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Introduction and results

In this paper we shall derive exponential bounds for the probability of claims exceeding
premiums that are given according to the loaded pure risk principle and to the so-called
o-loading principle. These probabilities appear to be of great importance concerning
reinsurances. Especially in the first case it turns out that the enlargement of a (homoge-
neous) portfolio effectively reduces the considered probability.

For sums of independent random variables Theorem 1 below is well known in probability
theory (“large deviations”). Since we do not know any literature on the subject in risk
theory we give a short derivation of this interesting result.

In the following Q is a probability measure with Q(0, c0)=1 such that the moment
generating function M(t) = _[ e™ Q(dx) of Q exists for some t > 0. Let

to=sup{t >0: M(t) < oo}
and
K=sup{M'(t): t<ty}.

Observe that in general K = co. In the case t;= 00 this follows from
o]
M'(t) = [xe" Qdx) > | xe* Q(dx) 2 ee* Qs ), t>0,

where ¢ > 0 is chosen such that Q{g, ) > 0.
Let
pu=M0) and u,=M"(0).

Theorem 1: Assume that X is compound Poisson distributed with intensity A >0 and
individual claim size distribution Q. Then for ¢ > 1

P{X>cipu} <e 0,
where
f(t) =cput— M) + 1

and r € (0, ty) is the unique solution of the equation M’ (t) =cy, if ¢ <K/u. In the case
¢ = K/p we have r = t,, with the convention M (ty) = M (to—). In both cases f(r) > 0 holds
true.

Examples: (i) Assume that Q is the exponential distribution with mean a > 0. Then we
have

1
, t<ty=—, and K=o0.
a

1 1 . .
Furthermore, r = — <1 — ——), which gives
AT

P{X > cia} Sexp[—i(ﬁ -3, ¢>1.

207



(ii) If we consider a portfolio of life insurance policies with the same risk sum y, then
Q =4, and M(t) = ¢'*, t > 0. Here we obtain

P{X >cAu} <exp[—A(clogc—c+1)], c>1.
Observe that in both cases the given bound does not depend on Q.

In the following we consider the probability of claims exceeding a premium given
according to the g-loading principle, i.e.

P{X>Apu+al/ip}, a>0.

Here, the central limit theorem implies that this probability is asymptotically constant,
i.e. it cannot tend exponentially fast to zero for 2 — o (if the portfolio is enlarged).
Observe that we may apply Theorem 1 with

c=1+ap™ (/A

to derive an upper bound for this probability. To obtain a feeling for what comes out
consider example (i) above. Here, c=1+x with x=a(2/A)*. From

1 1 1
1 P4 —x——x*+—x°
1+xr< +2x 8x+16x
we get

(fe—1)?=c+1 —21ﬁ2%a21-1 <1 —?al'*),

i.e. in this case we have
1 2
P{X>la+aA)ta} <exp [— 5 o? (1 - g al"*)] .

In the following theorem we show that the asymptotic bound exp [— 1 «?] can be halved.
(For a=2, e.g., this gives 0.068 instead of 0.136.)

Theorem 2: Let X be compound Poisson distributed with intensity A > 0 and individual
claim size distribution Q such that K = co. Then for a« >0,

P{X>Ap+a)/in) <a()exp[—La?ui(M"(s) 7,

where a(1) <1 and s
la(A) ~ 3 <081 *M"(s) u; 2

with s = a(Au,)~*. In particular,
}im BM )2 =1.

Proofs
Theorem 1: For t e (0, t;)

P{X>ciu}=P{tX>cAut) <e *M'EeX = 4O
where f(t) = cut — M(t)+1. We have
f0)=0, f0)=@Cc—1)pu>0, f'(t)=—M"(t)<0.
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In the case ¢ > K/u (which implies t, < o)

fy=cuy—M{H=>2K-M(t)>0, te(0,t,).
Hence, f(t) strictly increases and attains its maximum (positive) value for t=t,. Observe
that M (t,—) <0, as

[¢4]
M(t) = e Q(dx) < exp[td] +t;! [ xe* Q(dx) <exp[t] + t; ' K, t<t,.
to

In the case 1 < ¢ < K/u the maximum (positive) value of f(t) is given for t=r, where
f'(r)=0, ie. M'(r)=cu.

For the proof of Theorem 2 we need the concept of a generalized compound Poisson
distribution. Let m be a measure with m(—o0,0) =0, 0 <m[0, o) < 0 and define

k

®© 2
P(A, m)=¢ Am0@) S —_mxk 2 50,
k=0 k!

where m*® = §,,. Then the characteristic function ¢(t) of P(4, m) is given by
(P(t) = AW ®-m[0, ) ,
where

y(t)={ e™*m(dx), teR.

O 8

This gives
P(A, m)* P(t,m)=P(A+7,m), 4,7>0,

i.e., the distributions P(4, m) are infinitely divisible.

Theorem 2: (i) With c=1+0 ™ (1,/A)} we have
P{X>dip+al/ip}=P{X>cip} <e *PEe™ 1y, .,,/Ee™,

where f(t) and r are given in the proof of Theorem 1, i.e. r > 0 is the unique solution of
the equation
M) =cp=p+a(u/i)t.

Let D, be the distribution defined by
D;(A)=Ee*1,(X)/Ee*, A <][0,0).
Then we have shown that
P{X>Ap+a ]/l‘uz} <a(d)e 0,
where a(4) = D,(cAy, o).
(i) In this part we derive a lower bound for f(r) = cur — M(r)+1. From
pe=M(1) =M (0) + rM"() = p+rM"(§
and g, < M"(¢) < M"(r) we obtain
a(M" ()" /M ST <a(dpy) t=s.
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Furthermore,
f(r) =cpur + M(0) — M(r)
=cur—tM @) +3r’M () =12 M"(n)
23> (M) 2 > P pd (MY () 2 A

(iii) It remains to prove that a(}) =1+ O(1™%).
Since X is distributed according to P(4, Q) we infer that

D,=P(,m) with m(A)=|e™1,(x)Q(dx).

A
LetV,Y,,.... Y,, n € N, be iid. with distribution P (—, m). Then, by the lemma below,
n

A A A
EY==[xm@dx)==-M{="cp.
n n n

As the distributions P(/A, m) are infinitely divisible, this implies
a(ly=D;(cip, ©)=P{, m)ciy x)=P { > (Y, — EY)> 0} .
i=1
By the Berry-Esseen Theorem in connection with the estimate of the constant that has
been given in [1] we obtain
la(i)—1]<08n *[E(Y— EY)}] *E|Y—EY]?

=08 A I [M"(@)) i nE|Y - EYJ

<082 %y inE|Y~EY],
where the equality follows from the lemma and

{x*m(dx) = { x> e™ Q(dx) = M"(1)..
Furthermore,

E|Y-EY]?<E(Y+EY)’=E(Y-EY+2EY)?
i N? AN
=—M"()+6 (—) M) M'(r) + 8 (~) M@OPF.
n n n
Together with the estimate above this yields the result (observe that r<s).

The following lemma is standard and we state it only for easier reference. A proot
involving the existence of the moment generating function of a probability measure m is
given in chapter 3.1.8 of [2].

Lemma: Assume that Y is distributed according to a generalized compound Poisson distri-
bution P (A, m) such that {x*m(dx) <oo for some k e N. Then E(Y —Au)=0, where
1= xm(dx), and for k > 2,

k-1 k1 ] .
E(Y-ip=4% ( ; )(fx*“m(dx))E(Y..iu)k—l-x_
i=1
In particular,
E(Y-EYP=1[x*m(dx) and E(Y—EY)’=2[x’m(dx).
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Proof: (1) At first we prove that
EY f(Y) = A [ y[Ef(Y +y)lm(dy),

provided the right hand side is finite.
With M=m]|0, c0) we have

w0 Ak
EY f(Y) = e~ M kgl F Iy f(y) In*k(dy)
o o A k .
=e¢ FZ.‘.Yif > y; Jm*dy,, ..., dy)
k=1 K< j=1 j=1
SIM - Ak k-1 -1
=¢ Ty fly+ Z oy )m tdyy, o dyiny) [ mdy)
k=2 k! e

+4e™™ [y f(y) m(dy).
This gives our assertion.
(i) With f=1 we obtain from (i) that EY=21 j y m(dy). Furthermore,

E(Y— A< =EY(Y— A = ApE(Y—Ap+?
and

EY(Y—iw* ' = A[y[E(Y— Au+y* 'Im(dy),
hence the result.
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Zusammenfassung
Uber Wahrscheinlichkeiten hoher Schiiden im Fall der zusammengesetzten Poisson-Verteilung
Unter der Voraussetzung, daB das betrachtete Risiko nach einer zusammengesetzten Poisson-
verteilung verteilt ist, geben wir quantitative (exponentielle) Schranken fiir die Wahrscheinlichkeit
an, daB es die nach dem Erwartungswert- bzw. Standardabweichungsprinzip berechneten Pramien
ubersteigt.

Summary

On probabilities of large claims that are compound Poisson distributed

Under the assumption that the considered risk is distributed according to a compound Poisson
distribution we give quantitative (exponential) bounds for the probability of claims exceeding
premiums that are given according to the loaded pure risk principle and to the o-loading principle.
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