ON DISCRETE SUBGROUPS CONTAINING A LATTICE IN A HOROSPHERICAL SUBGROUP

BY

HEE OH*

Mathematics Department, Oklahoma State University Stillwater, OK 74078, USA e-mail: heeoh@math.okstate.edu

ABSTRACT

We showed in $[Oh]$ that for a simple real Lie group G with real rank at least 2, if a discrete subgroup Γ of G contains lattices in two opposite horospherical subgroups, then Γ must be a non-uniform arithmetic lattice in G, under some additional assumptions on the horospherical subgroups. Somewhat surprisingly, a similar result is true even if we only assume that Γ contains a lattice in one horospherical subgroup, provided Γ is Zariski dense in G.

1. Introduction

Let G be a connected semisimple algebraic R-group. A unipotent subgroup U of G is called a **horospherical** R-subgroup if U is the unipotent radical of some proper parabolic R-subgroup of G.

The main theorem in this paper is as follows:

1.1. THEOREM: *Let G be a connected absolutely simple R-split algebraic group* with rank at least 2. Suppose that *G* is not of type A_2 . Let Γ be a discrete Zariski dense *subgroup of G(R)*. Then Γ is a non-uniform arithmetic lattice in $G(\mathbb{R})$ if and only if there exists a horospherical R-subgroup U of G such that *F N U is Zariski* dense *in U.*

1.2. COROLLARY: *Let G be as in Theorem 1.1 and U a horospherical R-subgroup of G.*

^{} Current address:* Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Received March 18, 1998

- (1) Let X be any subset of $U(\mathbb{R})$ such that the subgroup generated by the *elements of X is Zariski dense in U.*
- (2) Let Y be any subset of $G(\mathbb{R})$ such that the subgroup $\Gamma_{X\cup Y}$ generated by *the elements of* $X \cup Y$ *is Zariski dense.*

Then either $\Gamma_{X\cup Y}$ *is a non-uniform arithmetic lattice in G(* \mathbb{R}) or $\Gamma_{X\cup Y}$ *is not discrete.*

The proof of Theorem 1.1 is based on some results obtained in [Oh], which we will recall in the following.

Two parabolic subgroups are called opposite if their intersection is a common Levi subgroup in both of them. Two horospherical subgroups are called opposite if they are the unipotent radicals of opposite parabolic subgroups.

1.3. THEOREM (cf. [Oh, Theorem 0.2]): *Let G be a connected absolutely simple N-algebraic group with real rank at least 2 and U1, U2 a pair of opposite horospherical* \mathbb{R} -subgroups of G. Let F_1 and F_2 be lattices in $U_1(\mathbb{R})$ and $U_2(\mathbb{R})$, *respectively. Suppose that G is split over* $\mathbb R$ and that *if G is of type* A_2 , then U_1 is not the unipotent radical of a Borel subgroup. Then F_1 and F_2 generate a *discrete subgroup if and only if there exists a Q-form of G with respect to which U₁* and *U₂* are defined over Q and $F_i \subset U_i(\mathbb{Z})$ for each $i = 1, 2$. Furthermore, the discrete subgroup generated by F_1 and F_2 is a subgroup of finite index in $G(\mathbb{Z})$.

In [Oh, Theorem 0.2], we proved that if the subgroups F_1 and F_2 as in the statement of Theorem 1.3 generate a discrete subgroup, then there exists a Q-form of G such that the subgroup Γ_{F_1,F_2} generated by F_1 and F_2 is commensurable to the subgroup $G(\mathbb{Z})$. We deduce Theorem 1.3 from this theorem; since G is absolutely simple and hence the center of G is trivial, we can assume that $G \subset SL_N(\mathbb{C})$ by considering the adjoint representation of G. Since Γ_{F_1,F_2} is an arithmetic subgroup, it is not difficult to see that there exists a Γ_{F_1,F_2} -invariant lattice L in \mathbb{Q}^N (cf. [P-R, Proposition 4.2]); hence $\Gamma_{F_1,F_2} \subset G^L = \{g \in G \mid g(L) \subset L\}$. Now by applying the automorphism of $SL_N(\mathbb{C})$ that changes the standard basis to a basis of L, we can change the Z-form of G so that $G(\mathbb{Z}) = G^L$, proving Theorem 1.3.

The following corollary follows from the above Theorem 1.3 and Theorem 7.1.1 **in [Mal.**

1.4. COROLLARY: *Let G be a connected absolutely simple R-split algebraic* group with rank at least 2 and Γ a discrete subgroup of $G(\mathbb{R})$. Suppose that G is not of type A_2 . Then Γ is a non-uniform lattice in $G(\mathbb{R})$ if and only if there

exists a pair U_1 , U_2 of opposite horospherical R-subgroups of G such that $\Gamma \cap U_i$ *is Zariski dense in* U_i *for each* $i = 1, 2$ *.*

Using Corollary 1.4, Theorem 1.1 is then a consequence of the following proposition.

1.5. PROPOSITION: Let G be a connected semisimple R-algebraic group and Γ *a discrete Zariski dense subgroup of G(]R). Suppose that* there *exists a horo*spherical R-subgroup U of G such that $\Gamma \cap U$ is Zariski dense in U. Then there *exists a pair* U_1, U_2 *of opposite horospherical* R-subgroups of G such that $U \subset U_1$ and $\Gamma \cap U_i$ is Zariski dense in U_i for each $i = 1, 2$.

For simplicity, Theorem 1.3 is stated here only for R-split groups but we proved it in much greater generality (see [Oh, Theorem 0.3]). All the above theorems are valid for all situations in which Theorem 0.3 in [Oh] holds.

Remark: Theorem 1.3 was conjectured by G. Margulis in greater generality (see [Oh1] for the full statement of the conjecture).

2. Unipotent subgroups of Γ

2.1. Definition: Let H be a locally compact topological group, and D and M closed subgroups of H. We say that D is M-proper if the natural map $D/(D \cap M) \to H/M$ is proper, and M-compact if the factor space $D/(D \cap M)$ is compact.

2.2. LEMMA [Ma, Lemma 2.1.4]: If M is a discrete subgroup of H, D_1 is *M*-proper and D_2 is *M*-compact, then $D_1 \cap D_2$ is *M*-compact.

2.3. Let G be a connected semisimple algebraic R-group. For a subgroup F of $G(\mathbb{R})$, we denote by $N(F)$ the normalizer of F in G, by $[F, F]$ the commutator subgroup of F, and by $S(F)$ the subgroup $[N(F), N(F)] \cap G(\mathbb{R})$. The notation \overline{F} denotes the Zariski closure of F .

The following theorem in [Ma], which was originally stated only for the case where Γ is a lattice, holds for arbitrary discrete subgroups, as we can see from the proof given in [Ma].

THEOREM [Ma, Lemma 5.2.2]: Let Γ be a discrete subgroup of $G(\mathbb{R})$ and F a *unipotent subgroup of* Γ *such that* $\overline{F} \cap \Gamma = F$. Then $S(\overline{F})$ *is* Γ -proper.

2.4. COROLLARY: Let G be a connected semisimple algebraic R-group and Γ *a* discrete subgroup of $G(\mathbb{R})$. Let F_1 and F_2 be unipotent subgroups of Γ such *that* $\overline{F}_i \cap \Gamma = F_i$ for each $i = 1, 2$. Then $S(\overline{F}_1) \cap \overline{F}_2$ is Γ -compact. In particular, $S(\overline{F}_1) \cap \overline{F}_2 \cap \Gamma$ is a *co-compact lattice in* $S(\overline{F}_1) \cap \overline{F}_2$.

Proof: By Theorem 2.3, $S(\overline{F_1})$ is Γ -proper. Since a Zariski dense discrete subgroup of a unipotent algebraic group is a co-compact lattice, $\overline{F_2} \cap G(\mathbb{R})$ is Γ compact. Therefore, by Lemma 2.2, $S(F_1) \cap F_2$ is Γ -compact.

Note that the above corollary gives a way of obtaining a subgroup of \overline{F}_2 that intersects Γ as a lattice when $S(\overline{F_1}) \cap \overline{F_2}$ is non-trivial.

3. **Horospherical subgroups and their intersections** with F

3.1. Let G be a connected semisimple algebraic R-group, S a maximal R-split torus of G and T a maximal R-torus containing S. Denote by $_{R}\Phi = \Phi(S, G)$ (resp. $\Phi = \Phi(T, G)$) the set of roots of G with respect to S (resp. T). We choose compatible orderings on Φ and $_{\mathbb{R}}\Phi$, and let $_{\mathbb{R}}\Delta$ be the simple roots of $_{\mathbb{R}}\Phi$ with respect to this ordering. Let $j: \Phi \to \mathbb{R} \Phi \cup \{0\}$ be the map induced by the restriction to S.

For each $b \in \Phi(T, G)$, we denote by U_b the unique one parameter root subgroup associated with b. For $\theta \subset \mathbb{R}^{\Delta}$, $[\theta]$ denotes the Z-linear combinations of elements of θ which are roots in $_{\mathbb{R}}\Phi$. A subset $\Psi \subset_{\mathbb{R}}\Phi$ is called closed if $a, b \in \Psi$ and $a + b \in R\Phi$ imply $a + b \in \Psi$. If Ψ is closed, then we denote by G_{Ψ} the subgroup generated by T and the subgroups U_a , $a \in j^{-1}(\Psi \cup \{0\})$, and by G^*_{Ψ} the subgroup generated by the subgroups U_a , $a \in j^{-1}(\Psi)$. If G^*_{Ψ} is unipotent, then it will also be denoted by U_{Ψ} and the set Ψ in this case will be called **unipotent**.

For $\theta \subset \mathbb{R}^{\Delta}$, we define the following closed subsets of \mathbb{R}^{Φ} :

$$
\pi_{\theta} = [\theta] \cup_{\mathbb{R}} \Phi^+, \quad \pi_{\theta}^- = [\theta] \cup_{\mathbb{R}} \Phi^-, \quad \beta_{\theta} =_{\mathbb{R}} \Phi^+ - [\theta], \quad \beta_{\theta}^- =_{\mathbb{R}} \Phi^- - [\theta].
$$

For the sake of simplicity, we shall denote by P_{θ} , P_{θ} ⁻, V_{θ} and V_{θ} ⁻ the subgroups $G_{\pi_{\theta}}, G_{\pi_{\theta}}$, $U_{\beta_{\theta}}$ and $U_{\beta_{\theta}}$, respectively.

We recall some well-known facts about parabolic subgroups and horospherical subgroups (cf. $[B-T]$). Any parabolic (resp. horospherical) R-subgroup of G is conjugate to P_{θ} (resp. V_{θ}) for some $\theta \subset \mathbb{R}^{\Delta}$. Any pair of opposite parabolic (resp. horospherical) R-subgroups is conjugate to the pair P_{θ} , P_{θ} ⁻ (resp. V_{θ} , V_{θ}^- for some $\theta \subset \mathbb{R}^{\Delta}$. Note that P_{θ} is a minimal parabolic R-subgroup and V_{θ} is a maximal horospherical R-subgroup. Any parabolic R-subgroup containing P_0 is of the form P_θ for some $\theta \subset \mathbb{R}^{\Delta}$ and any horospherical R-subgroup contained in V_{θ} is of the form V_{θ} for some $\theta \subset \mathbb{R}^{\Delta}$.

Let $_{\mathbb{R}}W = N(S)/C(S)$ be the relative Weyl group where $C(S)$ denotes the centralizer of S in G. For any $w \in \mathbb{R}W$ and any subgroup H of G normalized by $C(S)$, we denote by wHw^{-1} the subgroup $n_wHn_w^{-1}$ where n_w is a representative of w in *N(S)*. We fix $w_0 \in \mathbb{R}^W$ such that $w_0 V_\emptyset w_0^{-1} = V_\emptyset^{-}$. Then w_0 takes Φ^+ into Φ^- and there exists an involution i of Φ such that $w_0(i(a)) = -a$ for all $a \in \Phi$. We call *i* the **opposition involution** of Φ (cf. [B-T, 2.1]). We have that $w_0P_{\theta}w_0^{-1} = P_{i(\theta)}^-$ and $w_0V_{\theta}w_0^{-1} = V_{i(\theta)}^-$. If $i(\theta) = \theta$, then P_{θ} (resp. V_{θ}) is called reflexive and so are all the elements in the conjugacy class of P_θ (resp. V_θ). Note that a parabolic subgroup P is reflexive if and only if its conjugacy class contains a parabolic subgroup opposite to P.

It is not difficult to see that the following lemma holds.

- 3.2. LEMMA: *The followings* are *ali equivalent.*
	- (1) V_{θ} is reflexive;

$$
(2) i(\theta) = \theta;
$$

- (3) V_{θ} and $w_0 V_{\theta} w_0^{-1}$ are opposite;
- (4) $N(V_{\theta}) \cap w_0 V_{\theta} w_0^{-1}$ is trivial.

3.3. LEMMA [B-T, Proposition 3.22]: If ψ and ϕ are two closed subsets of $_{\mathbb{R}}\Phi$ and ψ is unipotent, then $U_{\psi} \cap G_{\phi} = U_{\psi} \cap G_{\phi}^* = U_{\psi \cap \phi}$.

3.4. LEMMA [B-T, Lemma 4.12]: *Let G be a connected semisimple algebraic Rgroup* and *P1, P2 two parabolic subgroups of G. Then the* set *M of all elements* $g \in G$ such that P_1 and gP_2g^{-1} contain opposite minimal parabolic subgroups is *Zariski dense* and *open.*

3.5. COROLLARY: Let G be a connected semisimple R-algebraic group and P a *reflexive parabolic* R-subgroup of G. Then the set M of the elements $g \in G$ such *that P and* gPg^{-1} *are opposite is Zariski dense and open.*

Proof: This follows from Lemma 3.4 and Proposition 4.10 in [B-T], which says that two conjugate parabolic subgroups are opposite if they contain opposite minimal parabolic subgroups. |

3.6. PROPOSITION: Let G be a connected semisimple algebraic \mathbb{R} -group, Γ a Zariski dense subgroup of $G(\mathbb{R})$ and U a horospherical \mathbb{R} -subgroup of G such *that* $\Gamma \cap U$ *is Zariski dense in U. Then there exists an element* $h \in G$ *such that*

- (1) $hUh^{-1} = V_\theta$ for some $\theta \subset_R \Delta$,
- (2) $w_0 h U h^{-1} w_0^{-1} \cap h \Gamma h^{-1}$ is Zariski dense in $w_0 h U h^{-1} w_0^{-1}$.

Proof: By Lemma 3.4, there exists an element $\gamma \in \Gamma$ such that $B_1 \subset N(U)$ and $B_2 \subset \gamma N(U)\gamma^{-1}$ for some pair B_1, B_2 of opposite minimal parabolic subgroups.

Therefore $U \subset R_u(B_1)$ and $\gamma U \gamma^{-1} \subset R_u(B_2)$. Since $R_u(B_1)$ and $R_u(B_2)$ are opposite maximal horospherical subgroups, there exists $h \in G(\mathbb{R})$ such that

$$
hR_u(B_1)h^{-1} = V_{\emptyset}
$$
 and $hR_u(B_2)h^{-1} = V_{\emptyset}^{-}$.

Therefore $hUh^{-1} \subset V_\emptyset$; hence $hUh^{-1} \subset V_\theta$ for some $\theta \subset {}_{\mathbb R}\Delta$, and $h\gamma U\gamma^{-1}h^{-1} \subset$ V_0^- . Since $h\gamma U\gamma^{-1}h^{-1} \cap h\Gamma h^{-1} = h\gamma(U\cap \Gamma)\gamma^{-1}h^{-1}$ and $U\cap \Gamma$ is Zariski dense in U by the assumption, we have that $h\gamma U\gamma^{-1}h^{-1} \cap h\Gamma h^{-1}$ is Zariski dense in $h\gamma U\gamma^{-1}h^{-1}$. It only remains to show that $h\gamma U\gamma^{-1}h^{-1} = w_0hUh^{-1}w_0^{-1}$. Since $w_0V_{\emptyset}w_0^{-1} = V_{\emptyset}^-,$ we have $w_0^{-1}h\gamma U\gamma^{-1}h^{-1}w_0 \subset V_{\emptyset}$. Observe that $hN(U)h^{-1}$ and $w_0^{-1}h\gamma N(U)\gamma^{-1}h^{-1}w_0$ are two conjugate parabolic subgroups which contain the same minimal parabolic subgroup P_0 . So $hN(U)h^{-1} = w_0^{-1}h\gamma N(U)\gamma^{-1}h^{-1}w_0$ (cf. [B-T, 4.3]). Since the normalizer of a parabolic subgroup is the parabolic subgroup itself, there exists an element $n \in N(U)$ such that $hn = w_0^{-1}h\gamma$. Therefore $h\gamma U\gamma^{-1}h^{-1} = w_0hUh^{-1}w_0^{-1}$, proving the proposition.

3.7. COROLLARY: Let G, Γ, U be as above and U be conjugate to V_{θ} for some $\theta \subset \mathbb{R}^{\Delta}$. Then for some $h \in G(\mathbb{R})$, $h \Gamma h^{-1}$ intersects both V_{θ} and $V_{i(\theta)}^{-}$ Zariski *densely.*

4. Proof of Proposition 1.5

4.1. PROPOSITION: *Let G be a connected semisimple algebraic R-group and F a discrete Zariski dense subgroup oE G(R). Suppose that* there *exists a horo*spherical \mathbb{R} -subgroup U of G such that $\Gamma \cap U$ is Zariski dense in U. Then there *exists a reflexive horospherical* R-subgroup V of G such that $U \subset V$ and $\Gamma \cap V$ *is Zariski dense in V.*

Proof: Note that a maximal horospherical $\mathbb R$ -subgroup of G is always reflexive and the dimensions of the maximal horospherical $\mathbb R$ -subgroups of G are all equal. Therefore by induction on the dimension of U , it is enough to prove that if U is not reflexive, then there exists a horospherical R-subgroup V such that $V \cap \Gamma$ is Zariski dense in V and $U \subseteq V$.

We use the notation $_{\mathbb{R}}\Phi$, $_{\mathbb{R}}\Delta$ etc. from section 3.1. By Corollary 3.7, there is no loss of generality in assuming that $U = V_{\theta}$ for some $\theta \subset \mathbb{R}^{\Delta}$ and $V_{i(\theta)}^{-} \cap \Gamma$ is Zariski dense in $V_{i(\theta)}^-$. Let $U' = V_{i(\theta)}^-$. Note that $w_0 U w_0^{-1} = U'$. Suppose that U is not reflexive. Then by Lemma 3.2, $N(U) \cap U'$ is not trivial. By Lemma 3.3, we have that $[N(U), N(U)] \cap U' = N(U) \cap U'$. Therefore it follows from Corollary 2.4 that $N(U)(\mathbb{R}) \cap U'(\mathbb{R})$ is Γ -compact; hence $N(U) \cap U' \cap \Gamma$ is Zariski dense in

 $N(U) \cap U'$. Hence $V \cap \Gamma$ is Zariski dense in V where $V = (N(U) \cap U') \ltimes U$. To finish the proof of the proposition, it remains to show that V is a horospherical R-subgroup of G , which we will do in Proposition 4.2.

Note that for $U = V_{\theta}$ for $\theta \subset \mathbb{R}^{\Delta}$, we have

$$
(N(U) \cap w_0 U w_0^{-1}) \ltimes U = (P_\theta \cap V_{i(\theta)}^-) \ltimes V_\theta.
$$

4.2. PROPOSITION: Let $U = V_{\theta}$. Then $(N(U) \cap w_0 U w_0^{-1}) \ltimes U$ is a horospherical *R-subgroup of G.*

Proof: Note that $N(V_{\theta}) = P_{\theta}$. Let $L = P_{\theta} \cap P_{\theta}^{-}$ and $M = [L, L]$. Then M is a connected semisimple algebraic R-group and $M = G_{\lbrack \theta \rbrack}^*$, i.e., the subgroup generated by U_a , $a \in j^{-1}[\theta]$. It is well known that $S \cap M$ is a maximal R-split torus of M and the restriction of $[\theta]$ to $S \cap M$ gives all of $\Phi(S \cap M, M)$, which will be denoted by Φ_M . The root system Φ_M has the induced ordering from Φ .

Since $w_0 U w_0^{-1} = V_{i(\theta)}^- = U_{\mathbf{R}} \Phi^- - [i(\theta)]$ and the set $\mathbb{R}} \Phi^- - [i(\theta)]$ is unipotent, we have that $N(U) \cap w_0Uw_0^{-1} = M \cap w_0Uw_0^{-1} = U_{\Phi_M^{-1}[\theta \cap i(\theta)]}$ by Lemma 3.3. It follows that $M \cap w_0 U w_0^{-1}$ is a horospherical R-subgroup of M. Note that $V_{\emptyset} \cap M$ is a maximal horospherical R-subgroup of M. There exists an element $w \in N(S \cap M) \cap M$ such that $w(V_{\emptyset} \cap M)w^{-1} = V_{\emptyset}^{-} \cap M$ (cf. section 3.1). Let j be the opposition involution of Φ_M such that $w(j(a)) = -a$ for all $a \in \Phi_M$.

Then

$$
wU_{\Phi_M^- - [\theta \cap i(\theta)]} \ltimes U_{\mathbf{R}} \Phi_{\mathbf{R}} - [\theta] w^{-1} = wU_{\Phi_M^- - [\theta \cap i(\theta)]} w^{-1} \ltimes U_{\mathbf{R}} \Phi_{\mathbf{R}} - [\theta]
$$

since w normalizes U .

Since w sends $\Phi_M^- - [\theta \cap i(\theta)]$ to $\Phi_M^+ - [j(\theta \cap i(\theta))],$

$$
wU_{\Phi_M^- - [\theta \cap i(\theta)]} w^{-1} \ltimes U_{\Phi^+ - [\theta]} = U_{\Phi_M^+ - [j(\theta \cap i(\theta))]}\ltimes U_{\mathbf{R}} \Phi^+ - [\theta] = U_{\mathbf{R}} \Phi^+ - [j(\theta \cap i(\theta))]\cdot
$$

So $wU_{\Phi_M^- - [\theta \cap i(\theta)]} \ltimes U_{\mathbf{R}} \Phi_{+} - [\theta] w^{-1}$ is the horospherical R-subgroup $V_{j(\theta \cap i(\theta))}$. This proves that $(M \cap w_0 U w_0^{-1}) \ltimes U$ is a horospherical R-subgroup of G.

4.3. Proof of Proposition 1.5: By Proposition 4.1, we may assume that U is reflexive. By Corollary 3.5, there exists $\gamma \in \Gamma$ such that U and $\gamma U \gamma^{-1}$ are opposite. Since $\gamma U\gamma^{-1} \cap \Gamma = \gamma(U \cap \Gamma)\gamma^{-1}$, it suffices to set $U_1 = U$ and $U_2 =$ $\gamma U \gamma^{-1}$ to prove the proposition.

ACKNOWLEDGEMENT: I would like to thank G. Margulis and D. Witte for many useful comments on the preliminary version of the paper and A. Lubotzky for his interest.

References

- [B-T] A. Borel and J. Tits, *Groupes réductifs*, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 27 (1965), 55-151.
- **[Mal** G. A. Margulis, *Arithmetic properties of* discrete *groups,* Russian Mathematical Surveys 29 (1974), 107-156.
- [Oh] H. Oh, *Discrete subgroups generated by lattices in opposite horospherical subgroups,* Journal of Algebra 203 (1998), 621-676.
- [Oh1] H. Oh, Discrete subgroups of $SL_n(\mathbb{R})$ generated by lattices in horospherical subgroups, Comptes Rendus de l'Académie des Sciences, Paris 323 (1996), 1219-1224.
- [P-R] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, New York, 1994.