which leads to g E Ll(uU). On the other  hand, since Igi(t)] < 1 for all t and all 

i, Theo rem 4 gives tha t  g E Ll(#U).  Thus  g = 0; or equivalently, f = h. 

To finish the proof, it is enough to show tha t  # u ( B )  = 0. Note  tha t  ulr I is 

concentra ted in a #g-null  set L, and we can assume L C B. Moreover,  by the 

definition of B,  for every C E Z u  contained in B \ L we have #u (C)  _< ulfp(C ) = 

0. Therefore,  by L e m m a  3, we have # g ( B )  = # ~ ( B  \ L) = 0. 1 

The  character izat ions given in Theorems  4 and 5 lead to a very pleasant  

representa t ion of the project ion P described in Proposi t ion  2. For the sake of 

the following results, let us realize tha t  the set A := {(ti)u: limu fi(ti) = oc} is 

#u-null,  for every [fi] E L l ( # ) m  In fact, note tha t  A = (']n~176 > n}) tt(i) and 

#({f i  > n}) < n-lllfdh so #~(A)  -- l in~  #u({fi  > n} g(i)) = O. 

LEMMA 6: Let f = [fi] E L l ( # ) u  and c E R. Then we have 

{gf < ~} c ( {s  < c))" c ({s < c})" c {g~ < c} #~-a.e. 

Proo~ By Theorems  2 and 5, we can write f = [ui] + [vi], where [ui] E L I ( # g ) ,  

[vi] E Ll (uu) ,  and #~((D(vO) g) = 0. The  last condition implies tha t  

({f~ < c}) g = ({ui < e}) ~ and ({fi <_ c}) u = ({ui < c}) ~ #a-a.e .  

Since {dr < c} = Un~_l{gf < c -  l / n } ,  for the first inclusion it is enough to 

prove tha t  {9f < c -  1/n} c ({ui < c}) a,  #u-a.e.  And, by L e m m a  3, we only have 

to show tha t  every B = (Bi) ~ E Z ~  contained in {gf < c - 1/n} \ ({ui < c}) a 

is #u-null.  On the one hand,  we have wf (B)  = fB gf d#u <_ ( c -  1/n)#~(B).  On 

the other  hand,  observe tha t  f ~  "-- ({ui < c}) u = ({ui >_ c}) u. Thus  

f 
wr (B)  = lira / u, d~ _> e~(B),  

U JB~ 

and we conclude tha t  #u(B) = O. 
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The proof of the third inclusion is analogous: it is enough to show that every 

B = (Bi) u C Zu contained in ({ui <_ c)) u ",{gr < c + l / n )  is #u-null. On the 

one hand, we(B) --- fB gf d#u >_ (c + 1/n)#u(B).  On the other hand, 

JH i 

hence #u(B) = O. | 

The first inclusion of Lemma 6 is sometimes strict. For example, the zero 

function in Ll (#)u  can be represented by means of strictly negative functions. 

The same happens for the third inclusion. However, we have the following result. 

COROLLARY 7: Let f = [fi] E Ll(tt)u. Then there is a countable subset C C R 
so that 

{gf < C} = ({fi < C}) l'l" a n d  {9f -~ c} ---- ({fi ~- c}) II ~i.l-a.e., 

/'or every c E R \ C. 

Proof: The set {c E R:/zu({g f = c}) > 0} cannot be uncountable. 1 

The following Theorem is a precise representation of the projection of f C 

/ l ( # ) u  on Ll(#~).  

THEOREM 8: For f = [f/] E Ll(tt)ll we have that gf((ti) it) = limu fi(ti) #u-a.e. 

Proof'. It is enough to observe that,  as a consequence of Lemma 6, we have that 

the sets {(ti)u: gf((ti) u) < lima f i(ti)} and {(ti)n: gf((ti) u) > limu f i(ti)} are 

#u-null. II 

Note that the above Theorem works for any representative of f. In addition, 

Theorem 8 yields a direct way to calculate the absolutely continuous part wf and 

the singular part mr of the measure uf introduced in Proposition 2. 

4. T h e  sp l i t t i ng  p r inc ip l e  for  L l ( # ) ~  

Rosenthal, by refining an argument of Kadec and Petczyfiski, obtained the 

following result. 

THEOREM 9 (subsequence splitting principle): Every bounded sequence (fn) in 

Ll(#) has a subsequenee (fnk) that can be decomposed into fnk = Yk + zk, where 
(Yk) is weakly convergent and (zk) is a disjoint sequence. 

In this section, we show that for ultrafilters ~3 on N which are r a r e  p -p o in t s  

(definitions below), Theorems 4 and 5 can be notably improved. In fact, we 
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obtain that every f E L1 ( ~ j )  has a disjoint representative, and that [fn] belongs 

to LI (#~)  if and only if (fn) is weakly convergent following ~ .  As a consequence, 

we obtain an ultrapower version of the subsequence splitting principle of L1 (#). 

Note that the above problem only makes sense for ultrafilters on countable sets. 

Moreover, we show that for ultrafilters on N which are not p-points, these results 

are no longer true. 

Definition 10: [1, Def. 4.6 and Th. 4.7]. A (non-trivial) ultrafilter il  on N is 

said to be a p - p o i n t  if for every countable partition {I,~},~--1 of N disjoint with 

II, there are finite subsets An C I ,  so that [.J,~--1 An E i l .  Equivalently, il is a 

p-point if and only if every bounded sequence (a,~) of real numbers contains a 
n oo convergent subsequence (a,~) such that { k}k=l C il. 

Definition 11: An ultrafilter II on N is said to be rare if for every increasing 
n oo sequence (mk)~_-i C N, there exists { k}k=l C II so that 

n l _ > m l  and nk+l >_mnk f o r k = l , 2 , . . . .  

We give now the main result of this section. 

THEOREM 12: Let 90 be a rare p-point on N, and 

f c L~(.)~ = L I ( ~ )  ~ LI(u~). 

(a) f E Ll(u~o) if and only if f has a representative consisting of pairwise 
disjoint functions. 

(b) f E LI (#~)  if and only if all the representatives of f are weakly convergent 
following ffl. 

Proof: (a) If f has a representative [fi] consisting of pairwise disjoint functions, 

since #(fl) < oo, we have lim~ D(f~) = 0, and by Proposition 5, f E Ll(U~). 

For the converse, let 0 r f C Ll(t,~). By Proposition 5, f has a representative 

(f~) such that l im~#(D(f~) )  = 0. Without loss of generality, we can assume 

that U,~II = 1 for all n. Since ~ is a p-point, there is a subsequence (fnk) 

verifying limk #(D(fnk)) = 0 and {nk}k~__l E ~3. Write gm := fnk for all m = 

n k , . . . ,  ne+l -- 1, and #,~ := #(D(gn)). Note that limn #~ = 0. Now we choose 

inductively positive real numbers 51, 52,. . .  so that 

Ig~l d~ < - i f  #(A) < 25n 
?7 

for n _> 1, and 0 < 5n < 2-15n-1 for n _> 2. 
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We define an increasing sequence of posit ive integers (rn~) by 

m l  := min{k >_ 1: #t < 51 for all l > k}, 

mn := min{k > rnn_V #t < 5n for all l _> k}, for n > 2. 

As ~ is rare, there exists (Pn) E ~ so tha t  Pl > ?~1 and Pn+l _> rap.  for n E N. 

Thus  
1 1 

t*(D(gpn)) = #pn < (~Pn-i < "~(~Pn 3 < ' ' "  < 2-~'~--2~Pl " 

Therefore,  #p.+k <- 2 -k+l@n-  For every posit ive integer n, we denote F~ := 

Uk~__n+l P(gpk ) and define the elenaent of n l ( # )  by 

hpn : =  gp,~ - 9p,, " XF,~. 

Obviously, hpn hpm = 0 for n 7s m and 

~ 1__}__5 . 
[~(D(gpn " )(~IPn)) ~ t~Pn+k < E 2 k - 1  P'~ = 2~Pn 

k = l  k = l  

Therefore  

I I G o  - gp,  II = IgPn I dr, < - - .  

Pn 

Thus,  wri t ing hk = 0 for k r p,~, since {pn},~__l E ~ ,  we have tha t  

l im~ [inn - g,~[] = 0, which leads to [ha] = [fn], and the proof  is finished. 

(b) Given f E L I ( # ) ~ ,  Proposi t ion  2, Theorem 4 and par t  (a) allow us to write 

f = [gi] + [hi], where {gi}i~l is relatively weakly compac t  and {hi}i~l  is pairwise 

disjoint. In order to obta in  the result, we just  need to prove tha t  [hi] = 0 if and 

only if there is w- l imv  hi. The  "only if" pa r t  is trivial.  

For the "if" par t ,  assume tha t  [hi] r 0. Wi thou t  loss of generality, we suppose 
OO t ha t  [[hi[] = 1 for all i. For every i E N, we define li := ~ j = ~ s g n h j  E Loo(#), 

where sgn(0) = 0. Thus,  the act ion of li on hj is given by li(hj) = 1 if i < j and 

li(hj) = 0 i f j  < i; so 

lim li(hj) = 1. 
~(j) 

Moreover,  given any f E L I ( # ) ,  there is i0 so tha t  lio(f) < 1/2, so 

1 
lira lio (hi - f )  > ~, v(j)  

which proves tha t  (hi) is not convergent following ~ in the weak topology. | 
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Remark: Note that  if one of the representatives of f E L i ( # ) v  is weakly 

convergent following ~U then all of its representatives are so. 

From Theorem 12, we derive the following ultrapower version of the sub- 

sequence splitting principle for L1 (#). 

COROLLARY 13: Let ~U be a rare p-point on N. Then for every bounded sequence 

(fn) C Li(#) ,  there exist a sequence (Yk) which is weakly convergent following 

~U and a pairwise disjoint sequence (zk) So that [f/c] = [Yk] -t- [zlr in LI (#)~ .  

Remark: Note that  in Corollary 13 we do not pass to a subsequence, like in 

Theorem 9. Moreover, Theorem 9 may be obtained easily from our Theorems 

4 and 12(a). Indeed, given a bounded sequence (f,~) in Li(#) ,  the mentioned 

theorems give a relatively weakly compact sequence (gn) and a pairwise disjoint 

sequence of functions (zn) of Li  (#) such that  l im~ I I f,~ - gn - z,~ I I = 0. Therefore, 

passing to a subsequence, we can assume that  gn is weakly convergent and hn := 

f~ - gn - zn is norm null, and we write fn = (g,~ + h~) + z,~, where (g,~ + hn) is 

weakly convergent and (zn) is disjoint. 

Next we show that  Theorem 12 fails if ~3 is replaced by an ultrafilter on N 

which is not a p-point. First we give the next Lemma in order to avoid some 

trivial but annoying cases. Its proof is immediate and we leave it to the reader. 

LEMMA 14: For every ultrafilter t l  on N which is not a p-point, there exists a 

partition { I~} ~= i of N disjoint with tl  such that every iT, is infinite, and for every 

A E J2 there exists n E N so that A A In is infinite. 

We will say that  this partition { In}n~176 is n o n - c o n t r o l l a b l e  b y  11. 

In the following two results we assume that  # is the Lebesgue measure on [0, 1], 

and we denote by 1 the function X[0,1] E L l ( # ) .  

PROPOSITION 15: Let ~ be an ultrafilter on N which is not a p-point. Then 

there exists a vector f E Li  (v~)  having no pairwise disjoint representative. 

Proof'. Let {In}n=i be a partition of N non-controllable by ~ .  For each n E N 
Oo and every i E In, we define fi  := n)c[o3/n]. Since {In}n=i is disjoint with ~ ,  we 

have that  l i m ~ # ( D ( f i ) )  = 0. By Proposition 5, we get f E L i (u ~ ) .  

Suppose that  there is a disjoint sequence (hi) C Li(#)  such that  [hi] = [fi]. 

Given 0 < e < 1, there exists J E ~3 such that  IIfi - hill < e for all i E J .  

Note that  J A In is infinite for some n E N. But observe that,  in order to have 

I]fli-hiiI < e for i E JAIn ,  it is necessary that  #(D(hi))  > n - l ( 1 - e ) .  Otherwise, 
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we would have that  fi - hi -- fi = n in a set of measure bigger than n- le .  Thus 
the sequence (hi) cannot be disjoint, and we get a contradiction. | 

PROPOSITION 16: Let fro be an ultrafilter on N which is not a p-point. Then there 
is 0 ~ f E L l ( u ~ )  such that the limit w-lim~ fi  exists for all its representatives 

Proof'. Let {In}n~=l be a partition of N non-controllable by ~ ,  and rename the 

elements of N as pairs of positive integers (n, k) so that (n, k) E In. We shall 

build a normalized sequence (f(n,k)) C LI(p) such that  

(1) l im~ P(D(f(n,k))) = 0, and 
(2) for every measurable set A C [0, 1], we have that l im~ fA f(n,k) ---- ~(A). 

Thus, by condition (1) and Proposition 5, we obtain that  [f(mk)] C Ll (v~) .  

On the other hand, since the simple functions form a dense subset of LI(#)*, 

condition (2) implies that  (f(,~,k)) is weakly convergent following ~ to 1 E L1 (p). 

Let us build the functions f(n,k). For every k E N, every 1 < i < 2 k and every 

n E N, we define 

,ff , 

ek [ i - 1  i ~ 1  1 ] 
, , 

i=1 

f(n,k) :~- nXF(n,k). 

Clearly, we have that ]lf(n,k)lll = 1 and #(F(mk) ) = 1/n. Fix a positive integer m. 

Then p(F(n,k)) < 1/m for all (n, k) C Ul~m+l Iz E ~ ,  hence l im~ #(D(f(mk))) = 
0 and condition (1) is proved. 

Check now condition (2). Let A be a measurable subset of [0, 1] and fix a 

positive integer n. For every k, there exists Jk c {1 , . . . ,  2 k} so that,  denoting 

Mk : =  Uiegk Ik and A A Mk := (A \ Mk) U (Mk \ A) the symmetric difference, 
we have that 

c~(k) := #(A/~ Mk) - ~  O. 

Observe that  fMk f(mk) = fM~ 1, so 

faf(o,k)--fAil<fAf(, , )--fMkf(., )+/Mki--fA1 _< (n + i)c~(k). 

Take now e > 0. Then there is k0 such that (n + 1)c~(k) < e for all k _> ko. That 

means that,  for every fixed n, the set 
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is finite. But { n}n=l is not controllable by !~lJ, so 

{(n,k): /Af(~,k)-- /A 1 <e}c~J, 
which proves that condition (2) holds. | 

5. F i n a l  r e m a r k s  

In this section we discuss the existence of the rare p-points on N used in Theorem 

12. Moreover, as an application of the representation Theorems 4 and 5, we show 

that every reflexive subspace of LI(#)  is superreflexive. 

We have seen in Propositions 15 and 16 that Theorem 12 is true only if the 

ultrafilter is a p-point. On the one hand, it is easy to show the existence of 

countably incomplete ultrafilters on N which are not p-points. For instance, let 

21 be any ultrafilter on N. Then the product t2 x 12 is an ultrafilter on a countable 

set and is not a p-point. By means of the Continuum Hypothesis (henceforth 

CH), Rudin [12] proved that p-points on N do exist. Furthermore, Choquet [3] 

used again CH to find p-points ~U with the following additional condition: 

for every countable partition {Fn}nCW=l of N into finite sets there exists U 6 ~U 

such that 

(2) ]U O Fkl <_ 1. 

Ultrafilters satisfying condition (2) were named rare  by Choquet. Actually, our 

Definition 11 turns out to agree with condition (2), as we will prove later. 

Moreover, Shelah (see [15]) showed that the existence of p-points on N is unde- 

cidable in the Zermelo-Fraenkel set theory plus the Axiom of Choice (henceforth, 

ZFC). So, if we wish to work within a Set Theory for which the existence of p- 

points is not acceptable, it follows from Propositions 15 and 16 that Theorem 12 

is not valid. 

For some mathematicians, CH is too demanding and they prefer a weaker 

statement, the Martin axiom (MA fi'om now on), which is consistent with both 

ZFC + CH and ZFC +-, CH (for this topic, we recommend the expository paper 

[11]). In this context, Booth [1, Th. 4.9 and 4.14] shows that ZFC + MA yields 

the existence of rare p-points on N. 

In the literature, rare p-points are called selective. These ultrafilters have been 

extensively studied in [4]. 

Those who cherish the flexibility of MA, rather than CH, will look for the 

following equivalence between our Definition 11 and Choquet's definition given 

in (2). 



Vol. 122,  2001 U L T R A P O W E R S  O F  L~( t t )  203  

PROPOSITION 17: Given an ultrafilter J2 on N, the following statements are 

equivalent: 

(1) for every increasing map f :  N ) N there exists A E J.l so that for every 

pair k , l  E A with k < l, we have that f ( k )  <_ l; 

F (2) for every countable partition { ,,}n=l of N into finite sets Fk there exists 

A E t t  such that [An Fkl <_ 1. 

Proof." Assume condition (1) and let {Fk}~=l be a partition of N into finite sets. 

Take an increasing map h: N ---+ N so that maxFk _< minh(Fk) for all k. Let 

A E 11 such that if {k, l} C A and 

have 1 >_ h(k) > maxFn,  hence l 

Assume now condition (2). Let 

k < l then h(k) <_ I. Now, if k E F,,, then we 

Fn. So ]ANF,,[ < 1, and condition (2) holds. 

h: N �9 ~ N be an increasing map. There is 

no loss of generality if we suppose that h(1) > 1. Define a sequence of intervals 
= F oo of N by F1 [1, h(1)) and Fk+l = [hk(1), hk+l(1)). Notice that  { k}k=l is a 

~t oo U oo partition of N. Let B E tl  with IB NFkl <_ 1. If B = ( J)j=l, set A0 = ( 2j)j=l 

and A1 = (u2j-1)~-i E il. Only one of these two disjoint subsets of B belongs 

to t2; let us call it A. For every k E N let v(k) be the unique index n such 

that k E Fn: the map k ~ v(k) is non-decreasing, and its restriction to B 

is injective. If {k,l} C A with k < l there exists m E B with k < m < l; 

then v(k) < v(m) < v(l). Since h(k) E Fv(k)+l and l E Fv(1), the relation 

v(k) + 1 < v(1) implies h(k) < l. | 

Those who are unlikely to delve into Set Theory and feel comfortable with CH 

will probably appreciate the following straightforward evidence of the existence 

of the rare p-points on N used in our Theorem 12. 

PROPOSITION 18: Assume CH. Then there exists an ultrafilter ~ on N that 

satisfies the following properties: 

(i) ~ is a p-point; 

(ii) ~ is rare; equivalently, for every increasing sequence (ink) C N, there exists 

{nk} E ~ so that 

n l > _ m l  and nk+l >_mnk f o r k = l , 2 , . . . .  

Proof: Let us adopt some conventions. Given two increasing sequences (ink) and 

(nk) in N, which verify the condition (ii) of the statement, we write (nk) ~ (mk). 

We denote by p ~  (N) the class of all infinite subsets of N as well as the class of 

all increasing sequences of positive integers. Given (nk) E p~(N),  we say that  

(an) is convergent in (nk) if the subsequence (ank)k is convergent. 
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As usual, we denote the first uncountable ordinal by ~d I . Recall that wl - 

[0, wl), and since we assume the Continuum Hypothesis, we have 0J 1 ~ card (wl) 

= card (loo) = card ~ ( N ) ,  where l ~  stands for the space of all bounded real 

sequences. Therefore, there exist bijective maps ~1: wl > ~ ( N )  and 

~ 2 :  (-all ) ~(x)- 

For every a < wl we are going to select r  E go~(N) so that 
(a) 
(b) for all finite subsets I C [0, a], we have that  N~cI r  E ~o~(N); 

(c) ~2(a) is convergent in r  

First we select r E p~(N) such that r  ~ ~1(0) and ~2(0) is convergent in 

r Then we fix ~ < Wl and assume we have selected r for all fl < y. 

If 7 is finite, then N~<n r is infinite, and we can select an increasing sequence 

(cj) in N~<n r so that ~2(7) converges in (cj). We write 

~1(~?) = {nl < n2 < " - } ,  

and we construct an increasing sequence r {l~}i=l in N as follows: ll is the 

smallest ci which is greater than nl .  Now, if l l , . . . , l m - 1  have been chosen, we 

take Im as the smallest ci which is greater than nlm_~. 

If 7 is infinite, then [0, 7) is countable, and there is a bijection r N > [0, ~). 
n Since for every n the set ~i=1 r o r is infinite, we can select an increasing 

J sequence of positive integers (cj) such that  cj C ~ i= l  r o r Taking a sub- 

sequence if necessary, we can assume that ~2(7) converges in (cj), and we 
oo construct the sequence r = {li}i=l as in the case when y finite. 

Clearly, r  satisfies the conditions (a), (b) and (c). In particular, the family 

{r  a C [0, wl)} has the finite intersection property, and therefore is contained 

in some ultrafilter !U on N that is a p-point. Now a moment of reflection is enough 

to see that  !U is the wanted ultrafilter. | 

From a result of Rosenthal [10], it follows that all reflexive subspaces of L1 (#) 

are superreflexive. Here we prove this fact by applying the representation The- 

orems of the ultrapower of LI(#)  given before. Recall that  a Banach space X 

is s u p e r r e f l e x i v e  if any Banach space finitely representable in X is reflexive; 

equivalently, if any ultrapower Xu is reflexive [8]. 

PROPOSITION 19: Let E be a subspace of LI(#) .  Then E is reflexive if  and only 

i f  Eu is contained in LI (#il). 

Proo~ It is well known that a reflexive subspace E of LI(#)  is reflexive if and 

only if BE is equiintegrable. So, the direct implication follows directly from 

Theorem 4. 
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For the converse, assume that E is not reflexive. Then BE is not equiintegrable, 

so there is a normalized sequence (f~) C E, E > 0 and subsets A~ E D(f,~) such 

that lima it(An) = 0 and fA~ Ifnl dit > ~ for all n. Let {In),~__i be a partit ion o f /  

disjoint with 11, and define Yi := fn, h~ :=  fnXA,~ and g~ := y~-h~ for every n and 

every i E In. Theorem 5 shows that 0 % [h~] E Li(u~). As [Yi] = [gi] + [h~] E E~ 

and gi �9 hi = 0 for all i, we obtain that E~ ~ Li(it~). | 

It follows from Lemma 1 that,  given a Banach space X and two ultrafilters 

and ~ on I and J respectively, the map that takes [Xij]i j E Zlj• t o  [[Xij]j]i E 
(X~)t~ is an isometry from X~x~ onto (X~)m We need this fact in the next 

result. 

PROPOSITION 20: Every reflexive subspace of Li(it) is superreflexive. 

Proo~ Let G be the natural isometry from Li(it)~x~ onto (Li(it)~)~. Since 

by Lemma 3 the completions it~• and (it~)~ coincide, there is a canonical onto 

isometry F: Li(it~x~) ~ L~((itu)~) that makes the next diagram commutative: 

Ll(itttx ) F> 
J11 J2 l 

Li(it)t x  (Ll(it)t )  

Here J i  and J2 are the natural embeddings introduced in Proposition 2. 

Let E be a reflexive subspace of Li  (it). By Proposition 19 we have that  E a x a  C 

Li( i taxa) .  The above commutative diagram shows that (Ea)~ C Li((i ta)~).  

A new application of Proposition 19 proves that Ea  is reflexive, hence E is 

superrefiexive. | 
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