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1. I n t r o d u c t i o n  

A property of certain summability matrices and integral transforms has been 

discussed and applied in various situations for over fifty years. The property 

has been given various names, the one of most frequent occurrence being 

" the mean value proper ty" ,  a free translation of Mittelwertsatz. Applications 

of  the property have been made to the study of inclusion and equivalence 

theorems, convergence and summability factors, Tauberian theorems and 

other classical topics. A survey of the history and applications may be found 

in [,25], w pp. 42--45, and w p. 65. I would like to mention specifically 

that W. Jurkat, A. Peyerimhoff, and K. Zeller have played an important role 

in these applications, for example in [,7], ['8], [,11-], [,23], [-24]. 

The present article is an essentially self-contained generalization (not new 

in every case) of the mean value property and many other properties which 

are equivalent to it. Specifically, we shall define subsets B, If, F, S, and others, 

of the convergence domain cA of  a matrix A. Many of these have been consi- 

dered earlier, sometimes with restrictions on the matrix A. The mean value 

property is, simply, B = c a. Various authors have shown that this is equivalent 

to each of the assumptions 1 i = cA, F = cA,and one of the type S E) 1 = cA. 

Our aim is, first, to study these sets in the more general case in which they 

are not assumed to fill up cA, to obtain relations between them, and thus to 

generalize the known results. 

Secondly, we ask which of these sets are invariant, i.e. depend only on cA 

and not on A, and which of the invariant sets can be given an invariant defi- 

nition so that they can be defined for more general sequence spaces. 

Our work has bearing on the problem of characterizing convergence do- 

mains among FK spaces . Certainly all the results given will be necessary. 
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No really satisfactory set of  sufficient conditions is known to the author. 

For example, if X is an FK space such that dim X/c  = d i m X / m  < 0% 

then there exists A such that X = c a. [17]. 

2. S t a n d a r d  d e f i n i t i o n s  

W~ recall that an FK space is an F space (i.e. a locally convex linear complete 

metric space) which is also a sequence space with continuous coordinates; 

"sequence"  means "sequence of complex numbers" .  

For example, consider c, the space of  convergent sequences with 

]]x]] = s u p ] x , [ .  Since, for each n, [x,[ < Ilxll we conclude that c is an FK 

space, the other details, such as completeness, being familiar exercises. We 

shall also be interested in Co, m, the spaces of null, bounded sequences, 

respectively, with the same norm as c; and l, the space of sequences x with 

IIxH = ]x . I  < 

FK topologies are usually placed upon sequence spaces by means of a 

sequence of seminorms. For example, the space s of  all sequences is an FK 

space with {p,}, where p,(x)= ]x,[. 

The elementary theory of FK spaces is given in [16], Chapter 12. We 

mention, in particular, the fact that the topology of an FK space is unique, 

i.e. a sequence space has at most one FK topology. 

For k = 1, 2,. . . ,  5 k is the sequence {5 k} = (0, 0,. . . ,  0, 1, 0,...). By X ' ,  we 

mean the set of  continuous linear functionals on the linear topological space X. 

A sequence is called basic if it is a (Schauder) basis for its linear closure. 

Let A be a matrix, A =(a,k) ,  n , k =  1,2,. . .  Let Ax be the sequence 

((Ax),} where (Ax), = ~, a.kXk. (This is ordinary multiplication, treating x 
k = l  

as a column vector.) 

The following facts are given in [16], Chapter 12. The space c a = {x :Ax  E c} 

is an FK space with the property that every continuous linear functional 

f on c a has the form 

(1) f ( x )=c t l im  a x + t ( A x ) +  Z flkXk, t ~ l  

where lim4x = lim Ax = lim (Ax), ,t(Ax) = ~, t,(Ax),, (treat t as a row vector, 

x as a column vector,) and the series ~ flkXk converges for all x ~ca. 



DISTINGUISHED SUBSETS AND SUMMABILITY INVARIANTS 3 2 9  

A basic fact of the theory is that if A, D are matrices with ca = cD, A and D 

yield the same FK topology for c a. 

Although much of  the following does not require it, we shall assume every- 

where in the following work that the matrix A is conservative, i.e. ca ~ c. 

It is well known that this is true if and only if 

II A 11 sup. l I < ak = lim = l i m , , t  6t 
n.-~ O0 

exists for each k (the column limits,) and 1 ~ ca. The matrix A is called perfect 

if c is dense in ca. 
oo 

Let x(A) = l i m a l -  ~E a s = lira lira ~ a~k. If  x(A) = 0, A is eaUed conull, 
m..-~ c ~  r~--~ o o  k = m 

otherwise coregular. 

A regular matrix (i.e. l imax = limx for all x ~c) is coregular. A multipli- 

cative-z matrix (i.e. lim a x = z l i m x  for all x ~ c )  has z ( A ) = z .  A is 

multiplicative if and only if ak = 0. This follows from the general formula 

(2) l i m a x = x ( A ) l i m x  + Y_, akXk f o r x ~ c ,  

which in turn follows easily from the representation of c', see [16], 

Chapter 6, w 4, Example 5. 

If  A is reversible, i.e. one to one and onto c, we may take fl = 0 in (1), 

since c a is congruent with c. In particular, this holds if A is a triangle, i.e. 

ank=O f o r k > n ,  an~#0.  

The representation (1) is not necessarily unique, (see w even if A is a 

coregular triangle, or if A is a triangle and t = 0. However, i f f  is given by 

(1), we have, [16], Chapter 6, w Problem 25, 

(3) z ( f )  = ~ z ( A )  

where z( f )  = f ( 1 )  - ~ f ( ~ ) .  

It follows that ~ is unique if A is coregular. If  ,4 is coregular and reversible, 

there is a unique representation of the form (1) with p = 0. 

Now, for k = 1, 2, . . . ,  let x = 6 k in (1). This y idds  
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oo 

f (6  k) = ct ak + Z t, a,k + ilk. 
r = l  

Eliminating fik between this and (1) gives, for X eCA, f ec],  

(4) f ( x )=c t l imAx  + t ( A x ) +  ~'k [ f(6k)-O~ak- ~r t,a,k] X k �9 

3. Dis t inguished  subsets  

As always we are making the blanket assumption that A is a conservative 

matrix. Let 

B = x e c A : t h e r e  exists M with a,kX k < M f o r a l l m ,  n = l , 2 , . . . .  
k ! 

M may depend on x. 

F = {xecA: I~ Xk 6k is weakly Cauchy, i.e. E xkf(8 k) 

is convergent for e a c h f e  e~.} 

I = {xecA:  ~,xkakisconvergent. } 

I i = n { I  D:cn=ca}. 

L = { x e c  A:(tA)x = ~ ~, t,a,kxk exists for all t e l . }  
k r 

S = {XeCA:X= Y, xk~ ~} 

W = { x e c A : Z x k t~ k is  weakly c o n v e r g e n t ,  i .e .  Z x ~ f ( 5  k) 
! 

= f (x )  for e a c h f e c a . }  

Sometimes, if the dependence on A is in doubt, we shall write BA for B, 

and similarly for the others. This was already done in the definition of  I i. 

B is the set of  "cu t -bounded"  sequences, F is associated with "functional 

convergence", S with "strong convergence". W with "weak convergence", 

hence the initials. 

F, S, W were called, respectively, the set of all x with FAK, AK, SAK in 

[23], [11]. B, S were designated Al, A a in [24], w167 and 4.3. L was called 

A" in [4]. I was called the inset in [15]. We shall call li the internal inset. 

If  B = ca, A is said to have the mean value property. (See [25].) I f  F = ca, 

A is said to have F A K  (funktionale Abschnittskonvergenz) (See [23]). If 

I = ca, A is said to have maximal inset, and if I t = ca, A is said to have 
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P M I  (propagation of maximal inset) (See [15]) If  L = CA, A is called 

associative. (See [3], also [12] p. 56.) There has also been investigation of  

matrices A for which S = ca (i.e. {6"} is a basis for ca) or for which cA has 

as basis {6"} and another sequence u, which in some general cases may be 

taken to be 1. (See [18]). 

Many of  these properties are known to be equivalent. Their equivalence, 

together with references, will be given as a corollary to our main theorems, 

Corollary 5.9. 

Associated with I is the function A defined by A(x) --- l i m a x -  ~ al, x k for x e I. 

Clearly A(x) = lim limAx ~"), where 
B--~ OO 

X c n ) = ( 0 , 0 , ' ' ' , 0 , x n + l , x , , + 2  , ' ' ' ) = x -  ~ Xk 6k. 
k = I  

It follows from (2) that A(x) = z(A) lim x for x e c. In particular A(1) = z(A) 

and so A is conull if and onIy if 1 ~ A • 

The set A • was called A o in [24]. 

4. Pre l iminary  iemmas 

Some acknowledgments of priority are given in w 5. 

In the following, A is a conservative matrix. 

Lemma 4.1. For each x ~ L, t ~ l, we have ( tA)x  = t(Ax). 

This has been proved independently by A. Peyerimhoff, K. Zeller and the 

author. See [15], Lemma 13. 

Lemma 4.2. B = L .  

For a fixed XECA and m, n = 1,2,-.., set u,,, = ~ a~kxk. 
k = l  

: L e t  x ~ B .  If  t ~ l ,  the series Y~ trUmv is uniformly convergent. It follows, 

taking the limit as m ~ ~ ,  that ( tA)x is convergent. Hence x ~ L. 

Conversely, for x E L a n d  m = 1,2,.. , define v~, on l by Vm(t) = ~ tnUmn. 
Then IlVmll =sup]Um,[ .  Since lim Vm(t ) exists for each t e l ,  the uniform 

m--~ GO 

boundedness principle yields x E B. 

Lemma4 .3 .  F = L n l .  

This is Lemma 3 of  [3]. 
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L e m m a  4.4. I s : L. 

Let x ~Ii and t e 1. Let J be S. Mazur's matrix (J,,k) given by JM = 1,j,~ = t~ 

for k < n - 1, ink = 0 otherwise. Let D = JA.  Then c o = c a (S. Mazur. See 

[19] p. 382, lines 9-11, [5], #3 ,  or [15], Lemma 1). Thus x e I a  and so ~ dkxk 

is convergent. But (tA)x = ~, dkX k -- ~, akxk and so (tA)x is convergent 

and x ~ L. 

L e m m a  4.5. Suppose that Co c B, for  example i f  B is closed. Then 

{6 n} is basic and S = W =  6o. 

For x e B, a straightforward calculation shows that ?E Xk~k is bounded. 

In a complete space this implies that {6n} is basic; this may be applied to 6o. 

By definition of S, it follows that S is the linear closure of {~n}. Finally, ~o, 

being a dosed linear subspace is weakly closed and so W ~ Co. 

L emma 4.6. A is coregular if  and only i f  1 r W. 

If  1 E W, take f = lima in the definition of  IV. This yieldsx(A)= 0. Conversely, 

if A is conull, (3) shows that 1 e W. 

5. R e l a t i o n s  a m o n g  tke  d i s t i n g u i s h e d  s u b s e t s  

In the following, A is a conservative matrix. 

T h e o r e m  5.1. e o ~ S = W = F = t ~ B = L = P .  

T h e o r e m  5.2. c : c  A n m ~ F = L ~ I .  

That F = L n I is Lemma 3 of [3]. That  cA n m = B is mentioned in [24] 

w 5.6. That B = Lis given in [4] in case A is regular and reversible. The proof  

given here (Lemma 4.2) is probabty the one" hinted at in [9]. 

{6in} is a basis for c o in the norm topoltogy given by ~x]f = sup}xn ~, l~ence 

in the weaker topology of  r i.e. c~ = S. We also have F c I by I,emma 4.3. 

Now F has an invariant detiaition, so that F,4 = Fn if c a = ca. Thus F ~ I s. 

Also F = I (3 L D Is r3 L = I s by Lemma 4.4. The rest of  Theorems 5.1, 5.2 

is staightforward in view of the lemmas. 

The relation F = li would be trivial if we could affirm that for every f E  c,~ 

there exists D with ca = ca, dh =f(c5 k) for all k. This is, however, false even for 

f = 0. See Example 11. 
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Lemma 5.3. Let  f be a continuous linear functional on c a. Then for  

x r  - ~ x~.f(6 k) = ~tA(x), where ~t is given in (I). 

Since x c L  andx e I, by Theorem 5.1, the result follows from (4), taking 

account of  Lemma 4.1. 

Theorem 5.4. W = F N A  •  • Either F = W o r  F = W ~ ) u  for  

some sequence u. I f  A is coregular, F = W~) 1. 

Here A • means {x e ca: A(x)=  0}. It is either a maximal subspace of  I or 

is all of  I. 

The result W =  B A  A • is stated in [24], w Special cases are proved 

in [23], Satz 3.6, and i : l l ] ,  Satz 5.2. 

If  x E W, taking f = lima in the definition of  W yields A ( x ) =  0. Thus 

W c L n  3, • by Theorem 5. I. Conversely, if x ~ L n  A • x e F by Theorem 5.2, 

and by Lemma 5.3, x ~ W. Finally F n A • = L n  I n A • = L n A J-, using 

Theorem 5.2. The second result follows since F c t and so A is defined on F. 

The last result holds since A(1) = ;t(A) ~ 0. 

Lemma 5.5. I f  c o is not dense in L, L =  F v~ W. 

There existsf~c,~ with f = O  on Co, f #  0 on L. Taking x c L  in (4) we 

have, using Lemma 5.3, f ( x ) =  c t l imax-  ~ ~akXk. Since f #  0 on L, it 

follows that ~t ~ 0 and so x e I. Thus L c I, and so by Theorem 5.2, L = F. 

It  also follows that f = ~tA and A # 0 on L. Thus L r A L and so L # W by 

Theorem 5.4. 

Lemma 5.6. I f  L is closed, L = F. Hence if  L is closed and L ~  I, it 

follows that L = I. 

By Lemma 5.5, we may assume that Co is dense in L. By Lemma 4.5 and 

the fact that B = L, it follows that L = S Hence, by Theorem 5.1, L =  F. 

The last sentence is true because F c I. 

The next result extends the second part of Satz 3.4 of ]23] which is the 

special case of Theorem 5.7 in which F = 6 o. 

Theorem 5.7. Suppose that F is closed. Then S = W =  6 o. Moreover 

F has a basis which is either {6"}, in which case F = co = S, or {6"} and 

one more sequence u, in which case F = 6 o ~ u  = S ~ u .  Both cases may 
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occur with A conull; i f  A is coregular, the second case holds and u may 

be taken to be 1. Exact ly  the same conclusion holds iJ L is closed. (In which 

case L =  F.) 

If  A is coregular , A ( 1 ) # 0 ,  so, by Theorem 5.4, F =  W~)~I. H e n c e  

F = 60 ~ 1 by Lemma 4.5. If  A is conull, there are two cases to consider. 

Suppose first that A = 0 on I. Then by Theorems 5.2, 5.4, F = W .  Hence 

F = Co by Lemma 4.5. If, on the other hand, A(u )~  0 for some u ~I ,  the 
same reasoning yields F = Co ~) u. The last sentence follows from Lemma 5,6. 

The various cases are illustrated in Examples 1,2, 3,4. 

T h e o r e m  5.8. I f  any one of  S, IV, F are closed, a l l  three are ,  and the 

conclusion of  Theorem 5.7 holds. I f  L is closed, S ,  W, F are closed. 

We have Co c S c W c  Co since the strong and weak closures of  c o are 

the same. Thus if S is closed, S = W= Co. If  W is closed, it is a complete space 

hence its weak basis {6"} must be a strong basis and so W= S. By Theorem 

5.4, and the fact that F c I we see that either F = W or F = W~) u for som~ 

u. In either case F is closed if W is. Finally, if F is closed, S, W are, by 

Theorem 5.7. 

Theorems 5.7, 5.8 extend [24] w as well as the first part of [23], 

Satz 3.4. 

With one possible exception, the following corollary is known, occasionally 
with some extra assumptions on A. See [10], Theorems 3, 4, 5, [23], 

Beispiel 4.4, [18], Satz 1, [3], Lemmas 4, 6, and Theorems 2, 3, and [ 1 5 ]  

Lemma 16. 

The exception is the sufficiency of iiL This improves [3], Theorem t which 

gives it under more restrictive hypotheses. 

C o r o l l a r y  5 .9 .  The following are equivalent conditions f o r  a con- 

servative matr ix  A. 

i. A has P M I  (i.e. I s = ca) 

ii. A has F A K  (i.e. F = ca) 

iii. A is associative (i .e.L= ca) 

iv. A has the mean value property (i.e. B = ca). 

v. c a has as basis {6"}, or {6"} and one more sequence u eL. (Thus 

S = CA or S ~ u = CA.) 
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Furthermore  W = c A i f  and only  i f  S -- ca and these are true i f  and only  

i f  A = 0 and any one o f  the f irst  f ive conditions holds. (111 this case eA haS 

{ ~ )  as basis.) 

i and ii are equivalent because F = I I. iii and iv are equivalent because 

L =  B. ii implies iii because F c L, and iii implies ii by Lemnia 5.6. ii implies 

v by Theorem 5.7. Finally, if v holds, either S--CA or S ~ u = cA, either 

one forcing iii. 

R e m a r k s .  I. If  A is eoregular, v may be written: cA has {t~ ~} and one 

more sequence u as basis. Indeed we may take u = 1. (See Theorem 5.7). 

II. If  in v the condition u ~ Lwere omitted, then v would no longer be suffi- 

cient to imply the other parts. (Example 12.) It is an eight year old con- 

jecture [-18], p. 262, that u e l  may be substituted for u eL .  (See Remark I.) 

III. A sufficient condition for an affirmative answer to the conjecture in 

II is L ~  S. (Compare Lemma 5.5.) 

T h e o r e m  5.10. Suppose  that A is a regular matr ix ,  or more general ly  

that  there exists a regular  matr ix  D such that c u = CA. Then  L =  F. 

The hypothesis ensures that 1 ~ ~o since limo is continuous, vanishes on 

c o but not at 1. The result follows from Lemma 5.5 since 1 e L. 

I do not know whether L =  F for every coregular matrix. In Example 9, 

Lv~ F. 

Example 11 shows that the converse of Theorem 5.10 is false even if A is 

assumed coregular. 

6. T w o  m o r e  d i s t i n g u i s h e d  s u b s e t s  

Let 

F ~ = {x ~ CA: ~ xkf((5 k) is convergent for e a c h f ~  c~ for which ct, in (1), is 0.} 

P = x ~ cA: ( tA)x  = t (Ax)  for all t E l such that ( tA)y  exists for all y e ca}. 

In connection with the definition o f F  ~ it must be noted that ~t is not uniquely 

determined by f .  Any f for which a representation (1) exists with ct = 0 is 

eligible as a test function for determining membership in F ~ See w for 

further information on the uniqueness of ,t. 

T h e o r e m  6.1. L =  F ~ 

Let x e L and f e  c~ with ct = 0. From (4), ~ xd'(t~ k) is convergent, and 
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so x ~ F  ~ Conversely, for t e l  de f ine fEc~  by f (x)  = t(Ax). For x e F  ~ 

( tA)x = ~?E t ,a ,kxk= ~, x~f(6 k) is convergent, hence x EL. 
k �9 

We next observe that P is the largest of the distinguished subsets. 

Theorem 6.2. L c P .  

This follows from Lemma 4.1. 

T h e o r e m  6.3 .  ~ c P and P is closed. I f  A is coregular, P = & 

Let t E l have the property that ( tA)x exists for all x E c a. Define ft  by 

r = ( t A ) x -  t(Ax). It is continuous, by the Banach-Steinhaus closure 

theorem, henceft  • is closed. Since P is the intersection of all such sets P is 

closed. Since c c P, it follows that ( c  P. 

Next, assume that A is coregular and l e t f E  c~ sa t is fyf  = 0 on c. By (3) and 

(4), f ( x )  = t(Ax) - (tA)x for all x E ca, and so, by definition of  P, f = 0 on 

P. This proves that P = (. 

We can now improve Theorem 5.8 in the eoregular case. 

Corollary 6.4. I f  A is coregular, c is dense in all the distinguished 

subsets, and if  any one of  S, W, F, L is closed then F = L = P. 

Theorem 6.3 generalizes the following result of Coomes and Cowling. This 

was given (with a serious misprint) as Lemma 1 of [3]. 

Corollary 6.5. A coregular matrix A is perfect if and only if P = c A. 

Forms of  the next result have been given in many places. Probably its 

first formulation (a special case of Corollary 6.6) was given in I-4]. 

Corollary 6.6. A coregular matrix  with the mean value (or equivalent) 

property is perfect. 

This follows from Corollary 6.4. 

For  conuU matrices the result is false. Example 3. Indeed a multiplicative- 

0 reversible matrix cannot be perfect since lima ----- 0 on c but not on ca. 

The next result extends the first part of Lemma 5.5 (in view of Theorem 6.2). 

It has the additional advantage that its hypothesis is invariant (see w and 

so its conclusion is L~ = F for all D with c D = cA. 

Theorem 6 ,7 ,  I f  e o is not dense in P, L =  F. 
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(In  case A is coregu[ar, the hypothesis is, by Theorem 6.3, equivalent to 

the assumption that c o is not dense in c. This implies the hypothesis of Theorem 

5.10.) 

There ex is t s f~  c~ with f =  0 on co, f ~  0 on P. Now if ~ = 0 for this func- 

tion, we would have, from (4), that f =  0 on P. Thus ct :~ 0. For x ~ L, it 

follows from (4) that x e l .  Hence L c  I.  By Theorem 5.2, L =  F. 

T h e o r e m  6.8. c o is dense either in L or a maximal  subspace of L. 

I f  A has maximal  inset, replace L by P in this sentence. 

L e t f ~  c'a,f = 0 on c o. Then for x ~ Lwe have f (x )  = ~lim A x -  ~ ~akxk = 0 

or ~A(x). Thus Co has codimension at most  one. 

If  A has maximal inset and f = 0 on c o we have, for all x, 

f ( x )  = otA(x) + t(Ax) - (tA)x. 

For x ~ P, f ( x ) =  ~A(x) and the conclusion follows. 

T h e o r e m  6.9. I f  A sums no bounded divergent sequences, then 

L =  P = F = c, and these sets are also closed. 

This follows from Theorem 6.3 and the fact that A is coregular and c is closed, 

[17] Theorem 1. It  also follows from w of [24] which says that if B has 

any unbounded sequences in it, it also has bounded divergent ones. 

Another result of  the same type is [24], w which says that if W r  c, 

then Wq: m. 

7. I n v a r i a n c e  

Two problems arise in connection with any property or object attached 

to a matrix A. 

I. Is the property invariant ? i.e. is it a property of ca rather than of A? 

For  example "coregular"  is invariant. I f  A is coregular and co = c~, then 

D is coregular. This follows from (3). The topology of ca is invariant. 

II. I f  a property is invariant, find an invariant expression for  it, i.e. one 

not mentioning A, so that it can be associated with an arbitrary F K  space. 

For  exampIe F was essentially given an invariant definition. For any linear 

topological space X including {6"} we can define F to he {x c X: ~ xkf(c5 k) 
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converges for all f e X ' } .  We are using here the very important fact that 

the FK topology of ca is invariant. 

It was pointed out by A. K. Snyder, 1"13], that a solution of Problem II for 

"coregular" is given by Lemma 4.6, above. A similar observation is made 

in ['21]. 

S, W, F are all invariant and have invariant definitions. 

If  A is coregular P is invariant and has the invariant expression P = ~. 

I s is invariant and has the invariant expression I s = F. 

We shall now see that L is invariant in a wide variety of cases. I do not 

know whether L is always invariant. It is interesting that even though I is 

definitely not invariant (Example 6) and the invariance of L is in doubt, still 

L n  I is invariant by Lemma 4.3. 

Theorem 7.1. 

L be invariant. 

i. 

ii. 

iii. 

iv. 

V. 

Any one of the following conditions is sufficient that 

A is coregular 

c o is not dense in P 

P # 6  

Lo is closed for all D with co = ca. 

A has mean value (or equivalent) property. 

In addition ii, iii, iv, v each imply that L= F. O.e. Lo = F for all D with 

C D .~ CA. ) 

It should be pointed out that i does not imply ii, indeed Co may be dense 

in ca. Example 11. 

Suppose that A is coregular and that co = CA. Let t e l  and define 

fec'o = c~ by f ( x ) =  t(Dx). In (1) with D instead of A, 0c--~t~f) = 0. By 

(3), x(f) = 0. Again by (3), ~.4(f) = 0. By Theorem 6.1, for any x E LA, Y- xd'(6 ~) 

is convergent. But ~ x~(6  ~) is (tD)x, thus x ~ Lb. This shows that LA = Lo 

and by symmetry, L is invariant. 

The rest of Theorem 7.1 follows, respectively, from Theorem 6.7, Theorem 

6.3 (with Theorem 6.7), Lemma 5.6, and Corollary 5.9. 
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C o r o l l a r y  7.2. I f  L is not invariant, A is conull, P = c0, LD is not 

closed for  some D with cD = cA, and L o ~ c D for  all D with c D = cA. 

A special type of invariance is contained in the next result. 

Theorem 7.3. I f  J, A are conservative matrices and D = JA, then 

LD D La. In particular if A, D are conservative triangles with cD = ca, 

then Lo = La. 

m m 

I I IIJ II sup k~l ankxk , proving Ba c Bo. 

Since B = L, the result follows. 

The first sentence in the statement of  Theorem 7.3 does not imply that 

cD ~ cA. (Agnew, Szasz, et al. See [12], pp. 56, 57.) Of course co D L A is clear 

since for x s L A ,  Dx = J ( A x )  by Lemma 4.1. 

Unfortunately Theorem 7.3 does not prove the invariance of L since it is 

possible to have A, D with c A = c D and no J. An easy example is D = identity 

matrix, A = D with d l i  replaced by 0. 

Of  the various equivalent conditions listed in Corollary 5.9, only PMI  

and F A K  are obiously invariant. Of course it follows immediately that all 

five conditions are invariant. 

Corol lary 7.4. PAIl, Mean value, Associativity, F A K  and the basis 

property of Corollary 5.9, part v are all invariant. 

Theorem 7.5. Continuity of A on c is invariant. More specifically, 

A = 0 on c if and only if A is conull. I f  A is coregular, A is continuous on 

c i f  there exists a regular matrix D with c o = c a. 

Thus A is continuous on c in all but a pathological case (which may happen [ 

Example 11). 

The first statement follows from (2). I f a  regular matrix D exists with c D = ca, 

then, using (2) for x e c, Aa(x)= x(A) l imx = x(A)lim ax, hence AA is con,  

tinuous on c. The converse is given in [15], Theorem 15. (Replace (I) by c.) 

Part ii o f  the following theorem is well known. 

Theorem 7.6. The  following are invariant properties of A. 
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i. ~. ank is uniformly c o n v e r g e n t .  
k 

ii. ~, [a,:k[ is uniformly convergent. 
k 

Indeed i is equivalent to 1 �9 S, ii is equivalent to c A ~ m. 

It  is a straightforward check, which we shall omit, that i holds if and only if 

p ( 1 -  ]~ 6k)--*0 for each of the seminorms p which define the FK to- 
k = l  

pology of CA. 

Clearly ii implies i but not conversely, even for conservative triangles. 

T h e o r e m  7.7. Let A be eonull. Then if F is closed, ~, ank is uni- 
k 

formly  convergent. 

By Theorem 5.7, S = W. By Lemma 4.6, 1 �9 S, and the result follows from 

Theorem 7.6. 

8. U n i q u e n e s s  o f  ~ and t. 

We mean, by saying that ~ is unique, that in (1), ct is uniquely determined 

by f.  I f  A has the property that A = 0, as in Example 4, then clearly ct is not 

unique for A. 

Theorem 8.1. I f  ~t is not unique, L=  W, in particular L c  A • , and A is 

conull. 

I f  ct is not unique there is an expression for 0 of  the form (4) with ~ = l, 

i.e. lim,~x + t ( A x ) -  ~ (ak + ~, trark)Xk=O. For x � 9  this says A ( x ) = 0 .  
k r 

Thus L c  A L and so L =  W by Theorem 5.4. A is conull by Lemma 4.6. 

On the other hand t is never unique in (4) since we may add to it any sequence 

s such that s (Ax )=  (sA)x for all x �9 cA; any finite sequence would do for 

example. In (1), t may be unique once the sequence {ilk) is specified; for exam- 

ple, this is true if A is reversible, in which case we may take flk = 0 for all k. 

9. R e p l a e e a b i l i t y  

We shall call a matrix A replaceable if there exists a multiplieative matrix 

D with cD = ca. Thus a coregular matrix is replaceable if and only if there 

exists a regular matrix D with cD = CA, while if A is conull any multiplieative 

D with c .  = CA must be mult ip! icat ive-  0. These facts follow from the 

nvariance of coregularity. 
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Replaceability is invariant. 

T h e o r e m  9.1. I f  Co is not dense in P, A is replaceable. 

Note that a replaceable matrix need not be coregular. 

In the proof  of Theorem 6.7 it is shown that there exists f e  c~4 with f = 0 

on c o, c~ ~ 0. The result follows from [-22], Satz 5.3 b. 

Note. Under the hypotheses of Theorem 9.1, the quoted construction 

shows that if A is a triangle, the equipotent multiplicative matrix can be 

made a triangle. This is not true of all replaceable triangles ([5], w but 

is, if the triangle is coregular. Indeed if A is a coregular matrix and there is 

a triangle anywhere among the class of matrices D with eo = CA, then any 

matrix D with co = ca has an equivalent triangle. ([15], Lemma 7.) 

T h e o r e m  9.2. Let A be eoregular. Then A is replaceable if and only 

if c o is not dense in P. 

Since P --- ~ this follows easily from [15], Lemma 11. 

Theorem 9.2 is false if coregu]ar is replaced by conull, i.e. the converse 

of Theorem 9.1 is false. SeeExample 4. 

Theorem 9.2 shows that if A is coregular and Co is not dense in P, then c o 

is not even dense in F, indeed 1 r Co since A is replaceable. 

L e m m a  9.3. I f  ~,akxkis bounded for all x~[,  I is closed. I f  A is perfect 

and ~ akXk is bounded for  all X~CA, A has maximal  inset. 

Let u , (x )=  ~ akXk. Then (u,} is equicontinuous on i and so 
k = l  

I = {x: lim u,,(x) exists} is closed. The second sentence follows since c c I. 

Example 9 shows that "per fec t"  cannot be dropped in the second sentence 

and that 2~ akx~ may be bounded and divergent. 

L e m m a  9.4. I f  i c L, I, F are closed, F = I and S = W = A • 

Since L =  B, we see that ]~ akX k is bounded for all x 6 i. By Lemma 9.3, 

I is closed. By hypothesis, then, I c L, hence, by Theorem 5.2, I = F. Thus 

also F is closed and the rest follows by Theorems 5.8 and 5.4. 

L e m m a  9.5. I f  A is coregular and I is closed, A is replaceable. 

A is continuous on I. The result follows from Theorem 7.5. 
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Theorem 9.6. I f  A is coregular and ~, akx k is bounded for all x ~ 1, 

A is replaceable. 

This follows f rom Lemmas 9.3 and 9.5. 

Theorem 9.7. I f  A is coregular and I c L, A is replaceable. 

This follows f rom Lemmas 9.4 and 9.5. 

10. Perfectness  and type M. 

We see from Theorem 6.3 that for a perfect matrix, P = c A. For coregu ar 

matrices there are many sufficient conditions for perfectness, namely PMI, 

FAK and the others. (Corollary 6.4) A well known necessary and sufficient 

condition in the case of  coregular reversible matrices is type M, i.e. t ~ l, 

tA = 0 implies t = 0. [ 1 ], pp. 90, 91. For  more general matrices, perfect and type 

M are no longer equivalent, indeed, in some situations they are incompatible! 

(For example if ca # c and A has a two sided conservative inverse, A cannot 

be perfect and must be of type M.) However both properties continue to play 

important roles in summability. 

We can extend the equivalence between type M and a kind of  perfectness 

a little further so as to include some conull matrices. 

Theorem 10.1. Let A be reversible and multiplicative. Then A is of 

type M if and only i f6  o is a maximal linear subspace of ca. 

Let A be of type M and le t fe  c~ satisfy f =  0 on c o. By (1), 

f ( x ) =  ~tlimAx + t(Ax), each flk being zero since A is reversible. Thus 

0 =f (6k)= ~, t,a,k and so t = 0. This proves that f =  ctlim a and so either 

(o = cA or 6o is a maximal linear subspace of  cA. The former cannot  happen, 

for lira a vanishes on c o but not on cA since A is reversible. 

Conversely, suppose that A is not of  type M. Let t ~ l, t ~ O, tA = O, and 

set f ( x )  = t(Ax). Since both f and lira a vanish on c o it will follow that 6 o 

is not a maximal linear subspace when we show that f and lira a are linearly 

independent. Since A is reversible, this is the same as the trivial fact that lim 

and ~ tkxk are linearly independent on c. 

We deduce f rom Theorem 10.1 the very weU known result quoted earlier 

and an extension to mult ipl icat ive-0 matrices. 
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Corollary 10.2. Let A be reversible and multiplicative. Then A is of 

type M if and only if  the codimension of 6 i s  at most one. (It  is 0 if  A 

is coregular, 1 if A is conull.) 

The second statement in parentheses is true because g = C 0. 

Of course a reversible, multiplicative-0 matrix cannot have g = cA since 
lima = 0 on g. Examples 11 and 4 show reversible coregular and conuU 

matrices (triangles !) with ~o = g = cA. 

An immediate corollary of Theorem 10.1 is the following result of J. Copping 

(['2], Theorem 11.) The phrasing is extended slightly so as to include the 

coregular case. 

Corollary 10.3. Let A be reversible and multiplicative. Then A is 

of type M if and only if every multiplicative matrix D with cD ~ ca has 

limp---/zlima for some constant p, depending only on A, D. The same is 

true if cD = ca is substituted for c o ~ c A. I f  A, D are regular, # = 1. 

Let A be of type M. Then limo = lima on the maximal subspace 6o, hence 

lima --- # lima. 

Conversely, let A be not of type M. Let t e l ,  t ~ O, tA = O, and set 

f ( x )  = limAx + t(Ax). Let D = JA where J is given in the proof of Lemma 4.4. 

Then, as pointed out there, cD = ca. Also lira D =f .  Thus if t, # 0 for a certain 

r, let u satisfy Au = 6'. Then f (u )  - limAu = t, ~ 0. 

(The proof of the converse is essentially that of Copping.) 

The following result generalizes Mazur 's  well known sufficient condition 

for type M. See for example [10l, Theorem 2, [17], Lemma 1, p. 505. A 

similar condition was given by Darevsky [4], (with BA instead of LA) under 

the assumption that A is regular and reversible. 

Theorem 10.4. I f  A has a right inverse whose columns belong to La, 

A is of type M. The same result holds if  all butfinitely many of the columns 

belong to L.4. 

Let t ~ l ,  tA = O. Then, if u is the n th column of the right inverse, 

0 = (tA)u = t (Au)= t~ by Lemma 4.1. Thus t = 0. In the latter case we get 
only that tn = 0 for almost all n. But then (tA)u = t(Au) surely holds, so that, 

finally, t = 0. 
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Corollary 10.5. I f  a reversible ma t r i x  has the mean value property,  it 

is of  type M.  

Each reversible matrix has a right inverse ([14], Lemma 3) whose columns 

clearly belong to c a . The result follows by Theorem 10.4. 

This result does not contain and is not contained in Corollary 6.6. They 

overlap when applied to coregular reversible matrices. 

11. E x a m p l e s  

E x a m p l e  1. Let A = 0. Then c a = s which has {J"} as basis. 

Thus S = c a. A has the mean value property.  

E x a m p l e  2. Let A be the identity matrix. A is coregular, c a = c .  

S = W =  c o . F = ca. A has the mean value property.  

E x a m p l e  3. Let a,~ = 1/n, a,k = 0 otherwise. Then A is conull, c a has 

basis {u, cSt,c52,c53, ...} where u = {n}. 

S =  W= ~o = t?. F = c a = S ~ ) u = ? o ( ~ U .  

A has the mean value property.  

Let {ak} be a sequence satisfying ~ l < ~ ,  ak 5 0  Example 4. 
for all k. Let 

A = al 0 0 0 . . .  

al a2 0 0 ... 

a~ a2 a3 0 ... 

A is a conull triangle. A is replaceable. ([15], w A has the mean Value 

property,  and S = ca 

The next result is essentially known. 

T h e o r e m  11.1. I f  A is a triangle and x ~ S, then a~,x,--, O. 

Let x ~S, then x(")= x - ~ .~r 0. But II x"- l '  II I a - x , I  �9 
k = l  

C o r o l l a r y  11.2. I f  A is a triangle and {I/a, ,} is bounded, then S = Co; 
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Example  5. Let  

A = 1 0 0 0 . . .  

- 1  1 0 0 . . .  

0 - 1  1 0 . . .  

0 0 - 1  1 . . .  

. . . .  * *  . . . . . . . . . . . . . .  ~ . . . . . .  

A is a m u l t i p l i c a t i v e - 0  t r iangle.  1 E W,, ,X.  By Theorem 5 .8(or  7.7), S is 

no t  closed and {6 n} is no t  basic. Hence,  by Theorem 5.7, F,  L, W are no t  c l o s e d  

S = c o by Coro l l a ry  11.2. I = cA, L =  F = ca n m = (c~. n m c3 6 ) ~  u where  

u = { ( -1)"} ,  since 

k = l  r = l  r = l  

and  since f = 0 on c implies  f = ~ lim a on c4 c3 m. 

Since I~ = F # I ,  I is not  invar iant .  Thus  A does not have the mean value 

property. 

We shall prove tha t  P = c a. 

We first observe tha t  t E t has the p rope r ty  tha t  (tA)x exists for all  x e c A 

if  and  only i f  the ma t r ix  

t2 0 0 0 .." 

t 3 t 3 0 0 ... 

t 4 t~ t~ 0 --. 

is conservat ive.  (This m a y  be seen by subs t i tu t ing  x = A -  ty,  y E c in the  

r ight  hand  side of  (5).) I f  such a matr ix  is conservat ive  it must  be mul t ip l ica t ive  

- 0 ,  thus for  all such t and  x ~CA, the r ight  h a n d  side o f ( 5 )  tends  to 0. 

Thus  P = c a. P # ~ since a reversible,  m u l t i p l i c a t i v e - 0  matr ix  canno t  be 

perfect  because lim A = 0 on c but  no t  on ca. 

Example  6. Le t  
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A = 1/2 0 0 0 ... 

1/2 1/2 0 0 ... 

0 1/2 1/2 0 ... 

0 0 1/2 1/2 ... 

A is a regular triangle. S = c o by Corol lary  11.2. I = ca, L =  F = c a n m 

since (5) holds here also. Since F #  ca, we have li ~ I  and so I is not  invariant. 

P = 6 = ca since A is o f t y p e  M. Since c c F # cA, F is not  closed. {1, ~il, 62, ...} 

is not  a basis for  ca but  is a (C, I)  basis for  cA. ([20], Lemma 1.) A does not 

have the mean  value  proper ty .  

E x a m p l e  7. (See also [12], Remark  7, [11],  pp. 52, 53.) Let 

A = - I  0 0 0 . . .  

- 2  1 0 0 . . .  

0 - 2  1 0 . . -  

0 0 - 2  1 . . -  
. . . . . . . . . . . . . . . . . . . . . .  . . , . ,  

A is a coregular triangle, cA = c ~ u where u = {2"}. (See for  example [16],  

Chapter  1, w Problem 21. The rest o f  the statements in this example are 

true for  any matrix A with ca, = c ~ one sequence.) S = W =  Co, these are 

closed. L =  F = c. Thus  L is a closed proper  subspace o f  ca. For  every D 

with cD = ca, either I D = C or Io  = cD. Since I~ # ca, there exists at least one 

D with I~ = c. For  this D, ID is a closed proper  subspace o f  c a. 

Example 8. Let 

A = uxv I 0 0 0 ... 

U2I) 1 U2V 2 0 0 " ' "  

U3V 1 1/31) 2 U3V 3 0 " "  

where u, # 0, v, # 0, and assume that  A is regular. The (C, 1) matrix is a 

special case .Then A is a regular triangle and F = ~ = c a. (['15] Theorem 2.) 

W ffi S -- ~o # ca. A has the mean value proper ty .  
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Example  9. Let  

A =  1 0 0 0 0 ... 

1 1 0 0 0 -.. 

1 1 82 0 0 ... 

1 1 �89 �89 o . . .  

1 1 �89 �89 *a "'" 

1 1 
where the (2n) th row is 1,1,�89189188188 2"-  t ' 2 " - 1 '  0 '  0 '  "" and the 

1 e~,0,0,.. ,  where {8~} is a sequence such ( 2 n -  1) th row is 1, 1,�89 �89 ' 2" -2 '  

that  2 ~ 8n ~ 0. ( I f  the odd-numbered  rows are omit ted the matrix is simpler, 

though  not  a triangle, and has the proper ty  given below.) Let  

x = (1, - 1 , 2 ,  - 2 , 4 ,  - 4 ,  --.). 

A is a conuU triangle. ~ akxk is bounded  and divergent;  a simple cheek 

shows that  x ~B. Thus  xeL, , , I ,  x EL , - .F ,L#  F. By Theorems 5.7 and 6.7, 

P = ~o, L is not  closed. 

Example  10. Consider  a matrix A such that  the codimension o f  c in c A 

is finite. (See [17], Theorems 1 and 3 for the example and the following facts.) 

Then c is closed, A is coregular, and so P = L =  c. 

Example  11. (K. Zeller) Let  Y. [akl < ~ a 2 t # 0 ,  a 2 t - t  = 0  for  all k. 

Let  

A = 1 0 0 0 0 0 .-. 

1 a2 0 0 0 0 ... 

0 a2 1 0 0 0 ... 

0 a2 1 a ,  0 0 ... 

0 a2 0 a ,  1 0 ... 

0 a 2 0 a ,  1 a6 ... 
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A is a coregular perfect non-replaceable triangle.  (See [15], p. 657. A 

different example is given in [6].) An easy computation yields 

I = B = (x ~ ca: lim x2,,- 1 exists}. Thus L =  F = I. Since A is not replaceable, 

t~ o = ? =  P = c a. Thus W #  ?o since I r W by Lemma 4.6 and so L, F, I are 

not closed. (This also follows immediately from Lemma 9.5.) Since 

I = F = I  i, any D with c o = c A  has I o n i a ,  i.e. A has the smallest inset in 

its class. There is no D with c o = c4 with maximal inset or even closed inset, 

by Lemma 9.5. Of  course 1.1 is dense. 

To give functions f~c~4 such that dl, =f(fi~) for no D with co = c~ is easy. 

Since D cannot have maximal inset, we choose f so that Z f(6k)Xk converges 

for all x ~c a. For example, f =  0 would do, or [ ( x )  = xl .  

E x a m p l e  12. (K. Zeller) Let D, E be the matrices of  Examples 4, 7 

respectively and A = ED. Then A is a conull triangle. {6"} is a basis for co in 

the D topology, hence in the (weaker) A topology, c a = c D O u  where 

u = D-1({2"}) and (u,61,62, ...) is a basis for c a. However A does not have 

the mean value property by Corollary 10.5 because it is not of  type M since 

E is not. 

Note that A is coercive, i.e. c~ ~ m, but A does not have maximal inset 

(See Theorem 7.6, ii). 

12. Questions 

I. Must L =  F if A is coregular? See 5.6, 5.10. 

II. I f  F is closed, must Lbe? See 5.6, 5.7. The answer is yes if A is coregular, 

by Corollary 6.4. 

III .  Is Linvariant?  See 7.1, 7.2, 7.3, and the following remarks. Theorem 

6.8 gives no information since, possibly, Co r L. 

IV. Must there exist D with cA = ca, Io = Fa? Certainly (Theorem 5.1) 

F a = n { t o : c o  = ca}. 

V. If  A has maximal inset, must A be replaceable ? The answer is yes 

f A is coregular . 

VI. Is the equation A = 0 invariant? (It  implies P = W= (o.) 

VII. Can ~ akxk be bounded and divergent if A is coregular? (If  not, 

the answer t~t I is "yes" . )  See Example 9. 
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VIII. Is P invar iant?  

IX. Must  the "external  i n se t "  I , =  U ( I D : c D = c A )  be equal to ca? 

(This is no t  answered by Example 11 in which ID # ca for all D with co = ca.) 

X. I conjecture that  if I is invar ian t  for a certain A, then A has the 

mean  value property.  

XI. Must  I be closed if A is con t inuous?  

XII.  Must  a conull  matr ix  be replaceable? 
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