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A B S T R A C T  

Let T: X --~ X be a deterministic dynamical system preserving a 
probability measure it. A dynamical Borel-Cantelli lemma asserts that 
for certain sequences of subsets An C X and/z-almost every point x E X 
the inclusion Tnx E An holds for infinitely many n. We discuss here 
systems which are either symbolic (topological) Markov chain or Anosov 
diffeomorphisms preserving Gibbs measures. We find sufficient condi- 
tions on sequences of cylinders and rectangles, respectively, that ensure 
~he dynamical Borel-Cantelli lemma. 

1. I n t r o d u c t i o n  

Let T: X --+ X be a t ransformat ion  preserving a probabi l i ty  measure  #. We use 

no ta t ion  # ( f )  :=  f f dp  for integrable functions f on X .  
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Let An C X be a sequence of measurable sets. Put  Bn = T - n A n  and consider 

the set 
oo oo 

lim supBn := N U Bn 
n m = l  n = m  

of points which belong to infinitely many Bn. A classical Borel-Cantelli lemma 

in probability theory states: 

LEMMA 1.1 (Borel-Cantelli): (i) I f ~  #(Bn) < oo, then #(limsuPn Bn) = 0, i.e. 

almost every point x E X belongs to finitely many Bn. 

(ii) I f  Y~#(Bn) = oo and Bn are independent, then #( l imsupnBn ) = 1, i.e. 

almost every point x C X belongs to infinitely many Bn. 

In terms of the transformation T, the lemma can be restated as follows. 

LEMMA 1.2: (i) I f  ~ # ( A n )  < ce, then for ahnost every point x E X there are 

only finitely many n such that Tnx  E An. 

(ii) I f  ~ #(An) = ce and T - n A n  are independent, then for almost every point 

x E X there are infinitely many n such that Tnx  C An. 

The second part  of the lemma has a limited value for deterministic dynamical 

systems, since one rarely works with purely independent sets. This paper  is 

devoted to extensions of the second part  of the lemma to certain dynamical 

systems - -  Anosov diffeomorphisms and topological Markov chains. 

Below we always assume that  ~ n  #(A,,) = c~. 

Definition: A sequence of subsets AN C X is called a B o r e l - C a n t e l l i  (BC) 

sequence if for #-a.e. x C X there are infinitely many n such that  Tnx  E An. 

Let 

xn(x)  : :  

be the indicator of the set B,~ = T - n A n .  We set 

N 

Su(x) : :  Z Xn(x) 
n : l  

and 
N 

:= ,(SN) = E "(A")" 

Definition: A sequence of subsets An C X is said to be a s t r o n g l y  B o r e l -  

C a n t e l l i  (sBC) sequence if for #-a.e. x C X we have SN(X) /EN -4 1 as N -4 oc. 
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A stronger version of the classical Borel-Cantelli lemma is known, see 

Theorenl 6.6 in [6]: 

LEMMA 1.3: If  ~ # ( B n )  = oo and the events Bn are independent, then 

S N ( X ) / E N  --+ 1 ahnost surely as N --+ oo. Moreover, the independence require- 

ment can be relaxed to the pairwise independence, i.e. it is enough to require 

, ( U ~  n U~) = ~(U~)#(Bn)  for .~ # n. 

In particular, if B ,  = T - ~ A ,  are pairwise independent, then the sequence 

{An} is an sBC sequence. 

Consider the quantity 

Rmn := #(Bin N Bn) - p (Bm)#(Bn)  = p ( T - m A m  n T - n A n )  - # (Am)#(An)  

which characterizes the dependence of Bm and B,~. 

A sufficient condition for {An} to be an sBC sequence, in terms of Rmn, was 

first found by W. Schmidt, see a proof by Sprind~uk [Sp], in the context of 

Diophantine approximations. It was recently adapted to dynamical systems by 

D. Kleinbock and G. Margulis [9]: 

(SP)  Assume that  

~ C > 0 :  
N N 

rn,n=M n=M 

for all N > M > 1. 

THEOREM 1.4 ([14], Chapter I, Lemma 10, or [9], Lemma 2.6): I f  the sequence 

{An} satisfies (SP), then it is all sBC sequence; moreover, for a.e. x E X one has 

(1.1) [r~l/2�9 _ 3 / 2 + e ~  "~ 
SN : E g  + Ok~N log ~N). 

W. Philipp was first to derive the asymptotics (1.1) in the context of dynamical 

system, and he called it a quantitative Borel-Cantelli lemma [12]. 

Note that  there exist remarkable characterizations of some ergodic properties 

of dynamical systems in terms of BC and sBC sequences. We summarize these 

in the following 

PROPOSITION 1.5: Let T be a measure preserving transformation of a probability 

space (X, #). Then: 

(i) T is ergodic r every constant sequence A~ - A, #(A) > O, is BC 

every such sequence is sBC, i.e. S N / E N  --+ 1 #-almost everywhere; 



4 N. CHERNOV AND D. KLEINBOCK Isr. J. Math. 

(ii) T is weakly mixing .'. ~. every sequence {An} that only contains finitely 

many  distinct sets, none of  them of  measure zero, is B C  r for every such 

sequence one has S N / E N  --~ 1 in the L 2 metric, i.e. # ( S N / E N  - 1) 2 -+ 0; 

(iii) T is lightly mixing* ~ every sequence that only contains finitely many  

distinct sets, possibly of  measure zero, is BC. 

See Section 3 for the proof. Note that in part (ii), the first equivalence was 

proved by Y. Guivarc'h and A. Raugi (private communication); our proof is 

slightly different. Part  (iii) was pointed out to us by A. del Junco. 

Note also that there exist no measure-preserving system such that every se- 

quence {An} that only contains two distinct sets, one of positive measure and 

the other of measure zero, is sBC. This follows from a result of U. Krengel [10]. 

On the other hand, if # has K property, then any sequence that only contains 

finitely many sets, none of them of measure zero, is sBC (J.-P. Conze, private 

communication). 

It is important to mention that for any (nontrivial) measure-preserving system 

(X, #, T) there are sequences of subsets of X (with divergent sum of measures) 

which are not BC. More precisely, the following is true: 

PROPOSITION 1.6: Let (X, #) be a probability space. I f #  is nontrivial (that is, 

there are sets with measure strictly between 0 and 1), then for any #-preserving 

transformation T of  X there exists a sequence {An} of measurable subsets of  
oo A X with ~-~n=l i t ( n )  = oo which is not BC. Furthermore, i f  # is non-atomic, 

then for any #-preserving transformation T of  X there exists a sequence {An} of 

measurable subsets of  X with ~-~n=l~176 #(An) = oo such that for a.e. x E X there 

are at most  finitely many n for which Tnx  E An. 

See the end of Section 3 for the proof. With a little extra work, one can always 

find a non-BC sequence of sets that are nested: A1 D A2 D .-.. We omit the 

proof. 

Observe that a non-BC sequence can be easily constructed when T is invertible: 

one can simply take An = TnA,  where 0 < #(A) < 1. Therefore to prove the BC 

or sBC property for certain classes of sequences it is necessary to impose certain 

restrictions on the sets An, which, roughly speaking, guarantee that the sets Bm 

and Bn become nearly independent for large Im - n I. 

The first Borel-Cantelli lemma for deterministic dynamical systems was proved 

in 1969 by W. Philipp: 

* T is said to be lightly mixing (see [7]) if for every two sets A, B of positive measure 
one has #(T-hA  N B) > 0 for large enough n; this condition lies strictly between 
mixing and weak mixing. 
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THEOREM 1.7 ([12]): Assume that T(x)  =/3x  (rood 1) with ~ > 1, or T(x)  = 

{ l /x}  (the Gauss transformation) and # is the unique T-invariant smooth mea- 

sure on [0, 1]. Then any sequence {An} of subintervals (with divergent sum of 

measures) is an sBC sequence, and (1.1) holds. 

In particular, one can take any xo c (0, 1) and consider what could be called 

% target shrinking to x0" (terminology borrowed from [8]), i.e. a sequence of 

intervals An = (x0 - rn, x0 + rn) with rn --+ 0. Then almost all orbits {Tnx}  

get into infinitely many such intervals whenever rn decays slowly enough. This 

can be thought of as a quantitative strengthening of density of almost all orbits 

(cf. the paper [1] for a similar approach to the rate of recurrence). 

More generally, if X is a metric space (e.g. a Riemannian manifold), one can 

try to prove that  any sequence {An} of balls in X is BC or sBC; as in the example 

above, this would imply that all points x0 C X can be "well approximated" by 

orbit points Tnx  for almost all x. D. Dolgopyat recently proved the following: 

THEOREM 1.8 ([5]): Let T: X ~-~ X be an Anosov diffeomorphism with a smooth 

invariant probability measure #. Then any sequence of round balls (with diver- 

gent sum of measures) is sBC. 

Another example of a dynamical Borel Cantelli lemma is given in the paper 

[9], where the following theorem was essentially proved: 

THEOREM 1.9 ([9]): Let G be a connected semisimple center-free Lie group with- 

out compact factors, F an irreducible lattice in G, # the normalized Haar mea- 

sure on G/F,  g a partially hyperbolic element of G, and let T be the left shift 

T(x)  = gx, x E G/F.  Let {An} be a sequence of subsets of G/F with divergent 

stun of measures and "uniformly regular boundaries", namely, such that for some 

5 > O and O < c < l one has 

(1.2) #(5-neighborhood of Odn) < c#(An) for all n. 

Then there exist positive C1, C2 such that for #-a.e. x c G/F one has 

C1 < lim inf SN (x ) /EN ~ lim sup SN (x ) /EN ~_ 62; 
N-+(x) N--+oc 

in particular, {An} is a BC sequence. 

It is shown in [9] that the above condition (1.2) is satisfied if G/F is not 

compact and the sets {An} are complements of balls centered in a fixed point 

Xo E G/F.  This way one gets a description of growth of almost all orbits TUx 

as follows: if a sequence R n increases slowly enough, then for almost all x one 
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has dist(x0, T'~x) > Rn for infinitely many n. This has important applications 

to geometry and number theory. 

When this paper was under preparation, we learned that J.-P. Conze and 

A. Raugi [4] proved a dynamical Borel-Cantelli lemma for certain Markov pro- 

cesses and one-sided topological Markov chains with Gibbs measures. 

2. S t a t e m e n t  o f  resul ts  

Our paper deals with Anosov diffeomorphisms and the corresponding symbolic 

systems - -  topological Markov chains. 

Let T: X ~-~ X be a transitive Anosov diffeomorphism. Let T~ = {R1,..., RM} 
be a finite Markov partition of X, and A the corresponding transition matrix of 

zeroes and ones. For definitions and basic facts on Markov partitions, see [2, 3]. 

The matrix A is transitive, i.e. A K is completely positive for some K > 1. 

Let E = Eh  be the topological Markov chain for A, i.e. a set of doubly infinite 

_ ~ {1 , . . . ,  M} z defined by sequences co = {coi}i=-or C 

E = { c o E { 1 , . . . , M } Z : A ~ o ~ + ~  = 1  ViCZ} .  

The set E equipped with the product topology is a compact space, and there is 

a left shift homeomorphism a: E ~ E defined by (aw__)i = wi+l. Let 7r: E ~ X 

be the projection defined by 

7r(CO) = 5 r-iRw~" 
i=--oo 

Then 7r is a continuous surjection and ~roa = Tolr. Fix an a C (0, 1) and let da be 

' Viii < n} .  a metric on E defined by da(co, w__') = a '~ where n = max{n: coi = w~, 
It is consistent with the product topology. The projection 7r is now HSlder 

continuous. 

There are classes of Gibbs measures on both X and E defined by potential 

functions. For any HSlder continuous function r E ~ 1~ there is a unique a- 

invariant Gibbs measure #r on E. For any HSlder continuous function ~: X -+ R 

there is a unique T-invariant Gibbs measure #~ on X. In the latter case, the 

function r = ~ooTr is HSlder continuous on E, and the measure #r projects to #v 

in the sense that r :  E ~ X is #c-almost everywhere one-to-one and ~r.#r = #v. 

Gibbs measures include all practically interesting invariant measures on X and 

E, e.g. all smooth invariant measures on X, Sinai-Ruelle Bowen (SRB) measures, 

measures of maximal entropy (i.e. Margulis measures on X and Parry measures 

on E) etc. 
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We first study topological Markov chains separately from Anosov diffeomor- 

phisms. Let E be a topological Markov chain with a transitive matrix A. Let # 

be an arbitrary Gibbs measure defined by a H51der continuous potential. Natu- 

rally interesting subsets of E are cylinders, which include all balls in the metric 

da. 

A cylinder C C E is obtained by fixing symbols on a finite interval A = 

[ n - , n  +] C Z, i.e. for some coA C { 1 , . . . , M }  A, coA = {COn-,...,COn+}, w e  set 

! 
(2.1) C=C(COA);={co 'CE:COi=wi  f o r n -  < i < n + } .  

Each cylinder is open and closed in E. We call n -  and n + the left  and r igh t  

e n d p o i n t s  of an interval A, respectively, and (n-  + n+) /2  the c e n t e r  of A. 

Note that  not every sequence of cylinders is a BC sequence. For example, let 

Cn = a n c  for a fixed cylinder C. It is obviously not a BC sequence. Hence, 

we need some restrictions on cylinders to ensure quasi-independence of am-'~Cn 

and C m for large ]m - n I. 

Definition: We say that two intervals [n l ,  n +] and [n~-, n +] are D - n e s t e d  for 

D >_ 0 if either [n l ,  n +] C In 2 - D, n + + D] or [n2, n +] C [n~- - D, n + + D]. 

THEOREM 2.1: Let {Ca} be a sequence of cylinders defined on intervals An c Z. 

Let D >_ 0 be a constant. Assume that for all m, n the intervals Am, An are 

D-nested. Then {Ca} satisfies (SP) and hence, if  in addition ~ #(Ca) = oc, it 

is an sBC sequence and (1.1) holds. 

Examples: 1. Let the left endpoints of An lie in the interval [0, D]; then An are 

D-nested. We call such intervals An D-al igned.  (Similarly one can talk about 

right endpoints.) 

2. Let the centers of An lie in the interval I-D~2,  D/2]; then An are D-nested. 

We call such intervals An D - c e n t e r e d .  Note that cylinders defined on 0-centered 

intervals are precisely balls in E with respect to the metric d~ defined above. 

Therefore the "quantitative orbit density" phenomenon (see the discussion after 

Theorem 1.7) holds for Gibbs measures on topological Markov chains. Specif- 

ically, if one fixes co o E E and considers "a target shrinking to coo", that is, a 

sequence of balls (or centered at coo), then #-almost all orbits {anco} get into 

infinitely many such balls whenever the sum of their measures diverges. 

The following two theorems show that  the assumptions of Theorem 2.1 cannot 

be easily relaxed. We need to introduce some terminology generalizing the two 

examples above. Let {ln} be a sequence of positive numbers. We say that a 
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sequence {A,~) of intervals is { / n ) - cen t e r ed  (resp. { /n)-a l igned)  if the center 

(resp. the left endpoint) of each An belongs to [-I~/2,1~/2] (resp. [0,/,~]). 

THEOREM 2.2: Let {In} be a sequence of natural numbers such that In --+ oc. 

Then there is a sequence of cylinders {Ca } with divergent sum of measures which 

is defined on {ln}-centered (or, alternatively, {ln}-aligned) intervals An C Z and 

does not satisfy (SP). 

THEOREM 2.3: Let c > 0. There is a sequence of cylinders {Ca) with ~ tt( Cn) = 

oc which is defined on {elA,~l}-centered (or, alternatively, {e]An])-aligned) inter- 

vals An C Z and is not a BC sequence. Moreover, for a.e. w_ c E there are only 

finitely many n such that (rnw_ E Ca. 

Theorems 2.2 and 2.3 show that  it is not enough, even for the BC property, 

that  the cylinders are 'relatively well' centered or aligned. 

Remarks: 1. Suppose that  each of the sets Cn is a union of at most kn cylinders 

satisfying the nested condition. It  is clear that  the conclusion of Theorem 2.1 

still holds when the sequence {kn} is bounded. On the other hand, Theorem 2.2 

shows that  a sequence of unions Cn of k,~ 0-centered cylinders may not satisfy 

(SP) if {k , )  is unbounded, while Theorem 2.3 shows that  {Ca) is not necessarily 

BC if kn is of order n a with some a > 0. 

2. Consider a one-sided topological Markov chain a : E + ~-+ E + defined on the 

space E + of one-sided sequences: 

E+ = {w E {1 , . . . ,  M}Z+: AT,w,+ 1 = 1 Vi C 27J+}; 

here Z+ = { 0, 1, 2 , . . .} .  Note that  the shift a preserves E+ but is not invertible; 

every sequence w_ may have up to M preimages. One-sided topological Markov 

chains give symbolic representation for piecewise smooth expanding interval maps 

satisfying the Markov condition. 

Theorems 2.1-2.3 apply to one-sided topologically mixing Markov chains with- 

out change. Note, however, that  all the cylinders must be defined on intervals 

A c Z+. In particular, our theorems hold for cylinders defined on intervals 

that  are D-aligned, {/n}-aligned and {~]An ])-aligned, respectively*. Consider the 

' Vi < n} .  metric d + on E + given by d+(w__, w__ ') = a n where n = max{n: wi = wi, 

In this metric, balls are cylinders defined on 0-aligned intervals. Therefore the 

"quantitative orbit density" phenomenon, which follows from Theorem 1.7 if 

* Note that in this case the result of Theorem 2.1 can be derived from a recent 
manuscript by Conze and Raugi [4]. 
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E + = { 1 , . . . , M }  z+ and # is the product measure, is extended to hold for an 

arbitrary Gibbs measure on a one-sided topological Markov chain. 

It is also worthwhile to mention that  Theorem 2.3 gives examples of non-BC 

sequences of cylinders in the setting of one-sided shifts. In fact, the idea of the 

proof works for an arbitrary measure-preserving system and produces examples 

of non-BC sequences in the generality of Proposition 1.6. 

Back to Anosov diffeomorphisms: the above theorems can be restated by re- 

placing cylinders with their projections on the manifold X and the T-invariant 

measure 7r,# on X. The projection 7r(C) of a cylinder C = C(oah) is a rectangle 

(2.2) 7r(C) = N T - ~ R ~  

in terms of of the formula (2.1). These are very special rectangles generated by 

the given Markov partition. It would be of natural interest to extend our results 

to other classes of rectangles, which we do next. 

Recall that  a rectangle R is a subset of X of a small diameter such that for any 

points x, y C R the intersection W~ nW~' of the local stable manifold W~ through 

x and the local unstable manifold W~ through y is a point that  also belongs in 

R. F o r x  e R p u t  W~'S(R) = W u ' s n R .  F o r x ,  y , e  R p u t  Ix, y] = W~AW~'. 

Then for any z E R we have 

R = [W~(R),W~(R)] = {[x,y]: x �9 W ~ ( R ) , y  �9 W~(R)}. 

So, R has a direct product structure and W~ (R), W~ (R) can be thought of as 

coordinate planes in R. Note that OR = OUR U 08R, where 

OUR = [WU(R),0W~(R)] and cgSR = [OW~(R),W~(R)] 

(these sets do not depend on z �9 R). 

We will consider small enough rectangles such that all local unstable manifolds 

W~(R) ,  x c R are almost parallel, and so are all stable manifolds W~(R),  x �9 R. 

Hence, the diameters of our rectangles are < ~1 with some fixed small Cl > 0. 

Our rectangles are not necessarily connected. 

Our main assumption must be some sort of 'roundness' of rectangles, the 

necessity of which we explained above. For any ~ > 0 put 

and 

(2.3) 

WU(R,~) := {x E W~(R): dist(x, OW~(R)) < ~} 

: =  



10 N. CHERNOV AND D. KLEINBOCK Isr. J. Math. 

This is a sort of e-neighborhood of the stable boundary 08R. Similarly, the 

e-neighborhood of the unstable boundary OUR is defined; call it R~ (e). 

Now fix another constant E0 E (0, el) and some constants Co > 0, 7 > 0. 

Definition: We say that a rectangle R is u - q u a s i r o u n d  if for some z C R 

(i) the set W~(R) has (external) diameter < el and internal diameter _ e0 (note 

that this set will be perfectly round if e0 = el); 

(ii) for all e > 0, 

(2.4) #(R~(~)) < C01 lne l - l -~# (R) .  

Similarly, s - q u a s i r o u n d  rectangles are defined. 

Note that the definition of u- and s-quasiroundness depends on the pre-fixed 

constants el, e0, Co, 7. 

The choice of z in this definition is not important, since the same properties 

will also holds for all z E R, with possibly slightly different values of el,  e0 and 

Co. The exact values of el, e0, Co, 9' may affect some constants in our estimates, 

but otherwise will be irrelevant. 

Note that if the set OWz u (R) is smooth or piecewise smooth and the measure 

on W~ induced by # is smooth, then p(R~(~)) <_ const .  E#(R). It is quite 

common in hyperbolic dynamics to assume that the measure of e-neighborhoods 

of boundaries or singularities is bounded by const.e ~ for some a > 0. Our bound 

(2.4) is milder than that. 

Next, we need to consider arbitrary small rectangles that satisfy some sort of 

roundness condition. 

Definition: We call a rectangle R e v e n t u a l l y  q u a s i r o u n d  (EQR) if there 

are two integers k -  _< k + such that T k+ (R) is u-quasiround and T k- (R) is 

s-quasiround. 

The integers k • may not be uniquely defined for a rectangle R, but each of 

them is defined by R up to a small additive depending on the ratio el /eo,  so the 

choice of k • for a given R will not be important. 

EQR rectangles in the Anosov setting play a role similar to that of cylinders 

for TMC's, and the numbers k - ,  k + correspond to the endpoints of cylinders. 

Note, however, that EQR rectangles are not generated by any Markov partitions. 

On the other hand, we impose the regularity condition (2.4) on the boundary of 

EQR rectangles, while no such condition was assumed for cylinders. 

Note that if dim X = 2, then stable and unstable manifolds are one- 

dimensional, and, with appropriate choice of e0, el, every connected rectangle is 
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EQR. Indeed, the property (i) follows from the uniform hyperbolicity of T and 

the compactness of X, while the property (ii) follows from our Lemma 4.8 in Sec- 

tion 4 (note that the set Rz~(e) in this case consists of two connected rectangles). 

Definition: We say that two EQR rectangles R1,R2 with the corresponding 

integers ki- , k + and k~, k + characterizing their quasiroundness are D - n e s t e d  for 

D > 0 if either [k~-, k +] C [k~ - D, k + + D] or [k2, k +] C [k~- - D, k + + D]. 

THEOREM 2.4: Let T: X ~ X be an Anosov diffeomorphism with a Gibbs 

measure # defined by a H61der continuous potential ~ on X ,  and D > 0 a 

constant. Let {R~} be a sequence of  EQR rectangles. Assume that for all 

m, n >_ 1 the rectangles Rm, R ,  are D-nested. Then {R,} satisfies (SP) and 

hence, i f  in addition ~ #(Rn) = oo, it is an sBC sequence and (1.1) holds. 

Examples: 3. If a sequence of EQR rectangles Rn satisfies the condition 

(2.5) Ik~ + k+l < D = const, 

then it is an sBC sequence and verifies (1.1). 

4. In particular, if T is a linear 2-D toral automorphism and # the Lebesgue 

measure, then any sequence of connected rectangles with uniformly bounded ratio 

of stable and unstable sides (which is sometimes called 'aspect ratio') satisfies 

the condition (2.5) and hence the conclusion of Theorem 2.4 holds. 

5. Let T: X ~-+ X be the baker's transformation of the unit square X = 

[0, 1] x [0, 1] and # the Lebesgue measure. Note that T is discontinuous but 

still admits a finite Markov partition. Then any sequence of balls with diverg- 

ing measures is a BC sequence. Indeed, in each ball B C X one can find a 

'dyadic' square R C B such that It(R) k 0.1#(B). Dyadic squares correspond 

to 0-centered cylinders in the symbolic space, so one can apply Theorem 2.1 and 

obtain the sBC property for the dyadic squares, which implies (at least) the BC 

property for the original balls. 

Next, we generalize Example 4 to nonlinear Anosov diffeomorphisms. Let 

T: X -~ X, d i m X  = 2, be an Anosov diffeomorphism of a surface. Recall that 

in this case every connected rectangle R C X is EQR. For a connected rectangle 

R we denote 

dU(R) -- sup IW~(R)I and dS(R) -- sup ]W~(R)I , 
zER zER 

where IW ~], IWSl stand for the Lebesgue measures (lengths) of the corresponding 

curves W u, W ~. Let B > 1. We say that a rectangle R has a B - b o u n d e d  a s p e c t  
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ratio if 

B -~ < d u ( n ) / d s ( n )  < B.  

Note that rectangles with B-bounded aspect ratio are, in the geometric sense, 

close to squares (i.e., 'round'). This geometric version of roundness is somewhat 

more preferable and easier to check than the dynamical roundness assumed by 

(2.5). 

THEOREM 2.5: Let T: X -+ X ,  d i m X  = 2, be an Anosov diffeomorphism with 

a Gibbs measure # defined by a HSlder continuous potential ~o on X ,  and B >> 1 

a constant. Let {Rn} be a sequence of  connected rectangles with (uniformly) 

B-bounded aspect ratio. Then {Rn} satisfies (SP) and hence, i f  in addition 

Y~ #(R,~) = oe, it is an sBC sequence and (1.1) holds. 

The extensions of Theorems 2.2 and 2.3 to EQR rectangles can also be obtained 

but are hardly worth pursuing, because the examples of cylinders constructed 

in 2.2 and 2.3 can be simply projected on X and produce the corresponding 

examples of rectangles. 

3. P r o o f s  for  t opo log ica l  M a r k o v  chains 

The following facts about Gibbs measures are standard: 

FACT 1: For any cylinder C defined on an interval A 

afAI c 1 @  I < # ( c )  < , 

where cl, c2 > 0 and 01, 02 C (0, 1) only depend on the Gibbs measure #. 

FACT 2: Let Ct C C be cylinders defined on intervals A~, A (note that  in this 

case A1 D A); then 

a l A l l - l i l  
�9 ~IAII-I  A] < ~t(C1)/~t(C) < r 2 . Clt/1 _ _ 

FACT 3: Let C~, C2 be cylinders defined on disjoint intervals [n-~,n +] and 

[n2, n +] in Z. Assume, without loss of generality, that n + < n 2. Then 

+ 
I]~(C1 ("1 C 2 )  - ~ ( C 1 ) ~ ( 6 2 ) [  ~< c302 ;-n'  , / ~ (C1) Jz (C2) ,  

where c3 > 0 and 03 E (0, 1) only depend on the Gibbs measure #. 

Facts 1 and 2 can be proved with the help of a normalized potential for the 

Gibbs measure #; see [3]. Fact 3 is proved by R. Bowen in [2]. 
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Let us introduce the following notation. If Ai = [n~-, n +] and A2 = [n2, n +] are 

two intervals (not necessarily disjoint), define an "asymmetric distance" 5(Ai, A2) 

by 

6(A1, A2) = min{D: A2 is in the D-neighborhood of A1}. 

Equivalently, 5(Ai, A2) = max{n + - n +, n~- - n2,0}.  Clearly, ~(Ai, A2) = 0 if 

and only if A2 C A i .  It is also clear that Ai, A2 are D-nested if and only if one 

of the distances 6(Ai, A2) and 5(A2, A1) does not exceed D. 

LEMMA 3.1: I f  Ci and C2 are cylinders defined on intervals Ai and A2, 

respectively, then 

�9 ~6(hl,A2)_/t '~ "~ 

where c4 > 0 and 04 E (0, 1) only depend on the Gibbs measure #. 

Proof This follows from Facts 1 and 3 if A1 and A2 are disjoint, and from Facts 

1 and 2 if they are not. | 

Proof of Theorem 2.1: We estimate the quantity Rmn -- #(Cm A 6 m - n C n )  - 

#(Cn)#(Cm). Without loss of generality, assume that the interval Am is "nested" 

in An, i.e. Am lies in the D-neighborhood of A,~. Note that we do not assume 

any relation between m and n, or between #(Cm) and #(Ca). Our assumption 

easily implies that An - (m - n) is not in the (Ira - n I - D)-neighborhood of Am. 

Applying Lemma 3.1 to the cylinders Cm and a m - n C  n, one gets 

- , ~ ( A m , A , ~ - ( m - n ) )  /z-,  

Summing up over all n satisfying our nesting condition (that Am is "nested" 

in An) gives a quantity bounded by const-#(Cm). Now summing up over m = 

M , . . . ,  N proves (SP). | 

In the following proofs of Theorems 2.2 and 2.3 we use a special construction. 

Let T be a measure preserving transformation (invertible or not) of a probability 

space (X, #), and let {-4k} be a sequence of measurable subsets of X and {/k} 

a sequence of natural numbers. Put  so = 0 and sk = ll + . . .  + lk for k _> 1. 

Consider a new sequence of sets {A,~} defined as follows: 

T l -q - 4 i ,  T2-Z~/l i , . - . ,  T - i A i ,  -4i, Ti-t~ A2 , . . . ,  T-1A2, A2, Ti-13/i3, 

. . . ,  T -143 ,  4/]3,... �9 
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Note that the n th  set in this sequence is 

(3.1) An = Tn-~kAk, 

where k is defined by sk-1 < n << sk. We denote this k by k = kn. We will say 

that the new sequence, {An}, is d e r i v e d  from {Ak} and {Ik}. 

Proof of Theorem 2.2: Without loss of generality, assume that In is monotonic, 

1 < 11 _< 12 _< "" ". Let {C} be a cylinder defined on some interval [0, l] (alterna- 

tively, we can assume that its center is at zero). Now consider the sequence of 

cylinders {C~} derived from the constant sequence Ck = 0 and {/k}. Then Cn 

is defined on an interval An whose left endpoint lies in the interval [0, Ik] where 

k = kn is defined above. Since {Ik} is monotonic, the left endpoint of An lies in 

[0, ln], so the nesting condition of Theorem 2.2 is satisfied. It is now easy to see 
N that  for N = l l  + - . .  + Ik w e  have EN = ~ n = l  #(Ca) = (/1 + " "  + / k ) # ( C ) ,  while 

N 1 + + , ( o /  Rmn>-  
re,n----1 

It is clear that the right hand side of this inequality grows faster than CEN for 

any C > 0, which violates (SP). | 

We write an ~ bn for two sequences of numbers {an} and {bn} if there are con- 

stants 0 < cl < c2 < oc such that cl < an/bn < c2 for all n (the constants cl, c2 

may depend on the topological Markov chain (EA, ~r) and the Gibbs measure #). 

Proof of Theorem 2.3: Let {6'k} be a sequence of cylinders defined on intervals 

/~k with left endpoints at zero such that #(Ck) ~ 1/ (kln  2 k). (Again, we could 

assume that  the centers of {s are at zero.) It follows from Fact 1 that I/~kl 

logk. For each k > 1, let lk = [cI/~kl]. Consider the sequence of cylinders {Ca} 

derived from {Ok} and {Ik}. Then Cn is defined on an interval An whose left 

endpoint lies in the interval [0, clAnl]. Since lk ~ logk, we have ~ # ( C u )  = 

~ k  Ik#(Ck) = oc. On the other hand, Y~k #(Ck) < oc. Hence, by Lemma 1.2 

(i), for a.e. w_ E E there are at most finitely many k _> 0 such that aS~w E Ck. 

Now, by (3.1), Cn = an-s*ck, hence there are at most finitely many n such that 

crnw E Ca. I 

Lastly, we give proofs of two propositions from the introduction. 

Proof of Proposition 1.5: Part (i) easily follows from the ergodic theorem. For 

part (ii), let T be weakly nfixing and {An} contain finitely many distinct subsets 
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of X of positive measure; call them F1, . . . ,  Fk. Since cl < E N / N  < c2 for some 

constants 0 < cl < c2 < cx), to show that  

(3.2) i t (SN/EN -- 1) 2 --+ 0 as N --+ c~ 

it is enough to prove that  

(3.3) it(SN - EN) 2 = 
N 

= o (N2) .  
m,n-~l  

The weak mixing of T implies that  for any Fi, Fj 

N 

I#(T-nFi N Fj) - #(Fi)#(Fj) I = o(N), 
n = l  

and since we only have finitely many pairs (Fi, Fj), the term o(N) here is uniform 

in i, j .  This completes the proof of (3.3). On the other hand, if (3.2) holds, one 

can choose a subsequence {Ark} such that  SNk/ENk -+ 1 almost surely. Thus 

SNk -+ oo on a set of full measure, which clearly implies that  {An} is a BC 

sequence. 

Assume now that  T is not weakly mixing. If  it is not ergodic, the constant 

sequence As = A, where A is a nontrivial invariant set, is clearly not a BC 

sequence. Otherwise T has a factor isomorphic to a rotation of a circle (because T 

has a non-constant eigenflmction with eigenvalue exp(2r0i)  with some 0 < 0 < 1; 

see e.g. [11], p. 65-68). I f 0  is rational, then T k is not ergodic for some k and the 

claim follows as above. If  0 is irrational, then the factor measure is Lebesgue. 

To finish the proof of (ii) it is then enough to consider an irrational rotation of 

a circle and find a sequence of (nonempty) arcs {An} that  only contains finitely 

many distinct arcs but is not BC. This is a simple exercise. Par t  (iii) follows 

from the definitions in a straightforward way and is also left as an exercise to the 

reader. | 

Proof of Proposition 1.6: If for some E there are no measurable subsets A of X 

with 0 < #(A) < ~, then (a~suming it is nontrivial) T is not weakly mixing, so the 

claim follows from the previous proposition. Otherwise there exists a sequence 

{-4k} of sets of positive measure such that  ~k~=l it(-4k) < co. Define a sequence 

{Ik } of natural  numbers by Ik = [1/it(Ak)] + 1, and let {An} be a sequence derived 

from {Ak} and {Ik}. Then clearly ~n~__l #(An) = c~. On the other hand, we 

can argue as in the proof of Theorem 2.3 to show that  for a.e. x E X there are 

at most finitely many n such that  Tnx E An. | 
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4. Proofs for Anosov diffeomorphisms 

In this section we use an approach based on the shadowing property and speci- 

fication. Ruelle recently demonstrated the power and elegance of this approach 

in [13], and we follow his lines. 

We recall certain standard facts about transitive Anosov diffeomorphisms. We 

wilt denote by A finite or infinite intervals of Z. For a finite interval A -- In - ,  n+], 

we denote by ]A I = n + - n -  + 1 the cardinality of A. For two disjoint intervals 

A1, A2 we denote by 

dist(Aa, A2) ~ m i n { ] i -  JI: i E A I , j  e A2} 

the length of the gap between them. 

EXPANSIVENESS. Any Anosov diffeomorphism T: X ~ X is expansive, i.e. 

there is a 5 > 0 (called expansivity constant) such that  

Vk c Z d(Tk x, Tky) < ci r x = y .  

In fact, due to the hyperbolicity of T, for some C > 0 and 0 < 0 < 1 one has 

(4.1) Vik I < n d(Tkx,  Tky) < ~ ~ d(x, y) < C0 -n.  

Let A c Z be an interval of Z, finite or not. Let x = (x~:)keA G X A. Given 

a > 0, we say that  x is an a-pseudo-orbit  if 

d(Tkx, Xk+l) < a whenever k ,k  + 1 ~ A. 

We say that  the orbit of x r X fl-shadows x if 

d(Tkx,  xk) < ~ Vk E A. 

SHADOWING LEMMA. For any /3 > 0 there is an a > 0 such that  every a -  

pseudoorbit is/3-shadowed by a true orbit of some x E X.  

Note that  if A = Z and fl < 5/2, then the true orbit shadowing x is unique by 

the expansivity. We fix a fl < (f/2 and this fixes the corresponding a > 0. 

Note that  if the pseudoorbit is periodic, then it is shadowed by a true periodic 

orbit with the same period. 

Given a > 0, there is an integer K > 0 such that  for every x, y C X and n > K 

there is a z r X such that  

d(z ,x )  < a and d(Tnz,  y) < c~, 
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which follows from the topological transitivity of T. (Note that our choice of 

made above also fixes K.)  

Using this remark, we can interpolate (concatenate) several c~-pseudoorbits 

defined on intervals of Z separated by gaps of lengths > K in the following way. 

SPECIFICATION. Let c~-pseudoorbits xj  be defined on disjoint intervals of Z 

separated by gaps of length ~ K.  Then the xj  are all/%shadowed by one true 

orbit of some x E X. 

One can also find a periodic orbit that /%shadows all xj ,  with period P := 

im~ - imin ~- K ,  where ima~ and imin are  the maximum and the minimum points 

of the union of the intervals of Z on which the pseudoorbits xj  are defined. 

Due to the expansivity, the number of periodic orbits of period P in the above 

construction is less than some L independent of the lengths of the intervals of 

Z where the pseudoorbits are defined. The value of L only depends on the 

number of these intervals and the lengths of gaps between them. In our further 

arguments, we will interpolate no inore than four pseudoorbits at a time, and 

the gaps between them will never exceed 2K, so we just fix the corresponding 

constant L. 

Now, let g: X ~-+ ]R be a H51der continuous function. The bound (4.1) implies 

the following. 

APPROXIMATION OF SUMS ALONG ORBITS. There is a constant B = B(g) such 

that 
q q 

Vk �9 [p,q] d(Tkx, Tky) < 5 ~ Eg(Tkx)  - Eg(Tky)  <_ B. 
k : p  k--p 

Furthermore, let the specification property be used to shadow two finite orbits 

{Tkx'}, k �9 A', and {Tkx"}, k �9 A", with 

K _< dist(A', A") <_ 2K, 

by a periodic orbit of z of period 

then 

P = IA'l + Ih"l + dist(h' ,  A") + K; 

i p (4.2) E g(Tkx')+ E g(Tkx")--Eg(Tkz) <-B':=2B+3KIIglI~" 
kEA ~ k c A "  k = l  

Note that  B'  is a constant, just like B, independent of the lengths of the intervals 

A', A". 
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For n _> 1, let 

Fix(T ~, X)  = {x C X: Tax  = x} 

be the set of periodic points of period n in X. 

P E R I O D I C  ORBIT APPROXIMATION OF G I B B S  MEASURES. Let # be a Gibbs 

measure corresponding to a Hblder continuous potential ~: X ~-+ •. For each 

n > 1, let pn be an atomic probability measure concentrated on Fix(T n, X)  that  

assigns weight 

(4.3) # , ( x )  = Z~-lexp[~(x) + ~(Tx)  + . . .  + ~(Tn- lx ) ]  

to each point x c Fix(T",  X)  (here Z,~ is a normalizing factor). Then # ,  weakly 

converges to # as n --+ c~. 

VARIATIONAL PRINCIPLE. Let 9~: X ~-~ R be a continuous function and P~ its 

topological pressure. Then 

(4.4) sup[h.(T)  + v(~)] = P~, 
v 

where the supremum is taken over all T-invariant probability measures u on X,  

and hv(T) is the Kolmogorov-Sinai entropy of u. Any measure u that  turns (4.4) 

into an equality is called an equilibrium state for ~. Equilibrium states exist for 

every continuous function ~. If ~ is Hblder continuous on X,  the equilibrium 

state is unique and coincides with the Gibbs measure for the potential ~. 

We now prove a few technical lemmas. Let # be a Gibbs measure on X 

corresponding to a Hblder continuous potential ~. 

We generalize our notation of Section 3 by writing for any two variable quan- 

titles A and B 

A ~ B r O < cl < A / B  < c~ < oc 

for some constants cl, c~ that  only depend on T: X ~+ X and the Gibbs measure 

LEMMA 4.1: 

(4.3) satisfies 

The normalizing factor (the analogue of partition function) Zn in 

Zn ~ e P*n. 

Note that  it is standard to compute the topological pressure as 

P~ = lira -1 in Zn. 
n--+oo n 

The estimate in our lemma is sharper than this standard formula. 
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We need an elementary sublemma that  is a modification of a standard one; see 

Lemma 1.18 in [2]. 

a SUBLEMMA 4.2: Let { ~},~=1 be a sequence of real nmnbers such that 

la,~+n - a m -  an[ < R for all m , n  > 1 and some constant R > O. Then 

P := limn-+or an/n  exists. Furthermore, Jan - PnJ < 2R for all n. 

Proo~ Fix a n m > l .  F o r n _ > l ,  w r i t e n = k m + l w i t h 0 < l < m - 1 .  Then it 

follows by induction on k that  la,~ - kam - a d <_ kR. Hence, 

a~ kam a l I < kR  

I n k m + l  k m + l  - k m + l "  

Letting n --+ oc gives 

. . . . .  am R < l iminf  an <_ limsup an < am + R .  
?Tt / / t  n / t  n n / r t  //~, 

Hence, P := lim a~/n exists. Next, assume that  am > P m  + 2R for some 

m. Then a2~m > 2'~mP + (2 ~ + 1)R which follows by induction on n. Hence 

l imsup an/n  >_ P + R / m ,  a contradiction. A similar contradiction results from 

the assumption am < P m  - 2R. l 

Proof of Lemma 4.1: It  is enough to show that  

R := sup J In Zm+,~ - In Zm - in Zn[ < oc 
?rt~n 

and apply the previous sublemma to the sequence an = In Zn. So, we need to 

show that  

Z,~+~ ,~ Z,~Zn. 

For fixed n , m ,  put. A' : [ 0 , m - K ]  and A" = [ m , m + n - K ] .  For any x �9 

Fix(T re+n, X)  consider x '  = { x , . . . ,  Tn~-gx}  and x"  = { T m x , . . . ,  T m + " - g x } ;  

these are two pseudoorbits defined on the intervals A ~ and A" separated by a gap 

of length K.  Each of them can be shadowed by a true periodic orbit, of periods 

m and n, respectively, and there are at most L of those periodic orbits for each of 

x '  and x".  On the other hand, for every pair of periodic orbits yr �9 Fix(T m, X)  

and y" �9 Fix(T n, X)  consider two pseudoorbits y '  = { y ' , . . . ,  T m - g y  '} defined 

on A ~ and y"  = { y ' , . . . ,  T ~ - g y  t} defined on the interval A" by associating Tiy"  

to m + i �9 A ' .  Then there is a true periodic orbit of period m + n shadowing 

both y~ and y" ,  and the number of those periodic orbits does not exceed L. Now 

the result follows from (4.2). | 
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Note that the potential ~ - P ~  corresponds to the same measure # and has zero 

topological pressure. Hence we may just assume that P~ -- 0 in what follows. 

Then Z,~ ~ 1. 

We assume, as we may, that sl in the definition of EQR rectangles does not 

exceed the expansivity constant 5. 

LEMMA 4.3: Let R be an EQR rectangle with integers k + and k-  characterizing 
the quasiroundedness of R. Let x E R. Then 

#(R) ~ exp[~(Tk-x) + . - .  + ~(Tk*x)]. 

Proof: Consider a pseudoorbit x = ( T - k - x , . . . ,  Tk+x} defined on the interval 

A = [ - k - , k + ] .  Let n >> ]A]. Note that y E R if and only if (i) WS(Tk+y) 
intersects W~(Tk+x), and (ii) W~(Tk-y) intersects Ws(Tk-x) .  This definitely 

happens if the orbit y = {Tk -y , . . . ,  Tk+y} s0-shadows x. On the other hand, 

if y E R, then y El-shadows x. Hence, we can apply our previous estimates 

with a = e0 and a = sl; the value of a only affects the values of all constants, 

which are not essential. So, we may simply assume that y E R if and only if y 

a-shadows x. 

Now, for any y E Fix(T '~, X) consider the pseudoorbit 

y = (Tk++gy,. . . ,Tn+k - - g y }  

defined on the interval A r = [k + + K, n + k -  - K]. Then y is shadowed by a true 

periodic orbit of period p := n - (k + - k - )  - K + 1, and the number of those 

periodic orbits is less than L. On the other hand, for any z E Fix(T p, X) consider 

a pseudoorbit z = {z , . . . ,  Tp-lz}  defined on the interval A r by associating Tiz 
to k + + K § i E A I. Then there is a true periodic orbit of period n shadowing 

both x and z, and the number of those periodic orbits does not exceed L. Now 

the result follows from (4.2) and the facts Zn ~ 1 and Z v ,~ 1. I 

LEMMA 4.4: Let R1,R2 be two EQR rectangles with integers k~ and k2 ~ 

characterizing the quasiroundedness of R1, R2. Denote Ai = [k[ , k +] for i = 1, 2. 

Let x E R1 M R2. Then 

] #(R1 n R2) < e . exp  ~o(T*x) , 
iE A2 

with some c > 0 that only depends on the Gibbs measure #. 

Proof'. The proof of the previous lemma applies with the following simple ad- 

justments. Note that if y E R1 N R~, then the orbit of y el-shadows that of x 
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on A1 t2 A2. So, to get an upper bound on #(RI  N R2), we can take into account 

all n-periodic orbits that  a-shadow the orbit of x on A1 t2 A2 with a = el.  Now, 

if A1 and A2 overlap, the argument is exactly like in tim proof of the previous 

lemma. Let A1 and A2 be disjoint with dist(A1, A2) = J .  If  J _< 2K, we can 

simply disregard such a small gap and apply the previous argument. If J > 2K, 

we replace the part  of the orbit of y E Fix(T ~, X)  of length J between A1 and 

A2 by periodic orbits of period J - 2K. To conclude the argument,  we now need 

an obvious extension of (4.2) from two to four pseudoorbits with gaps of length 

K in between. This extension is straightforward. | 

LEMMA 4.5: There is a constant A 

Fix(T n, X )  we have 

> 0 such that for all n > 1 and z E 

~(x) + ~(Tx) + . . .  + ~(Tn- lx)  < - A n .  

Proof: Let 5x be the delta measure concentrated at x. The measure 

~x,~ = 1(8= + . ."  + ~T--'x) 

is T-invariant, so by the variational principle we have 

We now need to prove that  

sup sup ~x,,(~) < 0. 
n_>l xE Fix(Tn,X) 

If this is not true, then there is a sequence of periodic points xk E Fix(T nk , X)  

such that  5~ k,,~k (~o) -+ 0. We take any limit point of the sequence of measures 

5~k,'~k in the weak topology; it will be a T-invariant measure, call it v. We 

have v(~o) = 0, so by the uniqueness part  of the variational principle v = #, so 

#(~o) = 0 and hence hg(T) = 0. But it is known that  hg(T) > 0 for any Gibbs 

measure, a contradiction. | 

Combining this lennna with the specification property and (4.2) gives 

COROLLARY 4.6: There is a constant Bo > 0 such that for all n > 1 and x E X 

-ZXon < ~(x) + ~(Tx)  + . . .  + ~ ( T " - l x )  < Bo - A n  

with ZXo = II~lloo. 

We can now prove analogues of Facts 1 and 2 of Section 3 for Anosov diffeo- 

morphisms. Our constants, such as ci, 0~, will only depend on the Gibbs measure 
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# and the values of ~o, c1 in the definition of EQR rectangles. We use notation 

of Lemmas 4.3 and 4.4. 

LEMMA 4.7: Let R be an EQR rectangle and k := k + - k- .  Then 

cse  < < c6e  

with some c5, c6 > 0 and 85, 86 6 (0, 1). 

LEMMA 4.7: Let R1, R2 be EQR rectangles with the corresponding intervals 

Ai = [k~, k+], i = 1, 2. Put k := ]A2 \ All. Then 

,(R1 n R2) < cTO ,(R ) 

with some c7 > 0 and 07 6 (0, 1). 

Proo~ Lemmas 4.7 and 4.8 follow from Lemmas 4.3 and 4.4 and Corollary 4.6. 
| 

Note that so far we only used the property (i) of the quasiround rectangles; we 

did not use (2.4). 

LEMMA 4.9: Let R1, R2 be EQR rectangles such that the intervals A1 = [k~-, k +] 

and A2 = [k~-, k +] are disjoint. Put k := dist(A1, A2). Then 

#(R1)  + i t (R2) 
I,(R1 A R2) - #(R1)p(R2)I <_ Cs ~ak ~--b-~ 

with some constants cs > O, a > 0 and b. 

Proof: Our proof uses Markov partitions and symbolic dynamics. Let ~ be a 

Markov partition and E the corresponding symbolic space, a topological Markov 

chain. We now partition the rectangles R1 and R2 into subrectangles generated 
by the Markov partition T~ as follows. Let C c E be a cylinder defined on an 

interval A C Z. We say that its projection r (C)  is p r o p e r l y  inside R~, i = 1, 2, 

if 

(i) ~r(C) C Ri, and 

(ii) for any larger cylinder C' D C its projection ~r(C') is not a subset of R~. 

Denote by C~ the collection (in general, countable) of cylinders that are properly 

inside Ri. Since Ri is a rectangle, one can easily check that all the cylinders in gi 

are disjoint. Next, it follows from the assumption (2.4) that #(ORi) = O, hence 

[3 = 0, 
C6Ci 
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i.e. the rectangles r (C) ,  C E Ci, make a (rood 0) partit ion of Ri. 

Now consider the collection gl and an arbitrary cylinder C E C1 defined on an 

interval A = [k-,  k+]. Observe that if t := k + - k + > 0, then, using the notation 

of (2.3), we have 7r(C) C R~,z(c ) with r = cO t for any z E R1. Here c > 0 and 

0 E (0, 1) are constants determined by the hyperbolicity properties of T and the 

sizes of rectangles of the Markov partition R. Similarly, if C E C2 is defined on 

an interval A = [k-,  k +] and t = k{ - k-  > 0, then 7r(C) C R~,z(r with r -- cO t. 

Now define subcollections C~ C Ci for i = 1, 2 that contain all cylinders C 

defined on intervals A = [k-,  k +] satisfying k + - k  + > k/3 for i = i and k ~ - k -  > 

k/3 for i = 2 (recall that  k = dist(A1, A2)). By the assumption (2.4) 

_ WOla k + b[l+ ~ 

with constants a -- - ln01/3 > 0 and b = - lnc. So, the parts r (C) ,  C E C~, can 

be removed from Ri with no harm. Denote by 

the remaining parts of Ri. 

Note that /~1 and/~2 consist (mod 0) of projections of cylinders C' E dl \ C~ 
\ , and C" E Cz C2, respectively, and the gap between the intervals on which C ~ 

and C" are defined is always > k/3. Hence we can use the subadditivity of the 

correlation function and Fact 3 of Section 3 to get 

= iF,((U.-(c'))n - f , ( U . ( c , ) ) . ( U  

-< Z I . ( . - (c ' )n - 1 
C'  C "  

-< Z Z 
C ~ C "  

Ok/3 - _ c3 3 v(R1)#dR~). <_ 

This completes the proof of Lemma 4.9. 

LEMMA 4.10: Let R1, R2 be EQR rectangles with the corresponding intervals 
A1 and A2. Then 

~(R1) + ~(R2) 
t~(R1 n n2) - ~(nl)~(n2) l  _< c9 jal~(hl, A2) + ~1'+~ 
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Here 5(A1, A2) is the asymmetric distance defined in Section 3, al = a/2, and 

c9 > 0 is a constant. 

Proof'. If IA2[ > �89 A2), then, by Lemmas 4.7 and 4.8, both #(R~ A R2) and 

#(R1)#(R2) are bounded from above by CS~(A~'A2)#(R1), with some c > 0 and 

0 < t? < 1 depending only on #. Otherwise dist(A1, A2) _> 5(A1, A2)/2, and the 

claim follows from Lemma 4.9. | 

Proof of Theorem 2.4: This follows the same lines as the proof of Theorem 2.1. 

We estimate the quantity Rm,~ = #(Rm N T m - n R u )  - #(Rn)#(Rm).  Without 

loss of generality, assume that 5(A., Am) _< D. By Lemma 4.10 (applied to the 

rectangles Rm and Tm-~Rn) ,  we have 

+ 
IRmnl <_ c9 lall m _ nl _ a iD  + bl 1+~" 

We use this bound if I m -  n I >_ D -  b/al,  otherwise we can use an obvious bound 

IR,~=] < tt(R,~) + ~(R,) .  

Summing up over all n with 5(An, Am) _< D, and then over m = M , . . . , N ,  

proves (SP). | 

For the proof of Theorem 2.5, we need two more lemmas. Recall that now 

dim X = 2 and every connected rectangle is EQR. 

LEMMA 4.11: Let R m and R ,  be two connected rectangles with B-bounded 

aspect ratio, and kim, k~. integers characterizing their quasiroundness. Assume 

that Rm N R ,  # O. I f  d~(Rm) >_ dU(R,), then 

k + >_ k + + clo lnd~(Rm)/dU(R,) .  

Similarly, i f  d 8 (Rm) >_ d ~ (R,) ,  then 

k ,  <_ k~ - c lolndS(Rm)/d~(R,) .  

Here clo -- clo(eo, el, B)  > 0 is a constant. 

Proof'. This follows from standard distortion bounds. | 

Proof of  Theorem 2.5: . Denote by kff the integers characterizing the quasiround- 

ness of R,,. We may assume that all Rn are small enough, and then the uniform 

boundedness of their aspect ratio ensures that k + _> 0 and k~ < 0 for all n _> 1. 
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We est imate the quant i ty  Rmn = #(Rm A Tm-'~Rn) - #(Rn)#(Rm). The set 

R,  = Tm-nRn  is a connected rectangle whose quasiroundness is characterized 

by the integers k~ :=  k~ + (n - m). Wi thou t  loss of generality, assume tha t  

d'~(Rm) > d'~(Rn). 
We consider three cases: 

CASE 1: Assume tha t  either (i) n - m _> 2k + or (ii) n - m _< 2k m. In  the case 

(i) we have 

k .  + - k+~ > n - m - k+~ >_ In - . ~ 1 / 2 ,  

and in the case (ii) we have 

k ~  - k :  > k ~  - (n  - m )  > In - m l / 2 .  

In either case we apply L e m m a  4.10 and obtain  

, ( R m )  + , ( R ~ )  
IRrnn[ ~ c9 [a2[n -- m[ jr_ bl i+'~ 

with a2 = hi~2 > O. 

CASE 2: Assume tha t  2k~ < n - m _< 2k + and R ,  FI Rm r 0. If  n > m, 

then dU(R,) <_ On-mdU(Rm), and if n < m, then d~(R,) <_ om-nd~(Rm) for 

some constant  0 < 1, due to the uniform hyperbolici ty of T. Hence, Lemma 4.11 

implies tha t  if n > m, then 

and if n <_ m, then 

k .  + - k+~ __ c11Ln - -~1,  

k m -  k ,  > Cl i [n-  m[, 

with some constant  cl i  > 0. Again, we use Lemma 4.10 and obtain 

~(Rm) + ~(Rn) 
IRmnl < ~9 la31n - . q  + hi 1+~ 

with a3 = Cllal.  

CASE 3: Assume tha t  2k~ < n - m < 2k + and R,  FIRm = 0. Then  Rmn = 
#(Rm)#(Rn).  I t  follows from Lemma 4.7 tha t  

a4[ ln#(Rm)[  + b4 ~_ k + - k m ~ ah[ ln#(Rm)l  + 55 

with some a4, a5 > 0 and - ~  < b4, b5 < r and similar bounds  hold for Rn. 

Our  assumption d'*(Rn) <_ d"(Rm) and the B-boundedness  of aspect ratio imply 
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that  k + > e2k + and k~- < e2k~ for some constant E2 > 0, due to uniform bounds 

on expansion and contraction rates of T. Therefore, 

,(Rn) _< 

with some constants c12 > 0 and ~ > 0. Holding m fixed and summing over all 

n that  satisfy the conditions of Case 3 gives 

~ nm,~ <_ 2c12[#(nm)]l+~(asI ln#(nm)l  + bs) ~ c13#(nm) 
n 

with some constant c13 > 0. 

Lastly, summing up over all m, n = M , . . . ,  N proves (SP). | 
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