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ABSTRACT 

If G and H are graphs, let us write G --* (H)2 if G contains a monochro- 

matic copy of H in any 2-colouring of the edges of G. The s l z e - R a m s e y  

n u m b e r  re(H)  of a graph H is the smallest possible number  of edges a 

graph G may have if G -+ (H)2. Suppose T i s  a t r e e  of order ITI _> 2, 

and let to, t l  be the cardinalities of the vertex classes of T as a bipar- 

tite graph, and let A(T) be the maximal degree of T. Moreover, let A0, 

A1 be the maxima of the degrees of the vertices in the respective vertex 

classes, and let f~(T) = t0A0 + t lA1 . Beck [7] proved tha t  ~ (T) /4  <__ 

re(T) = O{B(T)(log ITI)12}, improving on a previous result of his [6] 

stat ing that  re(T) <_ A(T)[T[(log[T[) 12. In [6], Beck conjectures that  

re(T) = O{A(T)ITI} ,  and in [7] he puts forward the stronger conjec- 

ture tha t  re(T) = O{fl(T)}. Here, we prove the first of these conjec- 

tures, and come quite close to proving the second by showing tha t  re(T) = 

O{fl(T) log A(T)}. 
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1. I n t r o d u c t i o n  

In this note we are concerned with a numerical problem in Ramsey theory: we 

shall study the size-Ramsey number of trees. Before we proceed, let us introduce 

some notation and definitions. For a graph G, we write IG] for the o r d e r  IV(G)I 
of G, and e(G) for its size e(G). Let a real 0 < ~ < 1 and an integer r > 2 be 

fixed, and suppose G and H are graphs. We write G ~ H if any subgraph J C G 

of G with size e(J) > 7e(G) contains an isomorphic copy of H as a subgraph, 

and we write G ~ (H)~ if G contains a monochromatic copy of H in any edge- 

colouring of G with r colours. 

Settling a one-hundred-dollar problem of Erd6s, ten years ago Beck [6] proved 

the following striking result. Let pt be the path of order t. If 0 < 7 _< 1 and p = 

C~/n, where C~ > 0 is a constant that  depends only on % then the random 

graph Gp = Gn,p C G(n,p) is almost surely such that G ~.y pt for t = [C~lnJ. 
As an immediate corollary, one has that for any fixed r _> 2 the r - s i z e - R a m s e y  

n u m b e r  

(1) re(H,r) = min{e(G): G--+ (H)~} 

of the path H = p t  is O(c~t) for some constant c~ that depends only on r. 

Also in [6], Beck shows by non-constructive means that the size-Ramsey num- 

ber re(T) = re(T, 2) of a tree T = T t of order t and maximal degree A = A(T) is 

not greater than At(logt) 12. (The proof of this result is complex and it is heav- 

ily based on the probabilistic method: besides random graphs, the Erd6s-Lovhsz 

sieve is used.) Thus, for trees of bounded maximal degree, the size-Ramsey 

number is nearly linear in ITI. Indeed, Beck conjectures in [6] that  re(T) = 
O{A(T)]TI}. 

More recently, Friedman and Pippenger [11] improved on Beck's result by 

showing that,  for trees T of bounded maximal degree, it does indeed hold that  

the size-Ramsey number re(T) is linear in ITI. The proof in [11] is based on 

a new, beautiful tree-universality result for expanding graphs. With this result 

in hand, basically following Alon and Chung [3] and Beck [6], Friedman and 

Pippenger [11] prove the following result. Let 0 < 7 < 1, and 1 < A < t be 

given. Then, for suitable primes p and q, the Ramanujan graph X = xP,q con- 

structed by Lubotzky, Phillips and Sarnak [16] is such that  (i) e(X) < cA47-3t, 
where c is an absolute constant, and (ii) X ~-y T for any tree T of order IT[ < t 

and maximal degree A(T) < A. Note that this is a 'density' type result rather 
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than a Ramsey-theoretical one, by which we mean that it concerns the prop- 

erty G ~.~ T rather than G ---* (T)~. Clearly, the Friedman-Pippenger result 

above implies that  re(T) : O{A(T)41TI} for any tree T. This bound has very 

recently been improved by Ke [14], who proved a density type result implying 

that re(T) : O{A(T)2[T[}. Our first main result in this note, Theorem 9 (see 

also Corollary 10), improves this to re(T) : O{A(T)[T[}, thus verifying the 

conjecture of Beck [6]. 

Now, note that if T is the (t - 1)-star K 1,t-1 (t >_ 2), then clearly re(T) : 

2t - 3, whereas A(T)IT I : t(t - 1). Thus the bound re(T) : O{A(T)[T]} 

may be far from sharp for some trees T. Beck [7] has identified what seems 

to be the 'correct' parameter of a tree T that determines the order of re(T). 

If T has bipartition V(T)  : Vo(T) U VI(T) and t~ : IVy(T)[, Ao : A~(T) = 

max{d(v): v C V~(T)} (a E {0, 1}), let ~(T) : toA0 + tlA1. Note that for 

instance ~(K 1't-l) -- 2(t - 1) and moreover ~(T) <__ A(T)IT I for any tree T. 

Improving his previous result, Beck [7] proved that 

(2) f~(T)/4 _< re(T) < C~(T)(log iTI) 12 

for any tree T and some absolute constant C, and thus determined re(T) up to 

a (log ]TI) 12 factor. Beck conjectures in [7] that the lower bound in (2) gives the 

correct order of re(T), i.e. that re(T) = O{f~(T)}. We are unable to prove this 

conjecture, but here we considerably improve the upper bound in (2) by showing 

that re(T) <_ C~(T) log A(T) for some absolute constant C. Furthermore, the re- 

sult of Beck that  gives the upper bound in (2) is intrinsically Ramsey-theoretical, 

whereas ours is a density type result. 

Our method is based on the Friedman-Pippenger tree-universality result. We 

in fact obtain a variant of that  result using the same argument, and then we show 

how our bounds follow from this variant and a simple result concerning random 

bipartite graphs. Our methods are non-constructive owing to the use of random 

graphs, but we remark that, for most trees T, there are explicit constructions of 

graphs G that  give re(T) = O{A(T)[T[}. These constructions are based on the 

Ramanujan graphs X p'q of Lubotzky, Phillips and Sarnak [16], and certain Cayley 

graphs of Abelian groups due to Alon [2]. For trees T with A(T) about IT[ 1-1/d 

for some integer d __k 2, we may prove that re(T) --- O{A(T)]TI} constructively 

by considering projective geometries. (See Section 5.) 

This note is organised as follows. Our variant of Friedman and Pippenger's 

tree-universality result is stated and proved in Section 2, and in the following 
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section we give the results concerning random bipartite graphs that we need. For 

the inequalities used in Section 3 as well as for definitions not given here in detail, 

we refer the reader to [8]. In Section 4 we prove our main results. Comments 

concerning explicitly constructed graphs that  may replace the random graphs 

used in our proofs are given in Section 5. 

2. A t r ee -un ive r sa l i t y  resul t  

We shall assume throughout that all our bipartite graphs have been given a fixed 

bipartition. More specifically, if G is a bipartite graph, its associated bipartition 

will be V(G) = Vo(G) u VI(G). In particular, if T is a tree of order t = ITI > 2, 

we assume fixed one of the canonical bipartitions V(T) = Vo(T)O VI(T) of T. 

Also, if G is a bipartite graph with associated bipartition V(G) = Vo(G) U V1 (G), 

we let A~(G) = max{da(v): v E Vo(G)} and put n~(G) = IVo(G)I (a C {0, 1}). 

We sometimes write G = G n°,nl if no(G) = n~ (a E {0,1}). I f T i s  a t ree ,  

and A~(T) _< A~, n~(T) <_ t~ (a C {0, 1}), we say that T is a (to, Ao; tl,  Ai)- 

tree. 

Now let J be a bipartite graph with associated bipartition V(J) = Vo(J) U 

VI(J). If for every X C Va(J) with IX] < b~ (a E {0, 1}) we have IFj(X)I _> 

f~lXI, we say that  J is a (bo, f0; bl, f l ) - e x p a n d i n g  bipartite graph. The main 

result in this section is the following. 

THEOREM 1: Suppose 1 < A0 < t 1 and 1 < A1 < to are FLied integers. Then 

every non-empty (2tl/A0, 2Ao; 2t0/A1, 2A1)-expanding bipartite graph contains 

as a subgraph every (to, Ao; tl, A1)-tree. 

The rest of this section is devoted to the proof of the above result. Thus, 

suppose t~, Ao (a E {0, 1}) are as in Theorem 1, let T be a fixed (to, Ao; ti, A1)- 

tree, and let J be a (2tl/Ao, 2A0; 2to/A1, 2A1)-expanding bipartite graph. We 

shall show that J contains a copy of T as a subgraph. 

Let S C T be a subtree of T. A function f :  V(S) --* V(J) is an e m b e d d i n g  

of S in J if f is injective, it preserves the adjacency relation, and moreover it 

preserves the vertex classes, i.e. I(V~(T) n V(S)) C V~(J) for a e {0, 1}. In 

what follows the indices will be reduced modulo 2, so that,  for instance, Vo(J) = 

V2(J) . . . .  . Let us now suppose that an embedding f :  S ~ J is given, and 

suppose X C V~,(J) (a E {0, 1}). Then we let Af (X)  = Irj(x) "- f (v ( s ) ) l .  Also, 

for x 6 J we let Dr(x) = ds ( f - l (x ) )  if x ~ f (V(S))  and Dr(x) = 0 otherwise, 
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and put B f ( X )  = E x E x (  Ao - D r ( x ) ) .  Finally, we set Cy(X) = A y ( X ) -  By(X) .  

Let us say that  X is f - s o l v e n t  if Cf (X)  >_ 0, and f - b a n k r u p t  otherwise. 

If Cy(X) = O, we shall say that X is f -c r i t ica l .  A central definition is the 

following. We shall say that f is good  if every X c V(J)  with X C V~(J) 

(a E {0, 1}) is f-solvent whenever IX] < 2t~+l/A~. We have now arrived at the 

main claim in the proof of Theorem 1. 

CLAIM: 

(i) If  S C T is a subtree of T with ]S[ = 1, then there is a good embed- 

ding f : S ~ J of S in J. 

(ii) Let S C T be a subtree of T, and suppose f: S --* J is a good embedding 

of S in J. I f  S C S' C T, where S' is a tree with [S'[ = [S[ + 1, then there 

is a good embedding g: S' ~ J of S' in J that extends f . 

As Theorem 1 immediately follows from (i) and (ii) above, we proceed to 

prove this claim. Let us first consider (i). Suppose V(S)  = {x} C V,(T)  (a E 

{0, 1}). Then let f :  V(S)  --* Y (J )  be any function such that f ( x )  E Vo(J). 

We claim that f is a good embedding. To check this, let X C Vp(J) (p E 

{0, 1}) be such that [X I <__ 2tp+x/Ap. Let us check that  C f ( X )  >_ O. If X = 0, 

then clearly Cf (X)  = A I ( X  ) = B f ( X )  = O, and so we assume that  X ~ 0. 

Note that then A f ( X )  = I F j ( X ) \ { f ( x ) } [  >_ 2 A p [ X [ -  1 _> Ap[X[ _> B f ( Z ) .  

Thus CI(X  ) >_ 0, and f is indeed good. We now turn to (ii). 

Suppose f :  S --* J and S C S 1 C T are as in the statement of (ii). Then 

clearly there is a leaf v of S' such that V ( S ' ) \ V ( S )  = {v}. Let w E S be 

the unique neighbour of v in S'. Suppose v E V~,(T) (a' E {0, 1}). Now let us 

consider all embeddings g: S' --* J of S' in J that extend f ,  and let G be the 

set of such extensions. Our claim is that G contains a good extension. Although 

strictly speaking this is not necessary, let us first check that G ~ 0 as a warm-up. 

Since {f(w)} is f-solvent, we have that  [Fj(f(w)) \ f (Y(S))[  = A f ( { f ( w ) } )  >_ 

B f ( { f ( w ) } )  = A~,+I - ds(w) > 1, which implies that indeed f has at least one 

extension g E G. We now check that 6 contains a good extension. 

Suppose for a contradiction that every g E G admits a g-bankrupt set Xg C 

Y(J )  such that Xg C vp(g), where p = p(g) E {0,1} and [Xg[ < 2tp+l/Ap. 

Since f is good, the sets X 9 (g E G) are all f-solvent. 

We now do a little simple calculation. For brevity, if P is a statement we 

set [P] -= 0 if P is false and [P] = 1 if P is true. Fix X C vp(g) (p E {0, 1}) and 
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let g • ~. Note that then 

Ag(X) = Irj(x) ' -g(V(S')) l  = I r j ( x ) - - f ( v ( s ) ) l -  [g(v) • rj(X)].  

Moreover Bg(X ) = ~-'].~ex(Ap - Dg(x)) = B f ( X )  - if(w) • X] - [g(v) • X]. 

Thus we have that  

G ( x )  = o f ( x )  - b(v) • r j ( x ) ]  + If(w) • x]  + [9(~) • x].  

From this, and the fact that X 9 is g-bankrupt but S-solvent, we conclude that 

(3) Xg is S-critical, g(v) • rj(xg) \ xg ,  and f (w)  ~ X 9 

for every g E g. Note in particular that p(g) = a ~ + 1 for all g E G; that  is, we 

have X 9 C V~,+I(J) for all g E G. 

LEMMA 2: Suppose X C Vp(J), where p E {0, 1}, is S-critical and satisfies IX I _< 

2tp+l/Ap. Then Ixl < tp+~/~,. 

Proof: We have Af(X) = I r j ( x )  "- f ( v ( s ) ) l  >__ 2ApIXl - tp+l, and Bf(X)  = 

~ e x ( A p  - Of(x))  _< ApIX[. Since Af(X) - Bf(X)  = Cf(X) -= 0, the lemma 

follows. I 

We now check that  CI is a submodular function when restricted to each of the 

power sets ~(vp(g)) of Vp(J) (p • {0, 1}). 

LEMMA 3: Suppose X, Y C Vp(J), where p • {0, 1}. Then 

(4) CI(X N Y) + Cs(X 0 V) < Cs(X ) + Cs(Y ). 

Proofi Note first that B S is a modular function on P(Vp(J)) (p E {0, 1}). 

Now (4) follows from the observation that Fj(X ~ Y) C F j ( X )  M rj(Y) and 

r j ( x  u Y) = r j ( x )  u r j (Y) .  | 

An easy consequence of the above two lemmas is the following. 

COROLLARY 4: Suppose X, Y C Vp(J), where p C {0, I}, are f-critical and 

moreover IXi, IVl <_ tp+l/±p. Then X U Y is S-critical and IX U Vl < tp+l/a~. 

Proof." Since IX u Y1 <- 2tp+I/Ap and f is good, the set X U Y is f-solvent. 

Similarly X M Y is f-solvent. Now (4) and the fact that X and Y are f-critical 
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imply that  X n Y and X U Y are ]-critical as well. Lemma 2 now gives that 

IX U Y] _< tp+l/Ap,  as required. | 

We are now ready to finish the proof of (ii) of our claim. Let X* = ~Jge6 Xg c 

Vo,+I(J). By Corollary 4, we have that X* is ]-critical and IX*[ _< to, /Ao,+l.  

Recall that  ] (w)  ~ Xg for a n y g  • ~ (ef. (3)), and so f ( w )  ~ X*. Let X '  = 

X* U {f(w)} C V¢,+I(J). We now claim that 

(5) r j ( x ' )  \ f ( y ( s ) )  = r j ( x * )  \ f ( v ( s ) ) .  

It suffices to check that if y • F j ( f ( w ) ) \ f ( V ( S ) ) ,  then y • F j (X*) .  So sup- 

pose ~ • F j ( f ( w ) )  \ f ( V ( S ) )  is fixed. Then note that there is an extension g • 6 

of ] for which g(v) = y. But then by (3) we conclude that y = g(v) • F j (Xg)  C 

Fj(X*) .  Thus (5) does indeed hold, and we have A I ( X '  ) = A I ( X *  ). Now note 

that B f ( Z ' )  = B f ( X * ) + ( A ¢ , + I - d s ( w ) )  > Bf (X*) .  Thus C f ( X ' )  < C f (X*)  = 

0. However, [X' I = IX*[ + 1 _< to, /A¢,+l + 1 _< 2to,/A¢,+l,  and hence, as f 

is good, we have that C I ( X '  ) >_ O. This contradiction completes the proof of 

Theorem 1. 

3. B i p a r t i t e  g r a p h s  w i t h  u n i f o r m l y  d i s t r i b u t e d  edges  

Let integers no, nl  > 1 and ro, r l  > 1 be such that noro = nlr l .  Set r = 

max{ro, rl},  and let p = ( ro /n l ) logr  = (r l /no) logr .  We shall assume through- 

out that r > 3 and p < 1. Consider the space G(no, nl;p)  of random bipartite 

graphs G = Gno,~l,p with vertex classes Vo(G) and VI(G) satisfying IVo(G)I = no 

(a E {0, 1}), and where each edge is independently present with probability p. 

Our aim in this section is to show the following technical lemma, which we shall 

do with the aid of the random graphs G~o,~ ~,p. If G is a graph and U, W C V(G), 

we let eG(U, W)  denote the number of edges that have one endvertex in U and 

the other in W. 

LEMMA 5: There is an absolute constant r* >_ 1 for which the following holds. 

Let no, nl ,  ro, rl >_ 1 be integers with noro = nlr l ,  and set p = ( ro /n l ) logr  = 

( r l /no) logr  where r = max{r0, r l}.  Suppose 0 < c~ < 1 satis//es c~r0, ~r l  _> 1. 

Then if r > r* there is a bipartite graph G = G ~o'~1 such that (i) 1/2 _< 

e(G)/norologr  <_ 2, and (ii) i ra  E {0,1}, for any U C Vo(G), W C V~+I(G) 

with 1 _< u = IUI < uo = Lno+l/er J = Ln~ler~+lJ and w - -  IWl = L r uJ, we 

have 

(6) e(V, W )  = eG(U, W )  < p u w +  12e(r~uw) 1/2 logr. 
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Proof'. Note that if p _> 1, we may take for G a complete bipartite graph with 

vertex classes of order no and nl.  Thus we assume that p < 1. We shall show 

that then, provided r is large enough, the probability that G = Gp = Gno,nl,p C 
~(no, nl;p) satisfies (i) and (ii) is positive. For a E {0, 1}, let Qo be the property 

given in assertion (ii). We shall in fact show that, as r ~ oo, we have (iii) P(Qo) = 

1 - o(1) (a e {0,1}) and (iv) P(1/2 _< e(G)/ronologr <_ 2) = 1 - o(1). 

Let us check (iii) first, and notice that by symmetry we may assume a = 0. 

Let 1 _< u < Uo and w = w(u) = L~rouJ. Set A = 12e, tt = puT, and b = 

A(rouw) 1/2 logr. Let U C Vo(G) and W C VI(G) be such that IUI = u and IWI = 

w. Let P~ = P(e(U,W) >_ # + b ) ,  and set Eo = ~1<~<~,o (no) (~)p~.  Our aim is 

to show that  Eo = o(1) as r ~ c~. Let 

b A(rouw)l/21ogr = dnl(rouw)_l/2. 
(7) ~l-  t t - (ro/nl)UWlogr 

We estimate Eo = ~-~'~u (n~) (~)p~, by breaking the sum into two parts. Let Eo (1) = 

~ *  (no) (~)p~,, where ~ *  denotes sum over all 1 _< u < Uo with y < e 2, and 

let E~ ~) = Eo - E~ 1). Note that below we may assume that r is large enough for 

our inequalities to hold. 

(A) We have E (D = o(1) as r --~ ec. 

Here we assume throughout that  ~ <_ e 2. We start by claiming that P~ = 

P(e(V, W) > tt + b) <_ exp { - (A2/3ea)nl logr}. To check this claim, let us first 

consider the case in which ~ < 1. Note that from (7) we have that 72# = 

A2nl logr. Then Hoeffding's inequality [13] (see also [17]) gives that  P~ < 

exp{ - (A2/3)nl logr}, and the claim follows in this case. Now consider the 

case 1 < 77 < e 2. Here P~ <_ P(e(U, W) >_ 2#) _< exp{-p/3},  again by Hoeffding's 

inequality. Note that b/p = 7/_< e 2 gives that # >_ b/e 2 = (A/e2)(rouw) 1/2 logr. 

Also, we have Anl(rouw) -1/2 = ~ _< e 2, and therefore # >_ (A2/et)nl logr. Thus 

our claimed upper bound for P,~ follows. 

We now estimate E~ 1). If no _< n,  this is very quick: note that 

E~I) = E *  (n : )  (nwl)P~ < - 2no+nlexp{_~e4nllogr} <_ (4r_6)nl =o(1)  

as r ~ ec. Thus let us assume that no > nl.  Then 

(nu°) { A2-~e 4nl } ( en°  ~ ~ ' ° \  uo } E~ 1) _< 2 n' ~ *  P~, < 3 x 2 nl exp logr 
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which tends to 0 as r --+ m. 

(B) We have Ef) = o(1) as T -+ 0;). 

We now assume that 77 > e2. Let v be such that b = evp/ logv. Then ev/ logv = 

b/p = 77 > e2, and hence we may suppose v > e. Also, we have evp/ logv = 

b > 1 2 e/v, and so v2p > logv. Thus Pu 5 P(e(U, W) > b) 5 exp{-up} 
(see Theorem 7(ii) in Chapter I of [8]). Now, we have vp = (b/e)logv > 
1 2 ( r ~ u w ) ' / ~ ( l o ~  r)(log v )  > 12(rouw)1/2(log r) .  Thus v > 12(rouw)-1/2nl, hence 

Note that if w 5 1 then u 5 1, and hence (6) holds trivially; that is, we have Pu = 

0 in this case. Thus we assume arou > LarOu] = w > 2. Hence w 2 arou/2, 

and we have from (8) that 

6arou log T 

Thus Ef) = zt (:)(2)Pu, where zt indicates sum over all 2 5 u 5 uo 

with 77 > e2, is at  most 

which is at  most &u5uo - e"{a~2)-aTou 5 &z(e/r)u = o(1) as T 4 oa. 

Thus we have shown that Eo = E?) + Ef) = o(1) as T 4 00, and hence 

that (iii) above does indeed hold. To see (iv), it suffices to note that e(G) has 

binomial distribution Bi(nonl, p) with parameters nonl and p and that E(e(G)) = 

p n o n l = n o r O l o g r + ~ a s r - , o a .  I 
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When no = nl  in Lemma 5, we may require a more restrictive condition 

on G = G n'n, as shows Lemma 6 below. One may prove this lemma by suitably 

altering the proof of Lemma 5 and hence we omit its proof. 

LEMMA 6: There is an absolute constant r* >_ 1 for which the following holds. 

Let r* <_ r <_ n, set p -- r /n ,  and suppose O < a < 1 satisfies ar >_ 1. Then 

there is a bipartite graph G = G n'n such that (i) 1/2 < e(G)/nr  <_ 2, and 

(ii) i ra  • {0, 1}, for any V C V~(G), W C Vo+I(G) with 1 _< u = [U[ _< n/2r 

and w = IWl = L  uJ, we have e o ( V ,  W)  < p u t  + 12e(r  )1/  

4. T h e  m a i n  r e s u l t s  

Let H be a bipartite graph with bipartit ion V(H)  = Vo(H) u VI(H), and sup- 

pose Vo(H), VI(H) # 0. Let d~(H) = IVo(H)1-1 }-~{dH(v): v e Vo(H)} be the 

average degree of the vertices in Vo(H) (a E {0, 1}). The following simple but 

useful lemma was observed by Beck [7]. We include Beck's proof of this lemma 

for completeness. 

LEMMA 7: Let H be as above. Then there is a non-empty induced subgraph J C 

H of H such that  (*) for any U C V~(J) = V~(H) ;7 Y (J )  (a • {0, 1}), we 

have ed(U, V(J) )  > (1/2)d~(H)iU I. 

Proof: We define a sequence H = Ho D H1 D -.-  of induced subgraphs of H 

as follows. Let H0 = H,  and suppose Ho D . . .  D Hi-1 (i > 1) have been 

defined. If [Hi-l[  = 0, or else ]Hi-l[  > 0 and condition (*) in our lemma 

holds, we terminate the sequence. Suppose IHi_l] > 0 but (*) fails. Then 

let U C V(Hi-1)  be such that  U C Vo(Hi_I) for some a • {0, 1}, and more- 

over eH,_I(U,V(H~_I)) < (1 /2 )do(g ) l v  ]. We now let Hi = Hi-1 - V. This 

defines a sequence H = H0 D . . .  D Ht of induced subgraphs of H. If  J = Ht is 

as required, we are done. Thus suppose [H,[ = 0. But then 

e(H) = E (e(Hi-1) - e(Hi)) < ½do(H)[Vo(H)] + ½dI(H)]V~(H)[ = e(H), 
l < i < t  

which is a contradiction, and hence we necessarily have [Htl > 0. | 

We may now prove our first main result. 

THEOREM 8: Let 0 < "y <_ 1 be given. Then there is a constant c~ > 0 depending 

only on "y for which the following holds. For a11 integers 1 <: Ao _< tl and 1 < 
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A1 _< to, there is a bipartite graph G such that (i) e(G) <_ c-r(Aoto + Al t l )  log A, 

where A = max{Ao, A1}, and (ii) G ---+7 T for any (to, Ao, tl, A1)-tree T. 

Proof Let % t~, A~ (~ E {0, 1}) be as above. In proving our result, we may 

assume that A _> e2r *, where r* is as given in Lemma 5. Moreover, we may 

further assume that Aoto _> Air1. We now start the proof proper. 

Let 0 < a = a(7)  _< min{ev/4 ,4 /e  2} be the largest real number such that 

(1/12e)2(~,/4 - a / e )  2 _> a. For a E {0, 1}, let r~ be the smallest integer power 

of 2 such that  ar~ >_ 2Ao. Clearly ro _< (4 /a)Ao (a e {0, 1}). Now let no be the 

smallest power of 2 such that no >_ 2etorl/A1. Then we have no __ (16e/a)to. 

Finally, let nl = rono/rl. Then note that nl/ero > no/erl >__ 2to/A1 >_ 2t l /Ao.  

Now let G = G ~°''~ be the bipartite graph whose existence is guaranteed in 

Lemma 5. Then 

e(G)<_2norologr<__2(~-~-~) (~-) log(4~Aa ) <_c~7(toAo+tlA1)logA, 

where c 7' = 128ea-21og(4/a),  since log(4A/a)  <_ ( log(4/a) ) logA as a _< 4e -2 

_ i We now check (ii). and A > e 2. Thus (i) in our result holds for G if c 7 _> c 7. 

Thus let H C G be a fixed subgraph of G with e(H) > 7e(G). Let J C H 

be the subgraph of H given by Lemma 7. We claim that then the graph J is 

(2tl /A0, 2A0; 2t0/A 1, 2A1)-expanding. 

Suppose for a contradiction that  U C Vo(J) is such that u -: IUI <_ 2to+l /Ao 

and IFj(U)[ < 2Ao[U[, where a E {0,1}. Then, let W C V,+I(J) be such 

that w = [W[ = [c~r~uJ and F j (U)  C W. Now observe that 

4ra(logr)u <_ 2d,(G)u <_ 2 d,(H)u < ej(U, V(J)) < eG(U, W) 
O~ 

< puw + 12e(rauw) 1/2 logr  < --ra(logr)u + 12e(rauw) 1/2 logr. 
e 

Thus ( 7 / 4 -  a/e)r~(logr)u < 12e(r, uw)l/21ogr, and hence we have arzu <_ 

(1/12e)2(7/4 - a/e)2r~u < w = Lar~uJ, which is a contradiction. Therefore we 

conclude that indeed J is (2t l /Ao,  2Ao; 2to/A1,2A1)-expanding. Now (ii) above 

follows from Theorem 1. II 

Our second main result is as follows. 

THEOREM 9: Let 0 < 7 <_ 1 be given. Then there is a constant c 7 > 0 depending 

only on 7 for which the following holds. For any 1 <_ A < t, there is a bipartite 
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graph G such that (i) e(G) <_ cTAt, and (ii) G --~.~ T for any tree T of order ITI _< t 

and maximal degree A(T) _< A. 

Proo~ Let % A, t be as in the statement of our result. We may assume 

that A _> r*, where r* is as in Lemma6 .  Let 0 < a = a('y) _< ~/ /2be  the 

largest real such that (1/12e)2('~/4 - o~/2) 2 ~ oL. Now let r -- I2A/a]  < 4A/t~, 

and n = [4tr/A] <_ 32t/a .  Note that  then r* < r < n, 0 < a _< 1, and let G = 

G n,'~ be the corresponding bipartite graph given by Lemma 6. Then e(G) <_ 
2rn < 2(4A/a)(32t/(~) _< 256a-2At.  We now check that  G 7 7 T for any tree T 

with IT] < t and A(T) < A. Let H C G be a subgraph of G with e(H) > 7e(G). 
Let J C H be the subgraph of H given by Lemma 7. It now suffices to check 

that  J is a (2t/A, 2A; 2t/A, 2A)-expanding bipartite graph. 

Suppose for a contradiction that  U C Vo(J) is such ' that  IFj(U)I < 2AIU I 

although u = IUI _< 2t /A,  where ~ • {0, 1}. Then, let W C V~+I(J) be such 

that  w = IwI = [aruJ and F j (U)  C W. Now observe that  

¼ru <_ 2da(G)u < ~da(H)u < cj(U,V(J))  < eG(U,W) 
ct < puw + 12e(ruw) 1/2 <_ -~ru + 12e(ruw) 1/2. 

Thus (~ru < (1/12e)2(7/4 - a/2)2ru < w = LaruJ, which is a contradiction. 

| 

An immediate corollary to Theorems 8 and 9 is the upper bound for the size- 

Ramsey number of trees given in Corollary 10 below. The lower bound in this 

corollary is due to Beck [7], and its very short proof is included for convenience. 

COROLLARY 10: For any r >_ 2, there is a constant c~ depending only on r such 
that f~(T)/4 <_ re(T, r) < cr min{/3(T)log A(T),  ITIA(T)} for all trees T. 

Proof." Let an integer r _> 2 and a tree T be fixed. Let T have biparti- 

tion V(T) = Vo(T) U VI(T), and let t~ = IV~(T)I, A,, = A~(T) ((7 e {0, 1}). 

We may assume that t0A0 > tlA1. Let us prove that re(T, 2) _>/3(T)/4. Sup- 

pose G --- (T)2. Let U = {v E G: da(v) > A0} and set W = V ( G ) \ U .  
Colour the edges of G between U and W red, and the rest of the edges of G 

blue. Suppose T'  C G is a monochromatic copy of T in G, and let ¢: T ~ T'  

be an isomorphism. Let vo E Vo(T) have degree dT(V) ---- A0. Clearly ¢(v0) E U, 

and hence regardless of the colour of T', we have ¢(V0(T)) C U. Thus e(G) >_ 
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[U[Ao/2 _> [Vo(T)]Ao/2 = toAo/2 >_ •(T)/4. The upper bound for re(T,r) 

follows immediately from Theorems 8 and 9. | 

5. C o n c l u d i n g  r e m a r k s  

The existence of the graph G in Theorem 9 is proved by non-constructive means. 

For some values of 7, A, and t we may however take for G a suitable Ramanujan 

graph X = X p'q. More precisely, there is an absolute constant s > 0 with the 

following property. For any given 0 < 7 _< 1, there exist constants c-r > 0, AT, 

t 7 _> 1 depending only on 7 such that, for any integers 1 _< A < t with A > AT, 

t _> t~, and A < t ~, there are primes p and q such that a bipartite Ramanujan 

graph X = X p'q constructed by Lubotzky, Phillips and Sarnak [16] is such that 

(i) e(X)  < c-rAt, and (ii) X --*~ T for any tree T of order IT] < t and maximal 

degree A(T) _< A. The only extra work involved in proving the statement above 

has to do with the existence of the primes p and q. We refer the reader to 

Section 4 of [12], where a similar number-theoretic problem is treated. The key 

result there is a beautiful theorem of Bombieri [9] (see also Davenport [10], §28) 

on the distribution of primes in arithmetic progressions. With this result in hand, 

our task there is quite straightforward, and in fact the same method applies here, 

proving the above assertion. Let us also remark that the techniques presented 

in this note also show that  the incidence graphs of certain projective geometries 

are explicit examples that  prove Theorem 9 for A and t with A about t 1-1/d for 

some integer d > 2. (See Theorem 2.3 in Alon [1].) 

Finally, we should like to mention that Professor Noga Alon [2] has kindly 

pointed out to us that  one may improve the observations above as follows. One 

of the methods that  is given for the construction of almost k-wise independent 

random variables in Alon, Goldreich, H~stad and Peralta [4], namely, Construc- 

tion 3, can be suitably modified to give an elementary construction of an r- 

regular n-vertex graph whose second largest eigenvalue in absolute value Pl is 

such that I#11 -< url/2, where n = 2 uk and r = 2 2k, and u and k are any fixed 

integers with u _> 3 and k > 1. Here one considers a suitable Cayley graph of a 

certain Abelian group, and uses the result given in Problem 11.8 of Lov£sz [15] 

(see Section 3.2 of Alon and Roichman [5]). These graphs, the Ramanujan graphs 

of Lubotzky, Phillips and Sarnak and, as pointed out by Professor Alon, their 

powers may be used to prove appropriate variants of Lemma 6 constructively, 

thus allowing one to give a constructive proof of Theorem 9 for a wide range of 
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values of % A and t. 
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