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ABSTRACT

Let d > 1 be a proper divisor of the order of a finite group G and let
04(G) be the sum of squares of degrees of those irreducible characters
whose degrees are not divisible by d. It is easy to see that d divides 04(G).
The groups G such that 04(G) = d coincide with Frobenius groups whose
kernel has index d (see G. Karpilovsky, Group Representations, Volume 1,
Part B, North-Holland, Amsterdam, 1992, Theorem 37.5.5). In this note
we study the case 04(G) = 2d in some detail. In particular, if G is a
2-group, it is of maximal class (Remark 3(b)).

Let d > 1 be a proper divisor of the order |G| of a finite group G and Irr(G)
the set of all complex irreducible characters of G. Let X4 = X4(G) be the set of
all irreducible characters of G whose degrees are not divisible by d and o4(G) the
sum of squares of the degrees of characters in Xg4. If Irr(G) contains a character
of degree divisible by d (this is the case if and only if |G| > 04(G)), then d
divides 04(G). Set K = Ka(G) =\, cx, ker(x). It is clear that |G : K| = 04(G)
if and only if Irr(G/K) = X4. In the last case, K is p-nilpotent for any prime
divisor p of d (see [B1] or Remark 1 below) and, moreover, K is solvable (see [B2],
Proposition 9 and Remark 1 following it). If G is a Frobenius group with kernel of
index d, then o4(G) = d (see [I], Theorem 6.34). Conversely, if |G| > d = 4(G),
then G is a Frobenius group with kernel of index d (see [K], Theorem 37.5.5;
for another proof, see Remark 2, below), i.e., the groups G with ¢4(G) = d
are classified. In this note we will proceed to the following step and consider
the case 04(G) = 2d. Theorem 6 yields the classification in the case when d is
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odd. The proof of that theorem is partially based on Lemma 2, which is due
to the referee. In the general case, when d is arbitrary, we prove that the socle
of G is abelian (Corollary 4; we may consider that result as a generalization of
Thompson’s Theorem on solvability of Frobenius kernels). Lemma 5, which was
inspired by the referee’s report, also yields essential information on the structure

of G.

The following two lemmas are due to the referee. Lemma 2 is the key.

LEMMA 1: Let X be a subset of Irt(G) and assume that whenever a and 8 lie in
X, all irreducible constituents of a8 also lie in X. Let K =, x ker(c). Then
X =Irr(G/K).

Proof: Let x = Y .xo; then x is a faithful character of G/K. By the
Burnside-Brauer Theorem (see [I], Theorem 4.3), every irreducible character of
G/K is a constituent of some power of x and thus lies in X, by assumption.
|

LEMMA 2: Let d > 1 be a divisor of the order of a group G and ¢04(G) < 2d.
Then if a, B € Xy, all irreducible constituents of of3 lie in X.

Proof: We may assume that neither o nor g is linear. Note that 15 € Xg. So
if & # B, then 2d > 04(G) > a(1)? + B(1)? > 2a(1)B(1), hence a(1)8(1) < d. It
follows that all irreducible constituents of ag lie in Xg.

Now assume that @? has an irreducible constituent 4 of degree divisible by d.
Since a(1)? < 2d, it follows that 9 is the unique irreducible constituent of o? of
degree divisible by d; moreover, {a?,1) = 1. Then (a, @) = 1. Since a(1)y(1) is
divisible by d and @&(1)1)(1) — (1) is not, the character &1 — a has an irreducible
constituent v that is a member of X;. Since the multiplicity of a in &) is 1, we
get v # a. Now (av,v) = (v,81) > 0, contrary to the result of the previous
paragraph. |

In what follows we will assume that 04(G) < 2d and |G| > 04(G) (in that case,
Xg is a proper subset of Irr(G)). Set K = U, ¢ x, ker(x). By Lemma 2, X = X,
satisfies the hypothesis of Lemma 1. Hence we get

Remark 1: For a prime p, let G(p') denote the intersection of kernels of nonlinear
irreducible characters whose degrees are not divisible by p (if G has no such
characters, set G(p') = G). By [B1] or [K], Corollary 27.4.4, G(p) is p-nilpotent
(= has a normal p-complement). By [B2], Proposition 9 and Remark 1 following
it, G(p') is solvable so K is (this assertion depends on the classification). Note
that the solvability of K also follows from the Odd Order Theorem. Indeed, this
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is the case if d is even (see Corollary 3). If d is odd, K is nilpotent by Theorem
6.

COROLLARY 3: If 04(G) < 2d, then |G : K| = 04(G), every member of
Irt(G | K) = Irt(G) — Irt(G/K) has degree divisible by d and K has a nor-
mal p-complement for every prime divisor p of d.

Proof: By Lemma 2, Irr(G/K) = X4 s0 |G : K| = 04(G). By assumption, d
divides x(1) for all x € Irr(G | K). Therefore, K < G(p') for any prime divisor
p of d so K is p-nilpotent for that p (see Remark 1). |

Remark 2: Assume that |G| > d > 1 and 04(G) = d. We will prove that then G
is a Frobenius group with kernel of index d. In the above notation, |G : K| =d
and d divides the degrees of all characters in Irr(G | K) so, by [K], Lemma
37.5.2, K is a Hall subgroup of G. If x € Irr(G | K), then xx is a sum of
d distinct irreducible characters of K. Let A be a subgroup of order d in G
(Schur-Zassenhaus). Then every nonidentity element of A induces a fixed-point-
free automorphism of K, by the Brauer Permutation Lemma (see [BZ], Lemma
10.4(c)). This proves the main part of [K], Theorem 37.5.3.

COROLLARY 4: Let 04(G) = 2d < |G|. Assume that L is a subgroup of G that
centralizes K and intersects K trivially. Then |L| < 2.

Proof: By Remark 1, K is solvable. Since K > {1}, it has a nonprincipal linear
character 6. By assumption, KL = K x L, so ¢ = 6 x 1;, is a linear character
of KL and K £ ker(¢). Since ¢¢(1) is a multiple of d, by Corollary 3, it follows
that d divides |G : KL}, and thus |L| < 2 since |G : K| = 2d. |

It follows from Corollary 4 that | Sc(G)K : K| < 2, where Sc(G) is the socle of
G and, since K is solvable (Remark 1), Sc(G) is abelian.

Remark 1 allows us to propose some nontrivial assertions on the structure of
G/K. To this end, we may assume that K is an elementary abelian p-subgroup
for some prime p (see Remark 1).

LEMMA 5: Let d > 1 be a proper divisor of the order of the group G, |G| >
04(G) =wd. Write K =), cx, ker(x). Then K has a normal p-complement for
any prime divisor p of d and K is solvable. Let, in addition, |G : K| = wd.

(a) Suppose that K is an elementary abelian p-subgroup, (w,pd) = 1. Then K
is a Sylow p-subgroup of G. Let q be a prime divisor of d and Q € Syl (G).
Then QK is a Frobenius group.

(b) Suppose that w = 2 and K is an elementary abelian 2-subgroup. If 4
divides G/K (i.e., d is even), then G is nonabelian of order 8. If q is an



328 Y. BERKOVICH Isr. J. Math.

odd prime divisor of d and Q € Syl (G), then QK is a Frobenius group.
(c) Let w = 2. If (|K|,d) > 1, then (|K|,d) = 2 and |G/Ky| = 8, where K/
denote a normal p-complement of K.
(d) Suppose that (w,|K|d) = 1. If G/K contains a subgroup H/K of index w,
then H is a Frobenius group with kernel K.

Proof:  The assertions preceding (a) have already been established. By
assumption, K > {1}.

(a) Assume that G/K has a subgroup Z/K of order p. Then p divides d, since
(w,pd) =1, and | Z| > p?, so that Z’' < K. I follows that Z has a linear character
¢ whose kernel does not contain K. Since d does not divide ¢¢(1) = w - (d/p),
there exists an irreducible constituent x of ¢¢ such that d does not divide x(1),
a contradiction, since K ¢ ker(x). Thus Z does not exist, so K is a p-Sylow
subgroup of G.

Let g be a prime divisor of d, @ € Syl (G). To prove that QK is a Frobenius
group, it is enough to show that CK is a Frobenius group for any subgroup C
of order ¢ in Q. Assume that this is false. Then C centralizes some noniden-
tity element of K. By Fitting’s Lemma (see, for example, [BZ], Lemma 1.18),
(CK)' < K. So CK has a linear character ¢ such that o(¢) = pg (in particular,
K is not contained in ker(¢)). Then ¢%(1) = |G : CK| = w-(d/q) is not divisible
by d, and again, as in the previous paragraph, we obtain a contradiction. Thus
QK is a Frobenius group for Q € Syl (G).

(b) Suppose that w = 2. Let p = 2 and let T/K be a subgroup of G/K of
order 4. If T < K, T has a linear character ¢ whose kernel does not contain
K. Then ¢%(1) = d/2, so all irreducible constituents have degrees not divisible
by d. On the other hand, all these constituents are contained in Irr(G | K), by
reciprocity, and we get a contradiction. Thus 7’ = K. Then T is of maximal class
(i.e., generalized quaternion, dihedral or semi-dihedral), by Taussky’s Theorem
(see [H], Satz 3.11.9(a)); in particular, T/T" is the four-group. Since K is an
elementary abelian normal subgroup of a 2-group 7' of maximal class and |T'/K| >
2, it follows that |K| = 2. In particular, K is a central subgroup of G. By
Corollary 4, G is a 2-group. Assume that |G| > 8. Then G contains an abelian
subgroup A of order 8. If K < T' < AK and |T| = 8, then, by the above, T' is
not abelian, a,contradiction. Thus |G| = 8. The last assertion now follows from
(a).

(c) Suppose that w = 2 and a prime p divides (d,|K}). If p = 2, then 4 divides
|G/K| and |G/Ky| = 8, by (b). If p > 2, then K/Ky € Syl,(G/Ky), by (a).
This means that ({K|,d) = 2, as desired.
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(d) Let H/K be a subgroup of index w in G/K and (w, |K|d) = 1 (we do not
assume that H is normal in G). Let a prime p divide d. Then, by Corollary 3,
K has the normal p-complement K,/. Assuming that K, < K, we see by (a)
that K/Kp is a Sylow p-subgroup of G/K,, which is not the case. It follows
that K = K, i.e., p does not divide |K|. Since p is an arbitrary prime divisor
of d, we get (|K|,d) = 1. Assume that H is not a Frobenius group with kernel K
(however, H can be a Frobenius group with another kernel). Then there exists
¥ € Irr(H | K) such that d does not divide #(1). Since (w,d) = 1, it follows
that d does not divide ¢¢(1). Therefore, % has an irreducible constituent x of
degree not divisible by d, a contradiction, since by reciprocity K is not contained
in ker(x). |

Let (G have a normal subgroup H; H is a Frobenius group with kernel K. Then
all characters in Irr(G | K) have degrees divisible by |H : K|. This follows from
[T], Theorem 6.34 and transitivity of inducing. However, in the case considered,
Irr(G/K) is not necessarily equal to X.

The case when d is odd may be investigated completely. Namely, the following
theorem holds.

THEOREM 6: Let d be odd. Then 04(G) = 2d < |G| if and only if G has a
Frobenius subgroup H with kernel K such that |G : H| = 2.

Proof: The ‘only if’ part follows from the remark preceding the theorem and
the fact that G/K has no irreducible character of degree divisible by d.

Now suppose that |G/K| = 2d. Since d is odd, G/K has a subgroup H/K of
index 2, and H is a Frobenius group with kernel K, by Lemma 5(d). [ |

Remark 3: (a) Let us consider, in Theorem 6, the case when d = 2 and K is not
necessarily elementary abelian. In that case, by Corollary 3, K = G’ has index 4
in G. If P € Syly(@G), then Ng(P) = P since all nonlinear irreducible characters
of G have even degrees; see [B2], Proposition 9.

(b) Let G be a group of Lemma 5(b). Suppose that G is not a 2-group. It
follows from Lemma 5{b) that all Sylow subgroups of G/K are cyclic and a Sylow
2-subgroup of G/K is of order 2. In that case, d is odd, and so, by Theorem 6,
G/K contains a subgroup H/K of index 2 such that H is a Frobenius group with
kernel K.

(c) Let G be a nonabelian p-group of order p*, d = p°, w < s, 04(G) = p¥*s,
n > w+ 8. Then p® = p¥T* (mod p**) so w = s; if N is a normal subgroup of
G of index p?®, then Irr(G/N) C X4, and so N = K = Kj; is the unique normal
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subgroup of index p?® in G. In particular, if s = 1 and p = 2, then G is a 2-group
of maximal class.

In the case when d = x(1) for some x € Irr(G) and 04(G) < 2d, |G| =
04(G) + d?, we can obtain the complete classification. Note that Theorem 7
coincides with Exercise 10.18' in [BZ].

Let G = A - B be a Frobenius group with kernel B and complement A. Then
G is 2-transitive on cosets of A if and only if |A| = |B| — 1. In that case, B¥
is a conjugacy class of G. Conversely, if B¥ is a conjugacy class of G, then
G is 2-transitive on cosets of A. Note that there exist nonsolvable 2-transitive
Frobenius groups.

Suppose that all nonprincipal irreducible characters of G > {1} have the same
degree. Since |G| —1 =3}, cri(@)xtlc x(1)? and x(1) divides |G| for all x €
Irr(G), it follows that G is abelian.

THEOREM 7: Let x € Irr(G) have degree d > 1 and let |G| = d? + wd, where
w < 2. Ifw =1, then G is a 2-transitive Frobenius group and, if w = 2, then

G| = 8.

Proof: We retain the above notation. Since |G| < d?+2d < 2d?, x is the unique
irreducible character of G of degree divisible by d and x is faithful. It follows
by reciprocity that all nonprincipal irreducible characters of K are constituents
of xx. By Clifford’s Theorem, all nonprincipal irreducible characters of K are
G-conjugate. It follows from the remark preceding the theorem that K is an
abelian minimal normal subgroup of G; write |K| = p°.

If w=1, then |G : K| = d = x(1), by Lemma 2, and G is a Frobenius
group with kernel K, by Remark 2. It is now immediate that G is a 2-transitive
Frobenius group.

Now assume that w = 2; then |G : K| = 2d, by Lemma 2. We have d(d + 2) =
|G| = 2d|K| = 2dp®, or d = 2(p® — 1). Thus d is even. If p = 2, then |G| = 8,
by Lemma 5(b). Let p > 2. Then K € Syl,(G), by Lemma 5(a). Let  be a
nonprincipal linear character of K. Then u€ = 2x. Let T be the inertia subgroup
of pin G. Then |T : K| = 2, contrary to Clifford theory. |

QUESTION: Let G have a nonlinear irreducible character of degree d. Describe
the structure of G if 04(G) = 3d.

Let HS be the normal closure of a subgroup H in G.

PROPOSITION 8: Let H > {1} be a subgroup of index wd in G, whered > 1 is
a proper divisor of |G|, w < d+ 1, w € N. Suppose that, for every nonprincipal
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X\ € Irr(H), the degrees of all irreducible constituents of A® are divisible by d.
Then HC is solvable, and either G is a Frobenius group with kernel of index
d = 04(G), H is normal in G and G/H is a 2-transitive Frobenius group, or
|G : H¢| = 64(G) and X4 = Irr(G/HC). If, in addition, w = p, a prime, then
either H is normal in G or G is a Frobenius group with kernel H® of index d.

Proof: By assumption and reciprocity, all characters in Xy are irreducible
constituents of 1% (here 1y is the principal character of H). Let (15)¢ =
eix! + -+ +esx°, where x!,..., x® are distinct irreducible characters of G. Let
Xa=1{x',...,x'}, where t < s. By assumption and reciprocity, x% = x*(1) - 1y
fori=1,...,t. Set 7= x'+---+ x%; then ker(t) = K > H and |G : K| = wod,
where wy divides w, by Lagrange’s Theorem. It is clear that X3 C Irr{(G/K),
and so |G : K| > 04(G).

Suppose that w == 1. Then 04(G) = d, so G is a Frobenius group with kernel
H (see [K], Corollary 37.5.4).

Suppose that 04(G) = d. Then G is a Frobenius group with kernel L of index
d, so (d,|L|) = 1. It follows that H < K < L (see [I], Theorem 6.34). Suppose
that H® < L. Then wd > |G : HY| > (d + 1)d since G/H® is a Frobenius
group with kernel L/H®. Since d + 1 > w we get wd = |G : HS| = (d + 1)d
and H® = H, i.e., H is normal in G and G/H is a doubly transitive Frobenius
group.

Suppose that 04(G) > d. In that case, w > 1. Assume that x € Irt(G/K) is of
degree divisible by d. Then |G/K| > 04(G) + x(1))? > 2d + d* > wd = |G : H|,
which is not the case. It follows that Xy = Irr(G/K). Since H® < K it follows
that |G : K| = 04(G) > 2d. Assuming that Irr(G/H®) has a character x of
degree divisible by d, we get, as above, |G : HY| > x(1)? + 04(G) > d? + 2d >
wd = |G : H|, a contradiction. Thus H® = K and |G : H¢| = 04(Q), as desired.
The solvability of HS follows from Remark 1.

Let, in addition, w = p, a prime. Suppose that H is not normal in G. Then
by the result of the previous paragraph, 04(G) = |G : H®| is a proper divisor
of |G : H| = pd. Since d divides g4(G), it follows that 04(G) = d, and G is a
Frobenius group with kernel HS, by [K], Theorem 37.5.5. [ |

Remark 4: Let H be a nontrivial subgroup of G. Suppose that, for every non-
linear p € Irr(H), the degrees of all irreducible constituents of u© are divisible by
d > 1. We claim that H is solvable. Let x € X;. By assumption and reciprocity,
all irreducible constituents of xp are linear. Hence, H' < K = x_ ker(x).
Therefore, as in Remark 1, H < G(r'), where r is a prime divisor of d, and so
H' is solvable. In that case, H is also solvable, as claimed.
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Let G contain an elementary abelian subgroup A of order 24 such that G/A =
PSL(2,5) and the class number of G is 9. Let H be a subgroup of index 2 in A
and d = 15; then |G : H| = 8d. If p is a nonprincipal irreducible character of H,
then u® = 2(x1 + - -- + x4), where Irr(u®) = {x1,...,x4} and x;(1) = 15=4d
for i = 1,...,4. In the case considered, H® = A, |G : H®| = |G : A] = 60 =
4d = 015(G) and Irr(G/H®) = X;s, since the degrees of irreducible characters
of G are 1,3,3,4,5,15,15,15,15.

See also in [BZ], §10.4 for related results.
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