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ABSTRACT 

The 1956 Busemann-Pe t ty  problem asks whether  symmetr ic  convex 

bodies in R n with larger central hyperplane sections must  also have greater 

volume. The solution to the problem has recently been completed, and the 

answer is negative if n > 5 and affirmative when n < 4. We show a more 

general result, where the inequalities for the volume of central sections are 

replaced by similar inequalities for the derivatives of the parallel section 

functions at zero. The dimension of affirmative answer goes up together 

with the order of the derivatives. The proof is based on a version of Par- 

seval's formula. 

1. I n t r o d u c t i o n  

The Busemann-Petty problem (see [BP]) asks the following question. Suppose 

that  K and L are origin-symmetric convex bodies in ~n such that  

voln_l(K N ~• _< voln_l(L N ~• 

for every ~ from the unit sphere S n-1  in X", where ~• = {x E ]~'~ : (x, ~) -- 0} 

is the central hyperplane perpendicular to ~. Does it follow that 

vol,~(K) < vol,(L)? 

The answer to the problem is negative if n _> 5, which was established in a 

series of papers by Larman and Rogers [LR] (for n > 12), Ball [Ba] (n > 10), 
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Giannopoulos [Gi] and Bourgain [Bo] (n _> 7), Gardner [Gal] and Papadimitrakis 
[Pa] (n >_ 5). Gardner [Ga2] proved that  the answer is affirmative for n = 3. The 

case n = 4 has a troubled history (see [NOT] for details), but finally Zhang [Z3] 

proved that  the answer in the four dimensional case is affirmative, and, a little 

later, a unified solution to the Busemann-Petty problem was given in [GKS]. 

The proof in [GKS] is based on three major ingredients. First, the crucial 

role belongs to the concept of an intersection body and its connection with the 

Busemann-Pet ty problem found by Lutwak fLu]. This connection tells that the 

answer to the Busemann-Petty problem in R n is aff• if and only if every 

origin symmetric convex body in ~ is an intersection body. 

Secondly, it was proved in [Kol, Th. 1] that an origin symmetric star body K 

in R '~ is an intersection body if and only if It" I1K 1 is a positive definite distribution, 

where []. [[K is the Minkowski functional of K. This result allows one to check 

whether a given body is an intersection body by means of direct computations. 

This was then applied to certain classes of bodies in [Kol, Ko2, Ko3]. 
Finally, the following result of [GKS, Th. 1] established a connection between 

the Fourier transform of powers of the Minkowski functional and the derivatives 

of the parallel section functions. 

THEOREM A: Let K be an origin-symmetric star body in ]~  with C ~ boundary, 

and let k 6 NtA{O}, k ~ n - 1 .  Suppose that ~ 6 S n- l ,  and let AK,~ be the 

corresponding parallel section function of K (see definition in Section 2). 

(a) I f  k is even, then 

(llxll~+k+l)^(~) = (--1)k/27r(n -- k - 1)A~le(0); 

(b) i f  k is odd, then 

(][x[[~:'~+k+l)^(~) ---- (--1) (k+l)/2 2(n -- 1 -- k)k! 

I I  Z 2 

fo ~ AK,e(z) - AK,r - AK,~(O)~. " - A(Kk,~I)(o) zk-1 
z k + l .  - -"  (k-l)! dz, 

where A~!r is the derivative of the order k of the parallel section function at 

zero, and ([[x[[~:~+k+l) i is the Fourier transform in the sense of distributions. 

The proof of Theorem A in [GKS] is simple and based on the technique of 

fractional derivatives. Another short proof was recently given in [BMF]. 

The solution to the Busemann-Petty problem shows that starting from dimen- 

sion 5 it is not enough to know that  AK,e(O) <_ AL,r for every ~ 6 S ~-1 to 
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conclude that  the volume of K is smaller that  the volume of L. The reason is that  

convexity controls only the second derivatives of parallel section functions (the 

Brunn-Minkowski theorem tells that  these second derivatives are negative at zero; 

put n = 4, k = 2 in Theorem A to get the affirmative answer to the Busemann-  

Pet ty problem in the dimension 4; a counterexample in the case n = 5, k = 3 

requires a little extra work). 

This article was motivated by a question of what one has to know about  the 

behavior of the parallel section functions of the bodies K and L at zero to make a 

conclusion about  the relation between the volumes of K and L in every dimension. 

In Section 3 we offer the following answer to this question. 

THEOREM 3: Le t  K and L be (k - 1)-smooth origin s y m m e t r i c  convex  bodies in 

~ such that ,  for every  ~ E S n-I ,  

(1) (-1)(k-1)/2A~,~l) (0) _< (-1)(k-1)/2A(k~ 1) (0), 

where k is an odd integer and 1 < k < n -  1. Then  

(i) i l k  > n - 3 then voln(K) __ voln(f) ;  

(ii) i f  k < n - 3 then i t  is still  possible that  voln(K) > voln(L). 

The condition (1) can be formulated for every k E (1, n) in terms of fractional 

derivatives, but we avoid this language in order to simplify our statements.  Also, 
A(k-l)  (Lk~ 1) if k is an even integer then "~K,~ (0) = A (0) = 0 for every ~ E S n - l ,  so the 

condition (1) does not make sense for even k. In this case one can replace the 

condition (1) by an inequality involving integrals from the part  (b) of Theorem 

A. 

If we put  n = 4 and k -- 1 in Theorem 3, we get an affirmative answer 

to the four dimensional Busemann-Pet ty  problem. The case n = 5, k = 1 

of Theorem 3 confirms the negative answer to the Busemann-Pet ty  problem 

in the dimension 5. Therefore, Theorem 3 represents a generalization of the 

solution to the Busemann-Pe t ty  problem. We actually prove that  if, in addition 

to the condition (1), we know that  [[X[IK k is a positive definite distribution, then 

vol~(K) _< vol,~(L). The property that  [[xl[~ k is positive definite was studied 

for different norms in [Ko4]. In particular, [[X[IK k is positive definite for every 

k E (0, n) if K is the unit ball of any n-dimensional subspace of Lp with 0 < p < 2. 

In view of this fact, we also obtain a generalization of a result from [Kol, Th. 2] 

that  the answer to the Busemann-Pet ty  problem is affirmative if K is the unit 

ball of any finite dimensional subspace of Lp, 0 < p < 2, and L is any symmetric  

star  body. 
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We show that  Theorem 3 is a simple consequence of a version of Parseval 's 

formula (see Lemma 3 below), the proof of which is purely Fourier analytic. 

Theorems 1 and 2 generalize Lutwak's results [Lu]. In Section 4 we further 

clarify the geometric sense of what happens in previous sections by introducing 

a concept of a k-intersection body. 

2. A v e r s i o n  o f  P a r s e v a l ' s  f o r m u l a  on  t h e  s p h e r e  

Let K be a body that  is starshaped with respect to the origin in R n. The 

M i n k o w s k i  f u n c t i o n a l  of K is given by 

Ilxllg = min{a > 0:  x e aK},  x e R ~. 

We call K a s t a r  b o d y  if I1 IlK is continuous on S n-1 and K contains the origin 

in its interior. 

For every ~ E S ~-1, the pa ra l l e l  s ec t ion  f u n c t i o n  AK,~ is defined by 

z --+ AK,~(z) = vo~(K fq {~• + z~}), z e R. 

For k E N U {0}, we say that  a body K is k - s m o o t h  if the restriction of the 

Minkowski functional to the sphere S n-1 belongs to the space c ( k ) ( s  '~-1) of 

continuously differentiable up to to the order k functions. If a similar condition 

holds with k -- c~ we say that  K is in f in i te ly  s m o o t h  (or has Ca-boundary . )  

As usual, we denote by S the space of rapidly decreasing infinitely differentiable 

functions on R n with values in C. We use notation and results from [GS]. By 

S I we denote the space of distributions over S. The Fou r i e r  t r a n s f o r m  of a 

distribution f is defined by (] ,  ~) = (27r) n (f, qo) for every test function qo. If a 

test function qo is even, we have 

(q5) ̂  = (27r)~qo and (] ,  ~> = (f,  ~> 

for every f E S ' .  

A distribution f is called e v e n  h o m o g e n e o u s  of degree p E IR if ( f (x) ,  r  

= Itln+p(f, r for every test function r and every t E ]R, t # 0. The Fourier trans- 

form of an even homogeneous distribution of degree p is an even homogeneous 

distribution of degree - n  - p. 

A distribution f is called p o s i t i v e  def in i t e  if, for every test function ~o, 

( : ,~ ,  ~(-z)) > 0. 
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By L. Schwartz's generalization of Bochner's theorem, a distribution is positive 

definite if and only if its Fourier transform is a positive distribution (in the sense 

that  (f,  ~} > 0 for every non-negative test function ~; see, for example, [GV, 

p. 152]). On the other hand, every positive distribution is a tempered measure, 

i.e. a Borel non-negative, locally finite measure 7 on R '~ such that,  for some 

~ > 0 ,  

9fR ( 1 + Ilxll2) -~ d~/(x) < 00, 
n 

where II" 112 stands for the Euclidean norm (see [GV, p. 147].) 

We need a few remarks on Theorem A. 

Remark 1: (i) It follows from Theorem A (for integers p) and Theorem 2 from 

[GKS] (for non-integers p), that  if an origin symmetric star body K is infinitely 

smooth then (]lXllgP) ̂  is a continuous function on the sphere S n-1 for every 

p e (0, n). 

(ii) The condition of Theorem A, that K has Ca-boundary ,  can be weakened. 

It is enough to assume that  the body K is k-smooth to prove the statement 

(a). In fact, if K is k-smooth, it is easy to see that the function AK,~ is k times 

differentiable in a neighborhood of zero. Also, the integral (7) in [GKS] converges 

to A(Kk,~I)(0) when q -+ k - 1 (replace n by k in that formula). 

(iii) Also, if K is k-smooth, then A~I~(0 ) is a continuous function of ~ on 

the sphere. If k is an even integer, then, by the statement (a) of Theorem A, 

(llXllK~+k+i) ̂  is a continuous function on the sphere. 

(iv) Another consequence of Theorem A is that if k is even, K and Kin, m E N 

are k-smooth star bodies such that the distance between the functions I1" IlK and 

I1" [IKm in the space C(k)(S n-l)  approaches zero as m -+ oc, then the distance 
between the functions (llXllg~+k+l) ̂  and -n+k+l ^ (llx[IN,~ ) in the space C(S '~-1) 
also has limit zero. We can choose the bodies Km to be infinitely smooth. 

Let K be an origin-symmetric star body in ]R n. Define a function #g(~)  = 

( e x p ( - I I x  II ^ (4). 

LEMMA 1: Suppose that an origin-symmetric star body K has Ca-boundary. 
Then the function ~t g is continuous and integrable on R '~. 

Proof." Let n be an even integer. Consider a function 

F(x) = A( +2)/:exp(-Ilxll 4 )  = h(x)exp(-Ilxll4), 

where A is the Laplace operator and h is a locally integrable function on l~ ~ (it is 

a combination of homogeneous functions of degrees higher than - n  + 2) which is 
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continuous on the sphere S n-1. Hence, F is integrable on ~= (see Remark 2), and 

the Fourier t ransform of F is a bounded function on R n. Using the connection 

between the Fourier transform and differentiation we see that  

= 

Therefore, there exists a constant C so that  I#K(X)I < CHxH2 n-2 for every 

x C ]~n. Since exp(-] lx]]~) is integrable on R n, #K is also a continuous function 

and is locally integrable, so the result follows. A similar argument (with A (n+1)/2) 

works in the case where n is an odd integer. | 

Remark  2: We repeatedly use the fact that  if 0 < p < n and f is a continuous 

on S '~- 1 homogeneous of degree - p  function on E ~, then f is locally integrable 

on ]~n. Moreover, if # is a bounded integrable function on R ~ then the integral 

fR= f(x)#(x) dx converges absolutely. In particular, if # g  is the function from 

Lemma 1 then, for every p C (0,n), we have 

IlxH2n+Pt#K(x)t dx = rP-lltt(rO)I dr dO < cx3, 
n ~ . - - i  

so the function 0 ~ f o  rP-1]#(rO)l dr belongs to the space LI(S '~- I ) .  

LEMMA 2: Let 0 < p < n and K be an in~nitely smooth origin symmetric s tar  

body in R "~. Then for every 0 E S ~-1 

r ( ( n  - p)/4) = tP-l K(tO) dt. 
4 

Proof: For any test  function r E S(R ~) consider the integral 

(2) 9[R #K(X)( /o~t'~-v-lr dt) dx. 

This integral converges absolutely by Lemma 1 and Remark 2, since the inner 

integral is a continuous on S '~-1 and homogeneous of degree - n  + p function of 

the variable x. First, let us write the integral (2) in spherical coordinates (v, 0) 

(we make a substitution z = rt in the inner integral). We get 

(2) : /Sn_l I Io~176 dT) ( /o~176 dz) dO. 
Now let us write the same integral in a different way. Note that ,  by Remark  

l(i), (]]XHK'~+P) ̂ is a continuous function on S =-1, homogeneous of degree - p ,  
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and that  (exp(-t4I{xll~))^(~) = t-~pK(~/t). We have 

(2)= fo~t~-P-l( f~ r dx) dt 

= fo~ t~-p - l (~  r d~) dt 

-= ~oot'~-P-'( f~ r dy ) dt 

= ~ ~)(y)( foootn-P-lexp(--t4]lyll4K) dt) dy 

_ r((n ~p)/4) s iMl~+pS(y) d y  - r((n -4 p)/4)(llyll~+p ~;) 

_ P((n -4 p)/4) \,,,,K,/{IlY II--n+p~A, r - -  P((n -4 p)/4) &fo '""KJ~,S'W"~/(IIxlI--n+p~A(f~(f~ d~ 

F((n ~ p ) / 4 )  
- (llxll2+p)A(0) rn-P-lC(rO) dr dO. 

4 n - 1  

Now if we put qh(x) = u(r)v(O) in both expressions for the integral (2), where v 

is any infinitely differentiable function on the sphere and u is a non-negative test 

function on 11~ with compact support, we get 

fs~_ t (fooorP-l,K(rO)dr)v(O)dO-['((n-p)/4)4 fs~-i (llx'lKn+p)A(O)v(O) dO 

for every v E COO ( S~- I ). | 

LEMMA 3: Let K and D be origin symmetric star bodies with C~176 
in l~ '~ and 0 < p < n. Then 

s ~ _ l ( l l x l l ~ P ) ^ ( O ) ( l l x l l g ~ + p ) ^ ( o )  dO -- (2~) ~ fs~-~ 11011~:'II0115~+P dO. 

Proof: Passing to spherical coordinates we get 

(3) _P((n-p)/4) fs IIOII~PlIOII5 ~+p dO. 
n - 1  

Let 7, be the standard Gaussian density with variance e; then the convolution 

exp(-lJxJl~) * % is a test function. We now use the fact that  (llxtl~P) ̂ is a 

continuous on S n-1 homogeneous of degree - n  + p function (Remark 1(i)) and 
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the dominated convergence theorem to get a different expression for the integral 

in the left-hand side of (3): 

jfR llxlIKPexp(--Ilxll 4) dx = lim(llxllKP, exp(--IlxllaD) * %) 
n E--~U 

1 
= lim ((HxI[~P)^ (~), #n  (~)exp(--el]~]]2)) 

e--~O 

= lim 1 f JRo 

- (2r) n n(llXlIKP)A(~)#D(~) d~ 

1 
- - (2~)  n JfS '~-I(IIxlI~p)^(O)(9~O rP-1/~D(rO)dr)dO. 

The result follows from Lemma 2. | 

Instead of the argument with Gaussains in the proof of Lemma 3, we can apply 

Lemma 1 from [GK] and note that the convolution of ][XHg p and exp(-l lxl]~) is 

a continuous function, since it is the Fourier transform of an integrable on ~'~ 

function ([Ix I[ g p) ̂  (~) ~tD (~)" 

Remark 3: Suppose that  K is an origin symmetric star body in ~= and 1 < k < 

n -  1, k C N so that  the distribution ]IXHK k is positive definite. Then the Fourier 

transform of I]xllg k is a tempered measure 7 on R '~ which is also a homogeneous 

distribution of degree - n  + k. Writing this measure in the spherical coordinates 

(see, for example, [Ko4, Lemma 1]) we can find a measure 70 on S n-1 so that  

for every even test function 4i, 

((IIxIIKk) A, (~) = (7, (~) ---- dT0(0 ) rk-l(~(7"0) d r .  
n- i  

COROLLARY 1: Let k E N, 1 < k < n - 1 and suppose that K and D are origin 
symmetric star  bodies in ~= such that D is ( k -  1)-smooth and li" ilK k is a positive 
definite distribution. Suppose that 70 is the measure on S '~-1 de/~ned in Remark 

3. Then 

(4) [ (llxllh + )^(o) dTo(O) = [ 11o11  11o115 co. 
Js  ,~-1 J S , ~ - I  

Proof: Let Dm be a sequence of infinitely smooth symmetric star bodies approx- 

imating D in the sense of Remark 1 (iv). Also consider any sequence of infinitely 

smooth symmetric star bodies Kj C K, j E N approximating K in the Hausdorff 

metric. For every even test function r the sequence of integrable (by Remark 2) 



Vol. 110, 1999 SECTIONS OF CONVEX BODIES 83 

functions IIxii~klr is majorated by an integrable function ]lxii~:klr By 

the dominated convergence theorem and Remark 3, 

s // (5) --4 Ilxll~kr dx = '70(0) rk - l r  dr dO, 
n n - - 1  

as j --4 cx~. Since the bodies Dm a r e  infinitely smooth, 

era(x) = u(r)(llxll~:+k)^(O) 

is a test function, where u is any non-negative test function on R with compact 

support. Substituting Cm in (5) and passing to spherical coordinates, we get 

By Remark 1, the functions ([iXliDn+k)^(0) converge in C ( S  n - ' )  to 

(IIxlODn+k)^(0), as m --4 oo. Hence, the integral in the right-hand side of (6) 

converges to the integral in the left-hand side of (4). Now we get the result if we 

apply Lemma 3 to the left-hand side of (6) and let m --4 ~ .  i 

We need the following fact that  was proved in [Koh] (see also 

[GKS, Lemma 5]). 

LEMMA 4: For every even test function r ~ E S n- l ,  and - 1  < q < 0 we have 

fR - 1  / ?  [(~,x)[-q-lr  d x =  2F(1 + q)sin 2~ Itlqr 
n O 0  

Our next lemma shows that the Fourier transform of a homogeneous function 

of degree - p ,  whose restriction to to the sphere is infinitely differentiable is a 

homogeneous function of degree - n  + p, whose restriction to the sphere is also 

infinitely differentiable. We give a proof based on the same technique as that  of 

Theorem A in [GKS] and leading to a precise expression for the Fourier transform. 

LEMMA 5:. Let f E C~176 n - l )  be an even function and 0 < p < n. Then there 

exists an even function gp E C~176 S n - l )  such that the Fourier transform of the 

function f(O)r -p is equal to gp(O)r -'~+p. Here the function f(O)r -p is defined on 

R n in the spherical coordinates x = rO, x E ]~ ,  r E [0, c~), 0 E S '~-1. 

Proof: For every ~ E S n-1 define a function AL~ on R by 

f {  f(O) dO. Ay,~(t) = o~s~-~:(o,~)=~} 
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This  funct ion is infinitely differentiable in a ne ighborhood of zero, so, for every 

q > - 1 ,  we can define its fractional  derivative A}q~(0) of the  order  q a t  zero 
g ~  

in 

the  same  way as it was done in [GKS; Section 3]. Let  first q E ( - 1 , 0 ) .  Then  

, 2 r ( - q )  I t l - l -qAs,~(t)  d t - -  2 r ( - q )  ~-1 I(O'()l-~-qf(O) dO. 

We now consider A(q~(0) as a function of ~ E N '~ "-{0} so tha t  it is homogeneous  

of degree - 1  - q .  For every even test  function r using L e m m a  4 we get 

(A(Yq'~(O)'r l fs.-~f(O) 

-1 fs  f: = 4r(-q)r(q-+ 1) sin ~ . - ,  f(O) ~ Itlq~(to) dt dO 

(7) = cos ~ ((S(0):~+~+l)^(~), ~(~)), 
71- 

where the last equation follows from the property r(-q)r(q + I) = -~/sin(q~) 

of the F-function and the simple calculation 

((f(O)r-n+q+l)^' r = fa~ f(O)r-n+q+lr dx 

fs  fo ~ 1 ~  fR = f(O) dO rqr dr = -~ f(O) dO Irlqr dr. 
n - - 1  n - - 1  

I t  follows f rom (7) tha t ,  when p E (n - 1,n) ,  the funct ion 

( 8 )  g.(o)  = (~/  ~ - p - 1)/2)  ) A ~  -p-1) (o) 

provides the  desired result.  A s tandard  analyt ic  extension a rgument  (see, for 

example ,  [GKS; Section 3]) shows tha t  the same function gp works for every 

p E (0, n) such tha t  n - p -  1 is not an odd integer. In the case where n - p -  1 = m 

is an odd integer,  we compu te  the  limit, as p ~ n - m - 1, in the  r ight -hand 

side of (8) in the  same way as it was done in [GKS, Th.  1]). Then  use again the  

ana ly t ic i ty  of the  Fourier t rans form of f(O)r -p in the domain  0 < Re(p) < n to 

see t h a t  the  following funct ion satisfies the condit ion of the  lemma:  

fo AL~ AY'~ " z2 " - A(m-1)(O~'Z'~-' -- -Af,o(O)-~--'" f,o ~ :(m--l)! dz, 
gn-m- l (O)  = ~ : + 1  

where  c~  = (-1) (m+I)/2 2m!. II 
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3. A g e n e r a l i z a t i o n  o f  t h e  B u s e m a n n - P e t t y  p r o b l e m  

The following two theorems generalize Lutwak's (see [Lu]) connections between 

intersection bodies and the Busemann-Pet ty  problem mentioned in the Intro- 

duction. In fact, if we put k = 1 in Theorem 1, then, in view of [Kol, Th. 1], 

the condition that  IIXllK 1 is positive definite means that  K is an intersection 

body, and the condition that  (llXllL n+l --IlXllgn+l) n is positive means that  cen- 

tral  sections of K are smaller than those of L (this was shown in [Ko6, Th. 1]). 

Therefore, the result of Theorem 1 in the case k = 1 means that  the answer to 

the Busemann-Pe t ty  problem is affirmative if the body with smaller sections is 

an intersection body, which is the result of Lutwak [Lu]. Theorem 2 with k = 1 

generalizes the other direction of Lutwak's equivalence. 

THEOREM 1: Let k be an odd integer,1 < k < n - 1, and let K and L be origin 

symmetric ( k -  1)-smooth s tar bodies in ]~n. Suppose that the distrib u tions II z II ~k 
and I[xllZ n+k - Ilzll~ "+k are positive definite. Then voln(K) _~ voln(L). 

Proo~ Let 70 be the measure defined in Remark 3. Since, by Remark l(iii), 

(llxllKn+k) A and (llXllL'~+k) A are continuous functions on S '~-1, and 

(IIXlIL n+k --IIX]lg~+k) A > 0, we have 

S~_l(llXllLn+k)^(O) d~/o(O) > L~_(llxH~n+P)^(O) d"/o(O). 

By Corollary 1, 

fsn_ 1 [lO[[~k[]O[[L n+k dO >_ L,~_ ' ][0[[~ ~ dO. 

By Holder's inequality and since ( l / n )  fs~_l [[0[[K n dO = voln(K), we have 

(voln(K))k/~(voln(L)) ('~-k)/'~ >_ vol~(K). | 

I t  was proved in [Ko4, Th. 1] that  if K is the unit ball of an n-dimensional 

subspace of Lp with 0 < p < 2, then IIX[Ig k is a positive definite distribution for 

every k E (0, n). Therefore, by Theorems 1 and A, 

COROLLARY 2: I f  k is an odd integer, 1 < k < n - 1, K,  L axe (k - 1)-smooth 

origin symmetric s tar  bodies in N n , K is the unit ball of a subspace of Lv with 
0 < p < 2, and for every ~ E S n - l ,  

( - -1)(k-1) /2A(~ 1) (0) < (--1)(k-1)/2A(k,~ 1) (0), 

then vol~(K) < vol~(L). 
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The case k = 1 of Corollary 2 confirms an affirmative answer to Meyer's 

conjecture, which was given in [Kol, Th. 4]. 

THEOREM 2: Let 0 < p < n and let L be an origin symmetric convex body in 

]~'~ with C~176 and positive curvature so that the distribution IIXlIZ p is 

not positive definite. Then there exists an origin symmetric convex body K in 

1~'~ with Coo-boundary such that the distribution IIxlIZ n+p - ItxllT~ n+p  is positive 

definite but voln(K) > vol,~(L). 

Proo~ Since (IIXlILP) A is a continuous sign-changing function on S '~-1, there ex- 

ists an open subset f~ in S ~-1 on which (IIxlIZP) m is negative. Let f E C~176 

be a non-negative (and not identically zero) function supported in f~. Let gp be 

the function corresponding to f(O)r -p in Lemma 5. 

Define a body K by 

f f  

Ilxllb +p = IlxllZ (27r)ngp(X), 

where e > 0 is small enough so that the body K is convex (a standard per- 

turbation argument is that, given an infinitely differentiable function on S '~-1, 

one can choose a small enough e so that the differential properties of the norm 

I I - I IZ n+p  equivalent to convexity of L are preserved after adding an e-multiple of 

the ( - n  + p)-homogeneous extension of this function). 

By Lemma 5 we have 

(9) (llxllZn+ ) ^ - ( l l x l l b " + ' )  ^ = e . f ( @ ' - P ,  

so the distribution IlXllL '~+p --IIXlIK ~+p is positive definite. 

On the other hand, by (9) and Lemma 3, 

~_1(t]XlILP)A(o)f(O) dO = (21r)'~en ( v o l n ( L ) -  L . _ x  ]IO]ILPlIOtI~<~+v). 

Since the quantity in the left-hand side of the latter formula is negative, we use 

Holder's inequality (as in Theorem 1) to see that voln(K) > vol,~(L). | 

We need the following fact that is an immediate consequence of Theorem A. 

COROLLARY 3: For every origin symmetric convex body K in ]R '~, the 

distribution [tX[IK p is positive definite for each p = n - 3, n - 2, n - 1. 

Proof'. If K has Coo-boundary the result follows from Theorem A (with k = 
t 

n - p  - 1) and Brunn's Theorem, which states that the parallel section function 
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of a convex body in each direction has maximum at zero (so AK,~(0 ) < 0). Now 

let K be an arbitrary convex body and approximate K in the Hausdorff metric 

by origin symmetric convex bodies Km with C~-boundaries  so that,  for every 

X e S n - l ,  the sequence IixliKm, m E N is decreasing and converges to IlXllK. 

Then, by the dominated convergence theorem (like it was done in Corollary 1), 

for every test function r 

((ll IlKm) , ( ~ ) =  ,~ IIXIIKk~(x) d x - +  . IixliKkq~(x)dx = <(I]xllK}) ̂ , r 

as m ~ co, and the result follows from the C a case. I 

We are ready to prove Theorem 3 formulated in the Introduction. Note that  it 

was proved in [Ko2, Th. 2] that if II �9 lie is the norm of the space gq, 2 < q < co, 

and 0 < p < n, then the distribution II "[Iq p is positive definite if and only if 

p E In - 3, n). We use this fact in the proof of Theorem 3. 

Proo f  o f  Theorem 3: Part (i) immediately follows from Theorems 1, A and 

Corollary 3. To show (ii), let L be the unit ball of the space with the norm 

Iixiln : IIXI[4 4- •IIXlI2, where e > 0. By the result mentioned before the proof, 

the distribution IlxiI4 k is not positive definite, therefore IixiiL k is not positive 

definite for small enough E (one can use an argument similar to that  in the end 

of the proof of Corollary 3). Using this value of e in the definition of L (the 

perturbation of the g~-norm was made to ensure that L has positive curvature) 

and putting p = k in Theorem 2 we get a body K giving the desired example 

(again use Theorem A to connect the Fourier transform with the derivatives of 

parallel section functions). | 

4. k - i n t e r s e c t i o n  bod i e s  

In this section we generalize Lutwak's definition of an intersection body of a 

star body and prove a connection with positive definite distributions similar to 

that  from [Kol, Th. 1]. Note that different generalizations of the concept of an 

intersection body were introduced by Zhang in [Z1, Z2]. 

De~nit ion 1: Let n , k  E N, 1 ~_ k < n, and let K , L  be origin symmetric star 

bodies in R n. We say that  K is a k-intersection body of L if, for every (n - k)- 

dimensional subspace H of ]R n, we have 

volk(K N H • = voln_k( i  N H),  

where H • is the subspace orthogonal to H. 
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The latter equality can be written in the following form: 

L.- ,n . l  II~ d0- k f - k J s - - , ~ .  II0llZ~+k dO. n 

If k = 1, our definition means that  K is an intersection body of L in the sense of 

Lutwak flu] (one has to divide by 2 the left-hand side of the latter equality). 

Clearly, if K is a k-intersection body of L, then L is a (n - k)-intersection body 

of K. We say that  a star body K is a k - i n t e r s e c t i o n  b o d y  o f  a s t a r  b o d y  if 

there exists a star body L satisfying the conditions of Definition 1. 

LEMMA 6: Let 1 < k < n, r be an even integrable function on •n, and H be an 
(n - k )-dimensional subspace of ]~ '~. Suppose that  r is integrable on H and that 
the Fourier transform r is integrable on H -L. Then 

(27r)k /H r dx -= /H• r dx" 

Proof: Let ~1, ...,~k be an orthonormal basis in H -~. For every t E ]~k we have 

~(t1~1 +""  + tk~k) = f r tl~l + . . .  +tk~k)) dx 
JR n 

-- L f,+.,,,+...+.,, 
This means that  the function f(t) = r +""  + tk~k) is the Fourier t ransform 

of the function g(u) = fH+,~&+-..+,~r r dx. The function f is integrable and 

even on ~ k  therefore 

L f(t) dt = (~)A(0) = (21r)kg(0), 
k 

which immediately implies the desired formula. | 

LEMMA 7: Let L be an origin symmetric s tar  body with C~176 in ~ .  
Then for every (n - k)-dimensional subspace H of R ~ we have 

(2~)k L--,~. 11~ d0 = L._,~H (llxllZ'+k)^(O) dO. 

Proof." By Lemma 2, 

~,_loH.(,I:r~Ln+k)A(8 ) dO = (4 /F( (n-  k)/4)) L ,_ ,nH • dO ~~176 dt 

= ( 4 / r ( ( n  - k)/4)) JH/~ ,~(x) dx. 
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By Lemma 6 applied to r = exp(-llxll4), the latter integral is equal to 

(~(~/~/~((~ - ~//~//,. f ox~(-II~ll~/~: (~/~ ~fololl~ ~ ~ o  

THEOREM 4: Let K be an origin symmetric star body with C~176 in 

R ~, and 1 < k < n - 1. The body K is a k-intersection body of a star body if 

and only if the distribution HX[[K k is positive definite. 

Proof'. By Lemma 7, for every (n - k)-dimensional subspace H of R ~, 

1 

f~ , ~  II~ ~ s176 
It follows that  if K is a k-intersection body of L, then for every (n-k)-dimensional  

subspace H 

~n_ICIH(IIXIIKk)A(O) dO-- (27r)n-kkn- k ~n-lci H [lO[[-s dO, 

and, by [Ga3, Th. 7.2.3], for every 0 E S n - l ,  

(27r)'~-kk 0 n+k 
(10) (llxll~-k)"(o)- ~__~ 11 IIZ 

which means, in particular, that [IX[IN k is positive definite. 

Conversely, if the distribution []X[[g k is positive definite we can define the body 

L by (10), since, by Remark l(i), ([IX[[gk) i is a continuous function on S ~-1. 

The result follows from Lemma 7. | 
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