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I n t r o d u c t i o n  a n d  r e s u l t s  

In this paper  we shall derive exponential bounds for the probabil i ty of claims exceeding 
premiums that are given according to the loaded pure risk principle and to the so-called 
a-loading principle. These probabilities appear  to be of great importance concerning 
reinsurances. Especially in the first case it turns out that  the enlargement of a (homoge- 
neous) portfolio effectively reduces the considered probability. 
For  sums of independent random variables Theorem 1 below is well known in probabili ty 
theory ("large deviations"). Since we do not know any literature on the subject in risk 
theory we give a short derivation of this interesting result. 
In the following Q is a probabil i ty measure with Q(0, oo)=1 such that  the moment  
generating function M(t) = S etx Q(dx) of Q exists for some t > 0. Let 

t o =  sup{t  > 0: M(t) < oo} 
and 

K = sup{M'( t ) :  t < to}. 

Observe that in general K = oo. In the case t o = oo this follows from 
o0 

M'(t) = I x e tx Q(dx) > S x e tx Q(dx) > e e t* Q(e, oo), t > 0 ,  
g 

where e > 0 is chosen such that Q(e, oo) > 0. 
Let 

= M'(0) and #2 = M"(0).  

Theorem 1: Assume that X is compound Poisson distributed with intensity 2 > 0 and 
individual claim size distribution Q. Then for c > 1 

~t:) { X  > C2 /~}  ~ e -~f ( r )  , 

where 
f(t) = c # t - M (t) + 1 

and r e (0, to) is the unique solution of  the equation M' (t) = c #, t f  c < K/#. In the case 
c > K/l~ we have r = t o with the convention M(to) = M ( t o - ) .  In both cases f(r) > 0 holds 
true. 

Examples." (i) Assume that  Q is the exponential distribution with mean a > 0. Then we 
have 

1 1 
- t < t o = - - ,  and K = o o .  M(t) 1 - a t  ' a 

Furthermore,  r = -  1 -  which gives 
a 

F { X  > c2a} < exp [ - 2 ( V c  - 1 ) 2 ] ,  C > l .  
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(ii) If we consider a portfolio of life insurance policies with the same risk sum/~, then 
Q = fit and M(t) = e t~, t > 0. Here we obtain 

F{X > c2/~} < exp [ - 2 ( c  log c - c +  1)], c > l .  

Observe that in both cases the given bound does not depend on Q. 

In the following we consider the probability of claims exceeding a premium given 
according to the a-loading principle, i.e. 

r ( x  > + 

Here, the central limit theorem implies that this probability is asymptotically constant, 
i.e. it cannot tend exponentially fast to zero for 2 ~ oo (if the portfolio is enlarged). 
Observe that we may apply Theorem 1 with 

c = 1 + g/~- t (fl2/2) �89 

to derive an upper bound for this probability. To obtain a feeling for what comes out 
consider example (i) above. Here, c = 1 + x with x = �9 (2/2) ~. From 

we get 

8x2, x. 
(Vc-1)2_-c  + 1 _  2 V~ > / a 2 2 - 1  (1 V~ c~2-�89 

- 2  - 2 -  ' 

i.e. in this case we have 

P{X > 2a + ~(22)�89 a} < exp [ -  2 ~2 ( 1 -  ~-~ ~ 2 - ' ) ] .  

In the following theorem we show that the asymptotic bound exp [ -  1 2  �9 ] can be halved. 
(For g=2,  e.g., this gives 0.068 instead of 0.136.) 

Theorem 2: Let X be compound Poisson distributed with intensity 2 > 0 and individual 
claim size distribution Q such that K = or. Then for �9 > O, 

r { X >  2/~ + g 21/~2 } < a(2) e x p [ -  �89 g2/.t~(M"(s))-2], 

where a (2) < 1 and 
[a(2) - �89 < 0.82 -~ M'" (s) #2 

with s = g (2/~2)- �89 In particular, 

lim /~ (M" (s))- 2 = 1. 
) ,~oo 

P r o o f s  
Theorem 1: For t E (0, to) 

~'{X > c2~} = F { t X  > c2/~ t} < e-Ca"' E e tx = e - a f ( t )  , 

where f(t) = c/~t - M (t) + 1. We have 

f ( 0 ) = 0 ,  f ' ( 0 ) = ( c - 1 ) / ~ > 0 ,  f " ( t ) = - M " ( t ) < 0 .  
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In the case c > K/#  (which implies t o < oo) 

f ' ( t )  = c#  - M'( t )  > K - M ' ( t )  > 0, t ~ ( 0 ,  to).  

Hence, f(t) strictly increases and attains its max imum (positive) value for t = to. Observe 
that  M (t o - )  < oo, as 

00 

M (t) = I ex' Q (dx) < exp [to 2] + to I S x e xt Q (dx) < exp [t~] + to 1 K,  t < to.  
to 

In the case 1 < c < K/#  the maximum (positive) value of f(t) is given for t = r, where 
f ' ( r )=0 ,  i.e. M ' ( r ) = c # .  

For  the proof  of Theorem 2 we need the concept of a generalized compound  Poisson 
distribution. Let m be a measure with m ( -  oo, 0) = 0, 0 < m [0, oo) < oo and define 

P(2, m ) = e  -xmt~176176 ~ m *k, 2 > 0 ,  
kt k=0 

where m * ~  ~o. Then the characteristic function q~(t) of P(2, m) is given by 

~p(t) = e ~(~'(t)-"/~ o~)), 

where 
0o 

(t) ~--- S eitx m ( d x ) ,  t e R .  
0 

This gives 
P (2, m) * P (z, m) = P (2 + ~, m), 

i.e., the distributions P(2, m) are infinitely divisible. 

Theorem 2: (i) With c = 1 + ,  ~t- 1 (]./2/2)�89 we have 

2, z > O ,  

�9 {X > 2# + ct ] /~ #2} = ~ { X  > c2/~} _< e -xf(') E e rx l{x>caz}/E e 'x ,  

where f(t) and r are given in the proof  of Theorem 1, i.e. r > 0 is the unique solution of 
the equation 

M'(t) = c #  = # + ~(/~2/2) ~ . 

Let Dx be the distribution defined by 

Dx(A) = E e ~x 1A(X)/E e rx, A c [0, o0). 

Then we have shown that 

> + } _< a(2) e 

where a(2) = D~(c2#,  oo). 

(ii) In this part  we derive a lower bound for f(r) = c/~ r - M (r) + 1. F rom 

#c  = M'(r) = M'(0) + r M"(~) = p +  r M"(~) 

and/~2 < M"(~) _< M"(r) we obtain 

ct (M" (r))- x (/~2/2)�89 _< r _< ~t (2 #2) - ~ = s .  
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Furthermore, 
f(r) -- c/~ r + M (0) - M (r) 

= c/~r - rM'(r) + �89 r 2 M"(~/) - I r z - ~  M"(t/) 

> �89 r2#2> ~1 or2 #2 (M,, (r))- 2 )].- , _> 10~2 ~ 2 ( M , , ( S ) ) - 2  ~ -  1 " 

(iii) It remains to prove that a(2) = �89 + 0(2-�89 
Since X is distributed according to P(2, Q) we infer that 

Dx = P(2, m) with m(A) = S e rx 1A(X) Q(dx). 

Y, YI . . . . .  Y,, n e N, be i.i.d, with distribution P ( ~ ,  m) .  Then, by the lemma below, Let 

2 2 
EY = n I x m(dx) = --n M'(r) = --n c/~. 

As the distributions P(2, m) are infinitely divisible, this implies 

a (~ ' )=D~(c~ '# '~176176176  ( Y i - E Y ) > 0 } "  

By the Berry-Esseen Theorem in connection with the estimate of the constant that has 
been given in [1] we obtain 

la(2) - �89 < 0.8 n -~ [E(Y- Ey)2] -~ E I Y -  EYI 3 
3 3 

= 0.82 -~ [M"(r)] -~ n E [ Y -  EYI 3 
3 21 

< 0 . 8 2 - ~ / ~ 2 ~ n E I Y - E Y I  3, 

where the equality follows from the lemma and 

x2 m(dx) = ~ x 2 e r~ Q(dx) = M"(r). 
Furthermore, 

E l Y -  EYI 3 < E(Y+ EY) 3 = E ( Y - E Y +  2EY) 3 

=--)" M'"(r) + 6 M"(r) M'(r) + 8 [M'(r)] 3 
n 

Together with the estimate above this yields the result (observe that r<s). 

The following lemma is standard and we state it only for easier reference. A proo! 
involving the existence of the moment generating function of a probability measure m is 
given in chapter 3.1.8 of [2]. 

Lemma: Assume that Y is distributed according to a generalized compound Poisson distri- 
bution P(2, m) such that ~ xkm(dx) < oo for some k e N. Then E(Y-2/~)=0,  where 
/t = ~ xm(dx), and for k > 2, 

E(Y- ~.,)k = 2 2 (I xi§ m(dx)) E ( Y -  2/~) k - l - i  
i = l  

In particular, 

E ( Y -  EY) z = 2 S x2m(dx) and E(Y-- EY) 3 = 2 j" x3m(dx). 
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Proof." (i) At first we prove that 

EY f(Y) = 2 S Y [E f(Y + y)] m (dy),  

provided the right hand side is finite. 
With M = m [ 0 ,  oo) we have 

EY f(Y) = e -aM k=~l k.V I Y f(Y) m*k(dy) 

= e-~M ~ k.~ I Yl f Yj mk(dyl . . . . .  dyk) 
k = l  i = l  j 

~:  2k f i r (  f k 1 ) ~ mk- I (dYl 1 ~,__ z-Tk Y Y+ __ Yj .... ,dyk-1) m(dy) ~ e -~,M 

k = 2  j = l  

+ 2 e -~M I Y f(Y) m(dy).  

This gives our assertion. 

(ii) With f =  1 we obtain from (i) that EY = 2 1 Y m (dy). Furthermore, 

E (Y - 2 #)k = EY (Y - 2 #)k- 1 _ 2 # E (Y - 2/~)k- 1 
and 

EY (Y - 2 p)k- 1 = 2 I Y [E ( Y -  2/~ + y)k- 1] m (dy), 
hence the result. 
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Zusammenfassung 

Uber Wahrscheinlichkeiten hoher Sch/iden im Fall der zusammengesetzten Poisson-Verteilung 

Unter der Voraussetzung, dab das betrachtete Risiko nach einer zusammengesetzten Poisson- 
verteilung verteilt ist, geben wir quantitative (exponentielle) Schranken fiir die Wahrscheinlichkeit 
an, dab es die nach dem Erwartungswert- bzw. Standardabweichungsprinzip berechneten Pr/imien 
iibersteigt. 

Summary 

On probabilities of large claims that are compound Poisson distributed 

Under the assumption that the considered risk is distributed according to a compound Poisson 
distribution we give quantitative (exponential) bounds for the probability of claims exceeding 
premiums that are given according to the loaded pure risk principle and to the o-loading principle. 
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