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Introduction. P61ya proved in [2]: 

l f  f and g are entire functions, then f (g(z))  is of infinite order unless ( i ) f  is 

of finite order and g is a polynomial or ( i i ) f  is of order zero and g is of finite 

order. 

This result suggests the following questions. 

I. What can be said about the exponent of convergence of the zeros of f (g(z)) 

i f  the zeros o f f  have a positive exponent of convergence and g(z) is entire 

and not a polynomial? 

II.  What is the order of the meromorphic function F(g(z)), if F is mero- 

morphic and g is entire? 

As far as we can see the solution of these problems can not be deduced 

from P61ya's theorem. Nor  does it seem possible to obtain an answer from 

the theorems of Schottky, Landau and Bloch (a corollary of Schottky's  theorem 

is used in P61ya's p roof  of  his theorem). 

We shall derive a solution of these two problems from an investigation of  

the following question, which seems of independent interest. 

I I l .  Let g(z) be an entire function. Denote the maximum modulus of g on 
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[z I = r by M(r )=  M(r,g). Define, for  every sufficiently large complex 

number w, the positive number t = t( [ w l) by 

(1) Iwl=M(t,g). 

Is it possible to f ind a 'universal'function r such that the equation 

(2) g ( z ) = w  

has a solution in 

I~z It< r 

provided that I w I exceeds(a) a constant Ko(g, r ? 

We have been unable to find a general solution of problem III. but for 

functions of  finite order we can prove, rather simply, 

T h e o r e m  1. Let g(z) be an entire function of finite order which is not a 

polynomial. Let ~ be a positive number. For ]w [ > ]g(O) l define t = t(Iwl) 
by (1). Then (2) has a solution in 

I z l  < t , 

provided [w I > K(g, ~). 
This theorem contains a complete answer to questions I and II. We prove: 

C o r o l l a r y  1.1. Let f and g be entire functions. Assume that the zeros 

o f f  have a positive exponent of convergence and that g is not a polynomial. 

Then the zeros of f(g(z))  do not have a finite exponent of convergence. 

C o r o l l a r y  1.2. Let F be a meromorphic function which is not of order 

zero and let g(z) be an entire function which is not a polynomial. 

Then F(g(z)) is of  infinite order. 
Corollary 1.2 gives a new proof  of P61ya's theorem, independent of  Schottky's 

theorem(4). 

(3) Picard's theorem shows that the condition I w I > Ko(g, 4) is essential. 
(4) Our proof is, in fact, completely elementary and depends only on the simplest pro- 

perties of analytic functions. 
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Theorem 1 has two shortcomings: it is restricted to functions of finite order 

and the bound q~(t)= t 1 +e seems unnecessarily large. The following theorem 

gives a much better bound and applies to functions of infinite order provided 

their rate of growth is subject to the rather mild regularity conditions (4) and 

(5). It is immediately verified that these conditions are satisfied for all func- 

tions of finite order and positive lower order. 

T h e o r e m  2. Let g(z) be an entire function of positive lower order, i.e. 

f o r  some fl(> 0) and ro(> 0), 

(4) log M(r, g) > r ~ (r > ro). 

Assume that there exist positive numbers r 1, B such that 

(5 logM{r(1 + ( logM(r,g))-a/2)} < (logM(r)) n (r > rl). 

I f  t is defined by (1), then (2) has a root in 

[z 1< t{1 + 2(logM(t ,g))  -1/z } 

provided ] w] exceeds a bound depending only on g. 

It is easy to deduce, from a well-known lemma of E. Borel [1 ; p. 61], that 

the left-hand side of (5) is less than B log M(r) (with any fixed B > 1), provided 

r avoids an exceptional set of finite logarithmic measure(5). This shows that 

condition (5) is a rather weak restriction, in particular, this condition is com- 

patible with arbitrarily high rates of growth of M(r, g), provided this growth 

does not take place too irregularly. 

There is nothing special about the exponent 1/2 in (5); it could be replaced 

by any other number between zero and one, both in (5) and in the conclusion 

of the theorem. 

The growth condition (5) may be omitted entirely if g satisfies some other 

condition which makes it possible to apply Schottky's theorem. 

We prove: 

(5) This may be proved by (i) applying the usual form of Borel's lemma to the auxiliary 
function ~b(x) = exp ( x / ~ x ) ) ;  (ii) using the substitution x = log r and the inequality 
l + t <e t ( t>O) .  
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Theorem 3. Let g(z) be an odd entire function, which does not reduce 

to a polynomial. 

Assume that t is determined by (1) and that ~(> 0) is fixed. 

Then, i f  I w] is sufficiently large, (2) has a solution in the disc 

I~1_-<(1 +Or. 

It is possible to modify Theorem 3 by dropping the condition that g(z) 

be an odd function and assuming instead that g(z) omits some finite value a. 

1. A fundamental  lemma. 

Lemma 1. Assume that the function 

g(z) = ~ c~z ~ 
k=O 

is regular in [z I < R and that 

g(z) v~ w 

Then,for all r such that r < R, and 

(1.1) 

we have 

(Izl~R). 

max {2 Ig(0)l, 4} < 2 M(r, g) < ] w I 

g, 
(1.2) Ic,,I," < 6 l w l  - logM(R,g) + iw~--~-- (n = 1,2,3,...). 

P roof .  Under the assumptions of  the lemma, 

h(z) = l o g { 1 -  .g(z)} = ~ b.z" 
W n=O 

is regular in [z I < R and 

/ 
A(R) = sup Re{h(z)} < log { 1 + - - - -  

[zl-<R ( 
M(R,g)  

Iwl /" 
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By a well known result [3; p. 86], we have 

[b.lR"-<_ 4log M(R,.g)]-2log 1 g(O)l 
1 +  iw I : 

By (1.1) 

- - l o g  t 1 --  - - - -  g(0)w I < log2 < logM(R,g), 

log { 1 - t - -  M(R,g) M(R,g) 

247 

so that 

(n = 1 , 2 , 3 , - . - ) .  

+ M(R,g_______)4 } < logM(R,g), 

61ogM(R,g) (n = 1 , 2 , 3 , . . . ) .  (1.3) Ib'] < R" 

In [ z I < r, we have 

g- - -  <-- Z, 

and hence 

(1.4) h(z)=log { 1-g(z)}  = w  -{g(z)/w}-2{g(z)/w}2-1{g(z)/w}a . . . .  

= - {g(z)/w} - o~(z), 

where 
1 ~ Mk(r,g) M2(r,g) 

[co(~) [ _< M(~,o~) < ~ ~ -<_ 

Putting 

oJ(z) = ~ d . z  ~ , 
n=O 

we find 
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(1.5) [d,1 r" < M(r,o~) < MZ(r'g) 
= I w l  2 

By (1.4) 

bn = Cn dr. , 
w 

I Cn I rn 
Iw! ~ Z l b .  l r ~ + l d . l r  ~ �9 

Combined with (1.5) and (1.3), this yields (1.2). 

2. P r e l i m i n a r i e s  a b o u t  the  c e n t r a l  i n d e x  and the  m a x i m u m  t e r m  

o f  p o w e r  ser ie s .  

Theorems 1 and 2 will be proved by showing that (1.2)can be contra- 

dicted for suitable n,r,R, if the conclusions of these theorems do not 

hold. To find these contradictions we need a few simple facts about the 

maximum term and the central index of power series. The relatively compli- 

cated theory of Wiman-Valiron will not  be required. We assume from 

now on that 

(2.1) g (z )=  ~ Ck zk 
k = O  

is an entire function but not a polynomial. The function 

. (r)  = sup (I c, I r'} 
k 

is called the maximum term of (2.1). The largest integer n for which 

[e. lr"= 

is called the central index and is denoted by v(r). Both p(r) and v(r) are non- 

decreasing functions of r tending to ~ as r ~ ~ (unless g(z) is a polynomial, 

a case that we exclude from consideration). By Cauchy's formula for the 

coefficients of a power series 
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(2.2) #(r)  < M(r)  = M(r, g). 

By the definit ion o f  the m a x i m u m  term,  if  

0 < p < R  and v = v ( p ) ,  

(2.3) (R/p)" = Icy I R7(I c, I pv) _-__ #(R)/#(p). 

Also, fo r  0 < r < p,  v = v(p), 

~(r) (2.4) M(r)= M(r,g) < + I vlr-----7 k = 0  

[Ck[pk(r] k-v 
Z vg(r) + #(r) k 

I f  p is so large tha t  

(2.5) #(P) > 1 

and  if  

then 

R - p = p - r > O ,  

p R R 
(2.6) ~ < - -  = - 

p - r  p - r  R - p  

and by (2.3),(2.5) and  (2.2) 

R - p  < v(p)log(R/p) v6o) g = 

2R 
R - - r  ' 

k ~ v  

< log#(R) < logM(R) 

Hence,  subst i tut ing in (2.4) and using (2.6), 

M(r) <= #(r){logM(R) + 1) 2R 
/ ~ : r  

249 

(2.7) (1 < p( r ) ,0  < r < R) . 
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Finally we note  that ,  as soon as r exceeds a suitable bound  r 2 ( >  1), 

and hence 

I c v ( r ) [ < l ,  

log /t(r) 
(2.8) v(r) > - -  (r  > r2) . 

log r 

3. A consequence of  Lemma 1 and inequal i ty  (2.7). 

2 M2(r,  g) 

~(r)  
(r  > 0) , 

is a cont inuous funct ion of  r which tends to ~ as r ~ ~ .  

The  function 

For  all sufficiently large I w 1, it is therefore  possible to find some r = r( I w ]) 

such that  

(3.1) 2M(r)  = 2M(r,  g) < 2M2(r) = ~(r) - I w l  

[ i f  the quant i ty  r ( ] w ] )  is not  unique, we consider any one of  the acceptable 

values of  r and denote  it by r ( ] w [ ) ] .  
In view of  the definition (1), we see that  (3.1) implies 

(3.2) r(Iwl)<t(lw]), 

provided ]w] is large enough.  

Assume now tha t  

in the disc 

Iz l=<R 

We apply Lemma  1 with 

r = r(I wl ) ,  

g(z)  ~ w 

(R > ~ ( l~ l ) ) .  

= '(~), I w I > Ko(g) 
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and select K o so large that the conditions (t.1), (3.2) and the inequalities 
v(r) > 1, 

(3.3) #(r) > 1, 

are satisfied simultaneously. Then, by (1.2) and (3.1), 

~(~) = I ~ol r~ ~< ~ log ~ (R)  + ~ ( , - ) ,  

(3.4) 1 < 24 M2(r) r n log M(n)/#2(r)  R n. 

Now (2.7) holds because r satisfies (3.3). Hence we may use (2.7) in (3.4); 

this yields 

(3.5) 1 < 96 R E rn(1 + log M(R)) 2 log M(R) 
= ( R _ r ) E R  ~ (Iwl > Ko, r = r(Iw]) < R). 

4. P r o o f  of  T h e o r e m  1. Let 4 (>  0) be given. If  Theorem 1 were 

false, we could find numbers w, of arbitrarily large modulus, such that g(z) ~ w 

in 

Izl < {t([ w I)} '+` 

In view of (3.2) there would also exist arbitrarily large values of r(Iw I) 
such that g ( z ) #  w for 

tzl z R = {r(iwl)  1+,. 

Since g(z ) i s  now of finite order, there exist positive bounds it and 
K~ such that 

logM(R) < R ~ = r ~+r (R > K1) 

Hence (3.5) implies that, for sufficiently large r (i.e. for sufficiently large I w 1), 

(4.1) 1 < A r 3z+ ar (A = absolute constant). 
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Now as r ~  oo, n = v ( r )~  oo, so that (4.1) can not hold for arbitrarily 

large r. This contradiction proves Theorem 1. 

5. P r o o f  of  T h e o r e m  2. We shall use the abbreviation 

L = log M(r), 

where, for Iw I large enough, r =  r(lw [) is defined by (3.1). 

Choosing 

(5.1) R = r(1 + L- 1/2), 

we show first that (3.5) cannot hold for sufficiently large values of  [w[. 

By (5) and (5.1), 

(5.2) logM(R) < L B. 

Taking logarithms in (3.5) and using (5.2), we obtain 

0 < - nlog(1 + L -1/2)+ 3 B l o g L + l o g L +  A, 

(5.3) 0 ~_ - (1/2)nL -1/2 + (3B + 1)logL-t- A (L >  Lo), 

where A is an absolute constant and L o is a sufficiently large bound. For 

sufficiently large r, (2.8) and (4) yield 

(5.4) n = v(r) > log #(r) 
log r 

By (2.2), (2.7), (5.1) and (5.2) 

(5.5) log#(r) = L +  O(logL) 

fl log #(r) 
log L 

(L ~ oo). 

Using (5.4) and (5.5) in (5.3), we see that (3.5) can not hold for large L unless 

0 N_ - l f l L l / 2 ( l o g L ) - I  + O(logL). 
,d 
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Since this inequality is false for all large L, it follows that the choice (5.1) 

of R is not permissible. Hence g(z) = w has a root in 

[ z [ < r(1 + L- 1/2) 

Also, by (3.1) and (5.5), 

(r = , ( [wl ) ) .  

log 2 + 2L-- L + O(log L) = log [ w 1, 

L = log ] w ] + O(log L), 

1 
(5.6) L > glog[ w I 

for all large L. By (5.6), (3.2) and (1), 

r(1 ~- L - ' /2)  < ,(~ § 20OR I w IT '/2) = t(~ § 2( logM(t) ) -"2) .  

This completes the proof of Theorem 2. 

6. P r o o f  of  Coro l lary  1.1. Consider first the case that g(z)  is of 

infinite order. By a fundamental result of R. Nevanlinna [-1;p. 721 the solu- 

tions of the equation g(z) = w have an infinite exponent of convergence for 

all w, with at most one exception. It is therefore enough to assume that f (z)  

has at least two distinct zeros ,Wl and w z. For the solutions of  g ( z )  = wxand 

of  g(z) = w 2 are then zeros o f f ( g ( z ) ) .  

Consider now the case that g(z) is of finite order. We shall apply Theorem 1 

with ~ = 1. 

Letf(w) have q(t) zeros in 

K ( g , 1 ) =  K* < Iwl ~_M( t ,g ) .  

Since the zeros off(w) have a positive exponent of convergence, there is a 
> 0 such that for some arbitrarily large values t ' of t 

(6.1) q(t') > (M(t ' ,  g))" . 

Since g(z) is not a polynomial, 

(6.2) M ( t , g ) t - t  o oo (t ~ oo) 

for every constant k. 
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By Theorem 1, g(z) takes on , in I z I < t2, every value w such that 

K* < Iwl < M(t,g).  

Hencef(g(z)) has at least q(t) zeros in I z [ < t 2. By (6.1) and (6.2) this number 

is larger than any given power of t, for some arbitrarily large values of t. 

This shows that the zeros of f(g(z)) have an infinite exponent of convergence 

and completes the proof of the corollary. 

7. P r o o f  o f  C o r o l l a r y  1.2. By assumption F(w) is not of zero order. 

Hence, if a is not one of two possible exceptional values [1;p. 72], we may 

write 

F(w) = a + ( f  (w)/h(w)), 

where f and h are entire functions without common zeros and where the 

zeros of f have a positive exponent of convergence. Therefore, by Corollary 1.1 

the a-points of F(g(z)) have an infinite exponent of convergence. Hence 

F(g(z)) is of infinite order. 

8. P r o o f  o f  T h e o r e m  3. Assume that g(z) v~ w in 

(8.1) ]z[ < (1 + r w I) = ( 1  + ~)t, 

where r  0) i s  fixed and t( lwl)  is defined by (1). 

Since g(z) is an odd function, we also have 

(8.2) g(0) = 0,  g ( z )  ~ - w .  

Consider the auxiliary function 

f(s) = g((1 + Ost) 1 
2 w  + -2 

Then by (8.2), we have, in Is I < 1, 
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f ( s ) # l ,  f ( s ) # O ,  f (O)=�89 

Hence by Schottky's  theorem [3; p. 280], 

1 + �89 ,0] I 
If g - ~  e ] , < C  ( 0 < 0 < 2 ~ ) , =  

where C depends only on {. 

In terms of  g this implies 

(8.3) M((1 + t o t ,  g) < (2c  + 1) M(t, g). 

Consider the set 8 of  all values w such that,  in the disc (8.1), g(z) v~ w. If 

were unbounded, there would exist arbitrarily large values of  t for  which 

(8.3) holds. Since logM(t)  is a convex function of  log t, this would imply 

that logM(t)/logt is bounded and hence that g(z) is a polynomial. As this 

contradicts one of  our assumptions, we see that 8 must be bounded. The 

proof  of Theorem 3 is now complete. 
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