
ON T H E  N E C E S S A R Y  C O N D I T I O N  FOR O P T I M A L  

C O N T R O L  OF N O N L I N E A R  SYSTEMS* 

By 

HUBERT HALKIN 
in Stanford, California, U. S. A.** 

ACKNOWLDGMENTS 

The author wishes to express his sincere gratitude to Professor M. M. 

Schiffer of the Department of Mathematics of Stanford University. His 

constant guidance during the years 1960-1963 has been invaluable. 

The author spent many months at the Department of Mathematics and 

the Center for Control Theory of the Research Institute for Advanced 

Studies, RIAS. Numerous discussions with Professors S. Lefschetz, J. P. 

LaSalle and R. E. Kalman have influenced him profoundly. 

The interest of the author in the engineering aspects of the theory of optimal 

control was greatly enhanced by numerous conversations with Professor 

I. Fliigge-Lotz of the Department of Aeronautics and Astronautics and 

Professor G. Franklin of the Department of Electrical Engineering, both 

at Stanford University. 

The author would also like to thank Dr. L. W. Neustadt of Aerospace 

whose valuable comments on some of the author's previous papers were a 

motivating force in the development of this work. 

Finally, Professor Baudouin Fraeijs de Veubeke of the University of Li6ge, 

who introduced the author to this interesting field of research, is 

sincerely acknowledged. 

The author was the grateful recipient of a C.R.B. Graduate Fellowship 

(Perrin C. Galpin Fellow)of the Belgian American Educational Foundation 

during the years 1960-1962 and of a Stanford University Fellowship during 

the year 1962-1963. 

* This work was supported in part by Office of Naval Research Contract Nonr-225(ll) 
at Stanford University. Reproduction in whole or in part is permitted for any purpose of the 
United States Government. 

** Presently at Bell Telephone Laboratories, Whippany, N. J., U.S.A. 



Section 

8 

9 

10 

TABLE OF CONTENTS 

Page 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

A Guide to the Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

Statement of  the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

Comoving Coordinate Space along a Given Trajectory ......... 18 

Set of Reachable Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

Necessary Conditions for the Optimal Control of a Nonlinear 

Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

Norms for the Space of Control Functions and for the Spaces 

of Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

Curvilinear Coordinate Space along a Given Trajectory ...... 32 

Approximation of the Comparison Trajectories in the 

Comoving Space along a Given Trajector3 . . . . . . . . . . . . . . . . . . . . . . . . .  51 

The Range of aVector Integral over Borel Sets . . . . . . . . . . . . . . . . . .  59 

An Application of Brouwer's Fixed Point Theorem ............ 75 

Proofs of  the Theorems of Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 



I N T R O D U C T I O N  

Words such as "sys tem,"  "cont ro l , "  "optimal  control ,"  etc., have recently 

become very popular among a large group of  engineers, particularly in 

aero-astronautics and electronics, as well as among many social science 

researchers in economics and psychology. The use of the same vocabulary 

in totally unrelated fields of study should not surprise us when we realize 

that they refer to problems which have the same mathematical structures. 

Among these mathematical structures, two are of particular importance: 

the dynamical system and the control system which are defined as follows: 

A dynamical system is a pair (Y, R) where Y is an arbitrary space, called 

the event space, and where R is a binary relation on Y such that 

(i) aRa for all a ~ }, i.e., R is reflexive 

(ii) aRb and bRc implies arc, i.e., R is transitive 

(iii) aRb and bRa implies a = b, i.e., R is antisymmetric 

(iv) aRb and aRc implies either bRc or cRb. 

These properties of  the relation R correspond to the usual concepts of 

causality and determinism. We may think of  the formula aRb as meaning: 

the event b follows the event a. This correspondence will be seen clearly in 

the examples given later. 

A control system is a triple (Y, F, R(.)) where F is an arbitrary space, 

called the strategy space, and where (Y, R(~.)) is a dynamical system for every 

ct in F. To clarify these ideas let us consider a particular type of dynamical 

system and the control system corresponding to it. 

First we shall consider the dynamical system associated with a system of 

ordinary differential equations. In such a case the space Y is the 

Cartesian product of  the real time axis T ,with elements t and of the 

n-dimensional Euclidean space X, called the state space, with elements 

x = ( x l , . . . , x " ) .  A function f (x, t)  from X x T into X is given. A binary 

relation R over T x X is then defined by 



4 HUBERT HALKIN 

(tl,xt)R(t2,x2) if and only if x(t2; xt, tt) = x2 and tl < t2 

where x(t;x*,t*) is the solution of the differential system 

= f(x, 0 a . e .  t 

satisfying the initial condition 

x(t*; x*, t*) = x* . 

We shall say that this binary relation R is generated over T x X by the 

differential system 2 =f(x, t). We easily see that the relation R satisfies the 

conditions (i) to (iv) given earlier, which implies that (T x X, R) is a dynamical 

system. More generally, the relation R could be generated by a system of 

difference equations, of differential-difference equations, of integral equations, 

etc. The relation R could even be defined explicitly by an appropriate subset 

of T x X •  
Let us now consider the control system associated with a class of systems 

of ordinary differential equations. The space Y is again the Cartesian 

product of the real time axis T and of the state space X. The strategy space 

F is given and for each ~ e F  a function f(x,t;~) from X x T into X is 

given. The binary relation R(~) is then generated over T x X by the differential 

system 

=f(x, t ;~)  

according to the previous definition. The triple (T x X,F,R(.)) is therefore 

a control system. We shall say that (t2,x2) is reachable from (tl,xl) if 
(tl,xt)R(~)(t2,x2) for some ceeF. 

Physics, as most descriptive sciences, is concerned with the study of dy- 

namical systems, whereas engineering, economics and the other normative 

sciences are concerned with the study of control systems. 

Classical mechanics offers a simple example of a dynamical system: the 

set Y in classical mechanics is the Cartesian product of the time axis and 

of the state space, and the relation R is generated by the laws of mechanics, 

which are given in most cases under the form of a set of differential equations. 



O N  THE NECESSARY C O N D I T I O N  F O R  O P T I M A L  C O N T R O L  . . .  5 

However, the whole field of physics cannot be reduced to a scheme of such 

simplicity; no Laplace's observer could help. Quantum mechanics, for ins- 

tance, is a dynamical system where the set Y is the Cartesian product of the 

time axis and of function spaces of probability distributions. 

As an example of a control system, let us consider a rocket. A rocket is a 

mechanical system equipped with regulatory devices such as rudders, thrust 

modifiers, etc. The variables describing the position of these regulatory devices 

are called control variables. If these control variables are given functions 

of the time and of the state variables, i.e., position, velocity, etc., then 

we have a dynamical system. If, however, we are allowed to choose the 

functions describing the control variables in a certain given class of 

functions called the strategy space, then we have a control system. 

It is not difficult to imagine many examples of control systems in other 

areas of engineering and economics. It should be noted that a control system 

could be stochastic: in many problems the set Y will be, as in quantum 

mechanics, the Cartesian product of the time axis and function spaces of 

probability distributions. 

When dealing with a dynamical system the essential question which one 

should ask is: how does it behave, i.e., given a ~ Y which are the properties of 

the set {b:aRb}? This question has been the object of extensive studies, es- 

pecially the theory of stability and oscillation of dynamical systems 

described by ordinary differential equations. 

In the case of a control system a new type of question may be asked: 

what is the "best" element of the strategy space? For example: given a rocket 

and initial and terminal points in the state space, how should we choose 

the control variables so that the rocket will pass from the initial to the termi- 

nal point in the minimum amount of time? 

Generally, we shall define an optimal control problem as follows: 

Given 

(1) 
(2) 
(3) 

a control system (IT, F, R(.)) 

a s u b s e t D o f Y x  Y 

a real function g on G = { (a,  b , f )  :(a, b,f)  ~ D x F, aR(f)b} where 

(a,  b , f )  = {c :aR(f)c and cR(f)b} . 
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Find an element ( a , b , f ) e G  such that g((a,b,J')) is maximum. This 

optimal control problem is denoted by the quintuple (Y,F,R(.),D,g). 
In the theory of optimal control, as in the theory of  dynamical systems, 

it is possible to obtain very interesting results when we assume that the 

relation R is generated by the solutions of a system of differential equations. 

In this work we shall consider control systems (Y,F,R(')) of  the following 

type: 

Y is the Cartesian product of the real time axis T with elements t and of 

an n-dimensional Euclidean space X with elenemts x =(xt , . . . ,xn) .  

F is the class of  measurable r-dimensional functions [u] defined on T 

and taking their values in a given set fL 

R([u]) for [u] ~ F is generated by the solutions of the system 

5c = f(x,  u(t), t) a.e. t 

where f(x, u, t) is a given function. 

With this particular type of control system we shall associate an optimal 
control problem (Y, F, R(.), D,g) of the following type: 

D = A • B where A is a set consisting of one point of Y and where B is 

the set consisting of one line of Y parallel to the axis x". 

g(((x, ,  t,), (Xb, tt,), [U] 5) = X~. 

In other words, we are given a point A in X x T a n d  a line B in X x 7; 

parallel to the axis x"; how can we find a function [u] in a given class F such 

that starting at A and integrating the system 2 =f(x,u(t),t) we would end 

on B as far as possible in the positive direction on x"? We call this problem 

the fundamental problem of optimal control. This fundamental problem is 

stated in greater detail in Section 1. 

This work is principally devoted to the study of the necessary conditions 

for the solution of the fundamental problem of optimal control. 

We want to stress here the fundamental difference between a classical 

problem of calculus of variations and a problem of optimal control. In an 

optimal control problem the set f~ may be quite arbitrary, and due to techno- 

logical limitations it is very often a bounded and closed set: for instance, 

the thrust of a rocket can only vary on the closed interval [0 ,m] where m 
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is the maximum available thrust. If a classical problem of calculus of variations 

is put in the form of an optimal control problem, the corresponding set f~ 

is always open. This explains why the classical techniques of the calculus of 

variations do not work for the general case of optimal control problems. 

Indeed, one of the most fundamental concepts of the calculus of variations 

is the concept of the arbitrary variation: you compare a nominal trajectory 

corresponding to the strategy f with the trajectory corresponding to a strategy 

f + 6 and in calculus of variations this is always possible when 6 is small 

enough, In optimal control this is not true anymore: if along a rocket tra- 

jectory the thrust has the maximum available value m at some time, it has 

no meaning to consider comparison trajectory where the thrust is augmented 

by a positive 6, however small this 6 could be. 

The most important result in the theory of optimal control is the "Maxi- 

mum Principle of Pontryagin," a generalization of the Weierstrass E-test of 

the classical calculus of variations. In this work the "Maximum Principle" 

is obtained by a method fundamentally different from the method of Pontryagin 

and his associates, in particular we avoid some unresolved topological dif- 

ficulties encountered in their reasoning. It should be remarked also that the 

assumptions we are making in the statement of our problem, in particular 

on the differentiability and boundedness of the function f(x,u,t), are much 

weaker than the assumptions made by Pontryagin and his associates. In a 

previous publication, [12], using the same method, we obtained the same 

results for a more restrictive class of problems. 

Any mathematical venture is made up of two parts: geometrical intuition 

and analytical machinery. From the chronological point of view the geomet- 

rical intuition always precedes the analytical manipulation in the formation 

of a theory and the first is of great help to understand the second. Unfor- 

tunately, this duality has a marked tendency to disappear and the role of 

geometrical intuition is barely noticeable in the final form of a theory. This 

work is no exception to this rule: the analytical machinery is easily seen. 

Besides classical results of the theory of ordinary differential equations, we 

use some extensions of the results of Lyapounov 1-16] and Blackwell [3] on 

the range of a vector integral and an applicalion of Brouwer's Fixed Point 

Theorem. Unfortunately, the geometrical motivation is virtually absent 
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from this work. For  this reasom we shall make up for this deficiency in the 

introduction. More precise!y, we shall generalize the concept of propagation 

and show that the fundamental problem of  optimal control described above 
can be viewed as a problem of oqtimal propagation in an abstract space X. 

A standard problem of classical propagation theory has the following 

structure: we are given a medium with a propagation law; the medium is a 

rest for t < to, we produce a certain perturbation at time to and we want to 

predict what will happen for t > t o. 

This standard problem could be considered on two different levels. If  we 

want to predict the intensity of the perturbation for every element in space- 

time as a function of the intensity of the initial perturbation at time to, we 

have what we call a quantitative propagation problem. In some circumstances, 

however, it is enough to predict which elements in space-time could possibly 

be perturbed as soon as we know which points are perturbed at the time 

to. This is what we call a qualitative propagation problem. 

To solve a quantitative propagation problem we need the concept of in- 

tensity of a perturbation and a precise description of the space-time variation 

of this intensity which is usually given by a partial differential equation. 

In this work we shall restrict our interest to qualitative propagation prob- 

lems and consider the fundamental problem of optimal control as a gene- 

ralization of the qualitative propagation problem. 

To every element (x , t )~  X • T we shall associate the set 

w(x,  t) = { f ( x ,  u, t) : u ~ ~ }  . 

The set w ( x , t )  will be called the "wavele t"  at the point x for the time t. The 

analogy with optics is clear: whenever a perturbation is produced at the point 

x at the time t then, in first approximation, all the points of the set 

{x + ct dt  : ,~ ~_ w(x ,  t)} 

will be perturbed at the time t + dt.  

If we write x ( t ; [ u ] )  for the solution of 
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Yr =.f(x, u(t), t) 

satisfying the initial condition x(t.; [u]) = x. then 

W ( t )  = {x(t; [u]) :[u] ~ F} 

is the set of points of X which at the time t could possibly be affected by a 

perturbation having taken place at x = x. at the time t = t,. In other words, the 

boundary OW(t)of the set W(t) is the wavefront at the time t of a perturbation 

starting at x = x. at the time t = t,. 

We define a ray as a solution x(t; [u]) such that 

x(t;[u])eOW(t) for all ts[t.,tb]. 

We then have the following simple but fundamental property: if an element 

[u] o f f  is optimal for the control problem, then x(t; [u]) is a ray of the pro- 

pagation problem. The proof of  this property is given in a previous paper [13] 

and may be summarized as follows: if x(tl ; [u]) is an interior point of W(tl) 
for some t t ~ [t.,tb] then x ( t 2 ; [ U ] )  is an interior point of W(t2) for all 

t2e[tl,tb] since the solutions of 2=f(x,u(t) , t )  at the time t2 depend 

continuously on the initial conditions at the time t l ;  on the other hand, if 

[u] is optimal then x(tb; [U]) is a boundary point of W(tb) since otherwise 

there would be another [tT] e F with 

(X(tb;[~]),tb)eB and x"(tb;[~]) > x'(tb;[U]), 

contradicting the optimality of [u]; hence x(t; [u])~ ~W(t) for all t~ [t,,tb]. 
The optimal control problem is then reduced to the study of the rays 

of the abstract propagation problem. We may generalize to an abstract 

propagation problem the Huygens Principle and the associated Huygens 

construction. The basic facts about such a propagation may then be stated 

as follows: if a wavefront has a tangent plane at a point, then the wavelet 

leading to this point is entirely located on one side of this tangent plane. 

Consequently, we mlximize the wavefront velocity, i.e., if p is the normal 

to the wavefront at this point then, along a ray passing through this point, 
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the element [u] e F is such that the scalar product of p and ](x, u(t),t) is 

maximum. This property is closely related to Pontryagin's Max imum 

Principle. 

In this work we will give a precise analytical formulation of this scheme. 

To verify that an element [v-] of F is optimal, we adopt the point of view 

of an observer riding along the ray x(t;[v]) and making its observation in 

a moving frame of  coordinates attached to the wavefront. For  such an obser- 

ver all the missed opportunities, i.e., the directions .he could have followed 

but did not, are leading to points on one side of a hyperplane passing 

through the origin. This fact can be described analytically and leads to the 

mathematical formulation of  the Maximum Principle of  Pontryagin. The 

hyperplane mentioned above is the tangent hyperplane to the wavefront 

whenever such tangent hyperplane exists. It should be noted, however, that 

our derivation does not require the existence of such a tangent plane to the 

wavefront. In most intuitive derivations of  Pontryagin's Maximum Principle 

the existence of  the tangent plane is implicitly assumed: these derivations 

are very unsatisfactory since the real strength of the Maximum Principle 

of Pontyragin lies in its applicability to problems where this assumption 

cannot be made. 

At the end of this introduction we want to compare the geometries of 

Finsler, Riemann, and Euclid with the geometry induced on an autonomous 

propagation space by the "wavelets"  w(x). 

Let F(x,y) be a real-valued function defined on X x X. The function 

F(x, y) induces in the space X a geometry for which the distance ds between 

two neighboring points x and x + dx is given by 

ds = F(x, dx) .  

This geometry is called a Finsler geometry if 

(i) F(x, ky) = kF(x,y) for every k > 0 and all ( x , y ) ~ X  x X. 

(ii) F(x, y) > 0 if y ~ 0. 

(iii) 2 Fyy(x, y) exists and is positive definite for all (x ,y )E  X x X. 

A Riemannian geometry is a Finsler geometry such that 
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F2(x, Y) = ~ gik(X) yiyk 
l ,k= 1 

and a Euclidean geometry is a Riemannian geometry where 

g~(x)  = 6~. 

or equivalently 

F2(x,y)= ~ ( y , ) 2 .  
i = l  

To a Finsler geometry characterized by the function F(x,y) on X x X we 

associate the set valued function I(x) on X defined by 

/(x) = {y :F(x,y)  _<- 1}. 

The set I(x) is called the indicatrix at the point x of the Finsler geometry 

on X. It follows from the conditions (i) to (iii) that for a Finsler geometry 

the set l(x) has, with respect to the Euclidean norm, the following properties; 

(~t) I(x) is closed and bounded. 

(/3) The origin is an interior point of  I(x). 
(~) I(x) is strictly convex and has a continuously varying tangent hyper- 

plane at each of  its boundary points. In particular, I(x) is an ellipsoid in the 

case o f a  Riemannian geometry and the unit sphere in the case of the Eucli- 

dean geometry. 

Conversely, if we are given a space X and a set valued function I(x) defined 

over X and satisfying the conditions (~), (/3) and (y) then there is a unique 

function F(x, y) such that 

I(x) = {y :F(x,y) < 1} . 

Moreover, this function F(x,y) satisfies the conditions (i), (ii) and (iii) of 

the definition of  a Finsler geometry. 

From that follows that a Finsler geometry can be equivalently represented 

by the function F(x,y) or by the indicatrix l(x). We see immediately that 
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the geodesics of the Finsler geometry characterized by the indicatrix I(x) 

are the rays of  the abstract autonomous propagation space characterized 

by the wavelets w(x) = l(x).  

More generally, we could start with a space X, an arbitrary set valued 

function I(x) defined on X, and study the geometry induced on X by the 

indicatrix I(x), i.e., the geometry for which the distance ds between two 

neighboring points x and x + dx is the smallest nonnegative real number 

0t such that 

dx 
- - ~  I ( x ) .  

In that case the rays of  the abstract autonomous propagation space charac- 

terized by the wavelets w(x) are the geodesics of the geometry induced on X 

by the indicatrix I(x)  = w(x). 

We remark that the class of wavelets obtained by the definition 

w ( x )  = { y ( x , u )  : u e n }  

in the case of an abstract autonomous propagation space is much larger than 

the class of  indicatrices defined by 

I(x) = {y :F(x, y) N 1} 

in the case of  a Finsler geometry. 

For  instance, we could obtain wavelets for which the origin is no more an 

interior point, which are not closed, which are not strictly convex or even 

with a lower dimension than the space itself. The geometry obtained by 

taking these wavelets as indicatrices can have some surprising properties: 

between two different points arbitrarily close to each other with respect to 

the Euclidean norm, we could have more than one geodesics or even no geo- 

desics at all. Hence the geometry induced on the space X by the wavelets 

w(x) is much more general than any Finsler geometry defined on the same 

space X. 
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A G U I D E  T O  T H E  R E A D E R  

In Section 1 we give a precise statement of the fundamental problem of 

optimal control mentioned in the introduction. In Sections 2 and 3 we intro- 

duce some new concepts, perform some transformations, prove a few pro- 

positions in order to be able to state precisely the series of theorems given 

in Section 4. In this Section 4 are assembled all the results of this work: the 

necessary condition for the optimal control of a nonlinear dynamical system. 

In Sections 5 to 9 we establish some intermediary results on which are based 

the proofs of the theorems of Section 4. These proofs are given in Section 10. 

Although this work is entirely devoted to the theory of the general non- 

linear dynamical system defined in Section l, we shall make frequent references 

to the theory of certain linear systems introduced at the end of Section 2. 

We do it for the following reasons: 

(i) Many concepts and results which are necessary to the study of non- 

linear systems but which are elaborate and difficult when dealing with these 

nonlinear systems become particularly clear when they are applied to the 

study of linear systems. 

(ii) The methods developed here for nonlinear systems furnish a very 

simple theory for the linear systems. 

SECTION 1 

S t a t e m e n t  of  the Problem 

In this section we shall give a precise formulation to the fundamental 

problem of optimal control described in the introduction. 

We assume that we are given the following elements: 

(i) a point 

(1.1) A 1 2 n = ( x ~ 1 7 6  = (Xo, X~ . . ' , x ~  ~ X x T 

where X, called the state space, is the Euclidean n-dimensional space with 

elements x = (x l , - . . , x  ") and where T is the real line with elements t. T is 

usually interpreted as the time axis. The space X x Tis called the event space. 

(ii) a line B in X x T, parallel to the x"-axis and determined by its 
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projections x~, i = 1 , . . . , n - 1  and t b on the other axis. More precisely, 

B is the set 

(1.2) { ( x , t ) : x ~ = x ~  for i = 1 , . . . , n -  1, x ~ R ,  t = t b }  

where R is the real line. 

(iii) a set 

(1.3), fl c U 

where U, called the control space, is the Euclidean r-dimensional space with 

elements u = (ut, ..., u'). 

(iv) an n-dimensional vector valued function 

(1.4) f ( x ,  u, 0 = ( f l (  x, u, 0,f2(x, u, t), " . , f"(x,  u, t)) . 

(v) the class F of  all bounded measurable Jr-dimensional] vector valued 

functions [u-] = {(u(0,t) : t ~ It~ tb]} satisfying the condition 

(1.5) u(t) E ~  for all t E [ t ~  

Given all these data we define E as the set of all In-dimensional] vector 

valued functions Ix] = {(x(t), t) : t ~ [to, tb] } such that 

(1.6) (1) Ix] is continuous and a.e. differentiable 

(1.7) (2) X(to) = x~ 

(3) there exists a [v] 6 F with the property 

(1.8) Yc(O=f(x ( t ) , v (O, t  ) a.e. t~[ to ,  tb] .  

(4) there exists an e > 0 such that f ( x ,  u, t) and f x ( x ,u ,  t) are 

defined, measurable with respect to u anf t, uniformly equicontinuous with 

respect to x, and uniformly bounded for all 

(1.9) (x, t, u) 6 N([x], e) x f~* 

where 
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(1.10) = 2 + l r - t l  2 -__~=, tErta, tb] } 

and where [~* is any bounded subset o f fL  

The fundamental problem of optimal control is then to find an element 

[x!  in E such that 

(1.11) (~) (X(tb), tb)~ B 

(fl) for any [s in E such that 

(1.12) ($(tb), tb) ~ B 

shall hold the relation 

(1.13) ~( tb )  <= X"(tb) �9 

The problem as formulated above does not yet exhibit the characteristic 

structure of an optimal control problem: we have still to introduce the strategy 

space. One could be tempted to consider as strategy space for this problem 

the totality of the function space F introduced earlier. This can be done 

indeed but at great costs :we must make strong assumptions on the function 

(x, u, t) in order to insure for every I-u] in F the existence and uniqueness 

of  the solution to the differential system 

(1.14) :c=f(x ,u( t ) , t )  a.e. t~rto, tbl 

with the initial conditions 

(1.15) x(~) = x , .  

In this work we prefer to avoid making any further assumption on the 

function f (x ,  u, t). Instead we shall restrict the strategy space to an appropriate 

subset F* o f f  defined as the set of all [v] ~ F for which there exists an Ix] ~ E 

with the property (1.8). 

According to the following proposition, the set F* has now all the 

properties of a strategy space in the sense of the introduction. 



16 HUBERT HALKIN 

Proposition 1.1 I f  Iv] ~ F* then there is a unique [x] ~ E satisfying 

the properly (1.8). 

Proof of Proposition 1.1. By definition there exists at least one such 

[x]EE;  let us assume that there is another such [~]~E with [~]~  Ix]. 

Let z = sup {t :~(O)=x(O) for O<t} such a z exists since x(to)=~(ta)= x,. 
tE[t.,tb] 

Moreover, ~(z)= x(~) since [~] and Ix] are continuous and z ~ tb since 

[ff] ~ Ix]. Let 5 and g be two positive real numbers corresponding to Ix] 

and [~] in the definition of E. Let 5" =min{5,~}. By assumption the 

functions f ( x , v ( t ) , t )  and fx(x,v(t), t) are then bounded and measurable 

with respect to t in the 5" neighborhood of the point (x(z),z). Hence, 

from the theory of ordinary differential equations, there is a 6 > 0 such that 

x(t)=:~(t) for t ~ [ z , z  +6].  This contradicts the definition of z and 

concludes the proof of Proposition 1.1. 

Proposition 1.1 allows us to make the following definition: If Iv] E F*, 

let Ix(Iv])] = {(x(t;[v]),t):tE[to,t~]} be the unique element in E with 

the property (1.8). 

We are now in a proper position to state the problem in terms of the strategy 

space F* as follows: 

Find an element Iv] ~ F* such that 

(1.16) (a) (X(tb; IV]), tb) ~ B 

(3) for any [w] ~ F* with the property 

(1.17) (x( tb ; [w]), tb) ~ B 

shall hold the relation 

(1.18) [w]) ___ x"(t.; [v]).  

The funCtion [v] satisfying the conditions (a) and (3) shall be called an 

optimal control function and the corresponding function [x([v])] shall be 

called an optimal trajectory. 
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R e m a r k s  on  the  s t r u c t u r e  o f  the  f u n c t i o n  f(x,u,t) 

We should mention here two differences between the statement of the 

fundamental problem in optimal control given above and the fundamental 

problem treated by Pontryagin and his associates. 

In our formulation we allow the function f(x,u,t) to be dependent of the 

variable x n to be maximized at time t b. We are allowing this dependence for 

practical and esthetical reasons: to make the assumption that f(x,u,t) is 

independent of x n would lead to very little simplification of the subsequent 

developments but would nevertheless break the symmetry among the state 

variables. Moreover, many practical problems show a natural dependence 

of the differential equations on the variable to be maximized: in the classical 

problem of the maximization of the payload of a rocket, the evolution of 

the rocket depends on its mass at every intermediate instant of time. 

Also, in contradistinction to Pontryagin's formulation, we do not require 

the differential system to be time independent. 

However, by an appropriate introduction of new artificial variables we 

may transform our problem into the problem treated by Pontryagin and his 

associates. But the new problem obtained by this introduction of 

artificial variables is always degenerate in the following sense: any element 

Iu] of F* satisfies Pontryagin's Maximum Principle. In order to obtain non- 

trivial necessary conditions for an element Iu] of F* to be optimal we must, 

in such a case, use the so-called "transversality conditions". The methods 

developed in this work lead to a very clear geometric interpretation of this 

type of degeneracy which will be discussed in detail in Section 4. 

Moreover, because of the assumption on the continuous dependence of 

the system of differential equations on the state variables, this transformation 

cannot be done if the time dependence of the differential equations is not 

continuous: this is to be contrasted with our very weak assumption on the 

time dependence of the differential equations: we require only measurability 

with respect to time. 

We want to make another remark closely related to the introduction of 

new artificial variables and on the necessity to consider transversality 

conditions in such cases. The statement of the problem given here is made 
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up of two parts: we define a control system with initial conditions by (1.1), 

(1.3), 1.4) and (1.5) and for this control system with initial conditions we 

define an optimal control problem by (1.2), (1.11), (1.12) and (1.13). 

Most of the developments made in the followoing sections depend only on 

the control system with initial conditions but not on the particular optimal 
control problem. In fact, as we shall see in Section 4, our results are directly 

applicable to a large class of optimal control problems: this will allow us 

to dispense with the formal transformations required in order to apply the 

Maximum Principle of Pontryagin and with the consideration of transversality 

conditions which, after such transformations, are strictly needed if we want 

to obtain a nontrivial set of necessary conditions for an optimal solution. 

SECTION 2 

Comoving Coordinate Space along a Given Trajectory 

In the introduction we wrote: "To verify that an element I-v-I of F* is optimal 

we adopt the point of view of an observer riding along the trajectory 

Ix(Iv])] and making his observations in a moving frame of coordinates 

attached to the wavefront." In this section we intend to carry out this scheme: 

for an arbitrary element Iv] of F* we shall define a moving frame of coordi- 

nates Y([o]) by an appropriate transformation from X x [ta, tb] to 

Y([o]) x [t,,tb] and for each [u] in F* we shall study the trajectory 

[y([u],[v])]  = {(y (t; [u], Iv]), t) :t  ~ [to, to] } which is the transformation in 

Y([v])x [t,,tb] of the trajectory [x([u])]  in X x [ta, td .  The space 

Y([o]) x [to, tb] is called the comoving coordinate space along the trajectory 

Ex([o])l. 
We introduce the space Y(Ev]) x Eta, b] and the trajectories 

[y([u],[v])] in that space for the following reasons: in the space 

Y([v]) x [to,tb] there is a very natural way to associate with every trajectory 

[y([u],[v])] an approximate trajectory 

+ 
I" ~ (Eul, Ev])] - {( y (t; Eul, [v]), t) :t E Et,, tb]} 

having a particularly simple structure. According to our previous analogy 
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the trajectory [} ( [u ] , [v ] ) ]  could be considered as the most reasonable 

approximation of the trajectory [y([u] ,[v])]  made by the observer riding 

on the trajectory [x([v])] and knowing the function f (x ,u ,  t) for only those 

values of x and t which are in the neighborhood of his own trajectory. 

The consideration of these various types of trajectories will be of great 

help to derive the necessary conditions for the optimality of the trajectory 

[x([v])]; the guiding idea of this derivation, given in Section 4, could be 
+ 

summarized as follows: assuming that [ y ([u],[v])] is the exact expression 

of [y([-u],[v])] we derive easily a set of necessary conditions for the 

optimality of Ix(l-v])], then we prove that our conclusions are Still valid when 

[~( [u] , [v ] ) ]  is a close enough approximation of [y([u] ,[v])] .  

After these commentaries we shall now proceed with the precise definitions 

of the entities mentioned above. 

F,,r any [v] eF*  we define an n x n matrix D(t;[v]) as follows: 

Of(x, V(t), t) I t ~ [ta, tb] . 
(2.1) D(t; Iv]) = Ox x=~,(,:tvl) 

More precisely, D(t;[v]) is the 

D~(t;[v]); i , j=  1,2, . - . ,n;  defined by 

n x n matrix with elements 

Off(x, v(t), t) x=x. .  
- t I t ~  . (2.2) D~(t;[v]) OxJ . tvl, 

It is much more convenient to use these relations in the form (2.1) than 

in the form (2.2). Such a convention and its obvious generalizations will 

be used throughout this work. 

From our assumptions we know that D(t; [-v]) is bounded and measurable 

over [ta, tb]. 
Let G(t;['v]) be an n x n matrix, continuous with respect to t, defined over 

['t,, t b], satisfying the matrix differential equation 

(2.3) 6'r(t; Iv'l) = - G ( t ;  Iv-I) D(t, Iv-I) a.e. t ~ [t,~, t b-] 

and such that 
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(2.4) G(tb; Iv]) = I 

where I is the identity n x n matrix. 

Proposition 2.1. The matrix valued function G(t;[v]) exists, is 

unique and bounded over [t,, tb]. 

Proposition (2.1) is an immediate consequence of the properties of D(t; lv]) 

and of the theory of ordinary differential equations. 

We shall now introduce a Euclidean n-dimensional space Y([v]) with 

elements y = (yt , . . . ,  y,) by the mapping 

(2.5) 

where 

(2.6) 

is defined by 

(2.7) 

�9 ( [v])  : x  x J r . , t o ] - ,  r ( [ v ] )  • [ t . , t~]  

(y, t )  = ~ x ,  t; Iv])  

y = G(t; [v l ) (x  - x(t;  [v])) �9 

Under the mapping cl)([v]) the trajectory 

(2.8) [x([u])] = {(x(t; I'u]), t) :t E [t,, tb]} with [ul ~ F* 

will be transformed into the trajectory 

(2.9) [y ( [u ] ,  [o ] ) ]  = {(y(t ;  [u ] ,  [v]) ,  t) : t  e [t., tb]} 

defined by the relation 

(2.10)i y(t;[u],[v]) = Cff, t ; [v] ) (x ( t ; [u] ) -  x(t;[v])) for all t ~ [t~ �9 

Proposition 2.2. For every [v] and [u] in F* the~unction [y([u],[v])] 

exists, is unique and continuous. 

Proposition (2.2) follows directly from the relation (2.10) since we already 
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know that G(t;rv]), x(t;[u]) and x(t;[v]) exist separately, are unique and 

continuous over [ta, tb] for [v] and [u] e F*. 

Let us now define the approximate trajectory 

(2.11) [~,([, ,] ,  [v] ) ]  § = {(y(t;  [ , , ] ,  [v]) ,  t) :t ~ [t. ,  t,,]} 

by the relation 

t 
+ 

y(t; [u] ,  [v])  = ('r; [v])  (f(x(x; [v]) ,  u ('r), z) -- f(x(z; [v]),v('O, z))dr 

for all t ~ Eta, tb] �9 

Propos i t ion  2,3. For every [v] e F* and every [u] e F the function 

[~([u], [v])] exists, is unique and continuous. 

Proposition (2.3) follows directly from the definition (2.12) since we already 

know that G(t; [v]), f (x ( t ,  [v]), u(t), t) and f (x ( t ;  ['v]), v(t), t) are measurable 

and bounded over [to, t~l for all Iv] ~ F* and all ['u] E F. 

[y ( [u ] ,Ev] ) ]  As we mentioned at the beginning of this section, the trajectory + 

can be considered as an approximation of  the trajectory [y([u],[v])]. In 

Section 7 we shall define precisely in what sense the word "approximation" 

should be understood and what conclusions we may draw from it. We already 

see at this point that 

(2.13) ~,(t; [v],  [v ] )  ~ y(t; l'v], [v])  ~- 0 all tE[to, tb]. 

The proximity of  [y([u],  [v])] and [~([u], [v])] is particularly apparent 

in the case of  a particular class of  linear systems, defined in the following 

paragraph, since we then have 

(2.14) [y ( [ . ] ,  [v])] = [~([u],  [v])] for all ["2 and [v] ~ F .  

Appl icat ion to a l inear sys tem 

We assume here that f ( x ,  u, t) has the form 

(2.15) f ( x ,  u, t) = A(u, t)x + O(u, t) 
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or the form 

(2.16) f (x ,  u, t) = A(t)x + ~(u, t) . 

When the function f (x ,u , t )  has the form (2.15) we shall speak of  a linear 

system and when it has  the form (2.16) we shall speak of  a linear* system. 

From the definition it follows that a linear* system is a particular type of 

linear system. In th.e relations (2.15) and (2.16) the expressions A(u,t) and 

A(t) are n x n matrices, and ~b(u,t) is an n-dimensional vector. We assume 

that A(u,t), A(t) and 4~(u,t) are measurable with respect to their arguments 

and uniformly bounded over fl* x [ta, tb] for any bounded set fl* subset of ft. 

In the case of a linear system we have 

(2.17) D(t; [v]) = A(v(t),t) for all t ~ [t,,tb] 

and G(t; [v]) is the continuous solution of the matrix differential equation 

(2.18) t~(t; [v]) = - G(t;[v])A(v(t),t) a.e. t �9 tb] 

with the terminal condition 

(2.19) G(tb; Iv]) = t .  

Such a solution is usually written under the symbolic form 

(2.20) G(t; [v]) = exp{ f tb A(v(z),z)d~} 

We then have 

(2.21) 

and 

(2.22) 

y(t; [u], [v]) = G(t; [v]) (x(t; [u]) - x(t; [v])) for all t �9 [t., tb] 

.~(t; [.],[v]~ 
t 

-- f G(z; [v].)(A(u(z),z)x(z; Iv]) + c~(u(z),z) 

- A(v(T), ~) x (~; [v]) - ~(v(~), ~))d~ 

for all t ~ [to, tb] . 
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We shall now compare the two trajectories [y([u],[v])] and [3~([u],[v])]. 
We know already that 

(2.23) y(to; [u], [v]) = ;( t , ;  [u], [v]) 

since from the relation (2.21) we have 

(2.24) y(t a; [ u ] ,  Iv ] )  = G(t.; [v ] )  (x(t~ [ u ] )  - x(t a; Iv ] ) )  

= c ~ ( t o ; [ v ] ) ( x ~  xo) = o 

and since from the relation (2.22) we have 

(2.25) ~(t~ [u], Iv]) = O. 

Let us now consider ~'(t; [u], [v]) and .fit; [u], Iv]). We have immediately 

y ( t ;  [ u ] ,  [v])  = G(t; Iv ] )  (A(u(t), t) x ( t ;  Iv ] )  + dp(u(t), ~) (2.26) +" 

- A ( v ( t ) ,  t)  x ( t ;  [ v ] )  - 4~(v(t), t ) )  

f o r  a .e .  t e It~ tb] 
and 

(2.27) .~(t; [u], [v]) 

= (G(t; Iv]) (x(t; [u]) - x(t; Iv])))" 

= ( ; ( t ;  [ v ] ) ( x ( t ;  [u] )  - x(t; [v]))  + G(t; [v ] ) (~( t ;  [u] )  - s~(t; [v]))  

= - G(t;  [v]) A(v( t ) ,  t ) ( x ( t ;  [u]) - x( t ;  [v])) 

+ G(t;  [v]) (A(u( t ) ,  t) x (t; [u]) + r t ) -  A (v(t), t) x (t ; [v ] ) -  ~(v(t),t)) 

= G(t; Iv]) (A(u( t ) ,  t) x (t; Iv]) + dp(u(t), t) - A(v( t) ,  t) x (t; [v]) + 4J(v(t), t)) 

+ G(t; Iv]) (A(u( t ) ,  t) - A(v(t) ,  t)) (x(t; [u]) - x( t ;  Iv])) 

= G(t; Iv]) (A(u( t ) ,  t) x (t; Iv]) + dp(u(t), t) - A(v( t) ,  t) x (t; [ v ] ) -  dp(v(t), t)) 

+ G(t;  Iv]) (A(u( t ) ,  t) - A(v( t ) ,  t))G - l ( t ;  Iv]) y (t; [u], Iv]) 

a.e. t ~ I-t~,t~]. 



24 HUBERT HALKIN 

The relations (2.26) and (2.27) imply 

+. 
(2.28) 3 (t; [u] ,  [v])  - y (t; [u ] , [v ] )  

= G(t; [v]) (A(u(t), t) - A(v(t), t ) )G- ' ( t ;  [v]) y (t; [u], [v]) 

a.e. t It, ,  . 

We see immediately that in the case where 

(2.29) A(u, t) = A(o, t) a.e. t e [to, tb] 

we have 

(2.30) P(t;Eu],Ev]) =+y" (t;Eu],Ev]) a.e. teEt , , ts]  �9 

The relations (2.23) and (2.30) then implies 

(2.31) y(t; [u], Iv]) = ~(t; [u], Iv]) 

We can then state the following result: 

Proposi t ion 2.4. For a linear* system 

all t ~ [t~ . 

(2.32) [y( [u] ,  Iv]) ]  = [~([u],  [v])]  for all [u] and Iv] ~ F. 

On the other hand, we see that, even for a linear system, [ ) ( [u] ,  Iv])] is in 

general different from [y([u],[v])] and only an approximation of  

[y([u], I-v])] in a sense which will be defined in Section 7. 

The identity of  [y([u],  [v])] and D~([u], [v])] in the case of a linear* system 

is particularly helpful to obtain quickly, for a linear* system, the necessary 

conditions stated in Section 4 since Theorem III, the most difficult theorem 

of Section 4 is, as we shall see, trivially true in that case. 

SECTION 3 

Set of  Reachable Events 

In this section we shall introduce the important concept of  the set of  re- 

achable events. Given a control system, we shall say that a point (xa, t#) in 
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X x T is reachable from the point (x~, t~) in X x T if tp ~ t~ and if there 

exists a control function Iu] in the strategy space F* such that the solution of 

the system 

(3.1) S~c =f(x ,u( t ) , t )  a.e. t e [t~,t#] 

(3.2) tx(t~) = x~ 

satisfies the terminal condition 

(3.3) x(tp) = xp 

In other words, following the terminology used in the introduction, we say 

that (xp, tp) is reachable from (x~, t~) if and only if 

(3.4) (t~,x~)R([u])(tp, xp) for some I-u] in F* . 

We shall consider specially the set H, intersection by the hyperplane t = t b 

of the set of all events reachable from the initial event A by the trajectories 
[x([u])] with [u] ~ F*. In the subsequent analytical developments we shall 

also use the set H([v]) which is the intersection by the hyperplane t = tb of the 

set of all events reachable from the initial event y = 0 by the trajectories 

I-y([u], I-v])] with [u] ~ F*. Similarly, we shall consider the set H([v]) which is 
the intersection by the hyperplane t = t b of the set of all events reachable from 

[y([u], [v])] with [ul ~ F. the initial event y = 0 by the approximate trajectories + 
+ 

According to our previous analogy, the set H(['v]) may be considered as the 

most reasonable approximation of the set H([vl) made by an observer riding 
along the trajectory ['x([v])] but knowing the function f (x ,  u, t) for only those 

values of x and t which are in the neighborhood of his own trajectory. 

Formally, we then have 

H ---- {x(tb;[u]):[u] ~ t * }  

H([v]) = {y(t b; [ul,  ['vl) : [u] E F*} for any ['v] e F* 
+ 

= {y ( t  b ; [ u ] ,  Iv]) : [u]  ~ F} for any Iv] ~ F* �9 

We immediately have the relation 

H(Ev]) - { ~ -  x(tb; [v])  :~ E H} . 
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The study of these sets and particularly of their boundaries will be made in 

the next section. 

S E C T I O N  4 

Necessary Condition for  the  O p t i m a l  C o n t r o l  of  a 

Dynamical System 

In this section we give a series of seven theorems. These theorems summarize 

the whole content of this work. In the remaining sections we shall be concerned, 

directly or indirectly, with the proof of these theorems. More precisely, we 

shall establish in Sections 5 to 9 some preliminary results which will be used 

in Section 10 in the explicit proof of the seven theorems. 

Theorem I.  I f  an element [v] of F* is optimal then the point 

x = X(tb;[V]) is a boundary point of the set H. 

T h e o r e m  I I .  I f  the point x = x(tb;[v]) is a boundary point of the set 

H then the point y = 0 is a boundary point of the set H([v]). 

Theorem I I I .  I f  the point y = 0 is a boundary point of the set H([v]) 
+ 

then y = 0 is a boundary point of the set H([v]). 

Theorem IV.  I f  the point y = 0  is a boundary point of the set/~([v]) 

then there exists a nonzero constant vector 7r([-v]) such that for  all [u] in F: 

(4.1) 
<z~([v]) [ G(t; [v])(f(x(t;  [v]), u(t), t) - f (x ( t ;  [v]),v(t), t)) > < 0 

a.e. t e [to, tb] �9 

By <~ [ fl > we mean the scalar product of cr and ft. 

Theorem V. I f  there is a nonzero constant vector n([vl)such that 

the condition (4.1) is satisfied for  all [u] in F then there is a vector 

p(t;[v]) continuous and nonidentically zero over [to, tb] such that: 

(4.2) (i) p(t;[v]) = Gr(t; [ v ] ) r c ( [ v ] )  al t m [to, tb] 

(ii) for  all I-u] in F 
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(4.3) 

(4.4) 

<p(t; [v])] ( f (x( t;  Iv]), u(t), t) - f ( x ( t ;  [v]), v(t), t)) > < 0 

a.e. t e [to, tb] 

(iii) p(t ;  [V]) = -- D r (t; [v])p(t; [v]) a.e. t E [t,, tb] �9 

The superscript T indicates the transposit ion of  a matrix. 

Theorem VI .  I f  the point x = x(tb;[v]) is a boundary point of  the set 

H then there exists a vector p(t;[v]), continuous and nonidentically zero 

on [t~ such that the conditions (4.3) and (4.4) are satisfied. 

Theorem VII .  I f  an element I-v] of  F* is optimal then there exists a 

vectorp(t;[v]) ,  continuous and nonidentically zero on [t,,tb], such that 

the conditions (4.3) and (4.4) are satisfied. 

As we mentioned earlier, the demonstra t ions  of  these theroms are given 

in Section 10. The demonstra t ions  of  Theorems I, II, V, VI and VII are almost 

immediate.  The proofs  o f  Theorems II[  and IV are based on the results 

established in Sections 5 to 9. 

I f  we define 

(4.5) H ( x , u , t , p )  = (plf(x,u,O > 

then Theorem VII could be equivalently formulated as follows: 

I f  an element I-v] o f  F* is optimal then there exists a vector p(t;[v]),  conti-  
nuous and nonidentical ly zero on [t , , tb] such that  

(4.6) (i) 2 ( t ; [v ] )  OH(x(t;[v]) ,v(t) , t ,p)  p=pt,.tvl) 
= Op , a.e .  t ~ Ira, tb] 

(4.7) 

i.e.) 

2(t, Iv]) = f ( x ( t ; [v] ) , v ( t ) , t )  a.e. t e [t , , tb] 

(ii) /~(t; [V]) = -- all(x ,  v(t),Oxt, p(t; [v])) x=~t,.'tvJ) (4.8) 
a.e. t ~ [t , ,  tb] 
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(4.9) (iii) H(x(t; [v]), v(t), t, p(t; [v]) > H(x(t ;[v]), u(t), t, p(t; [v])) 

for all [u] in F and a.e. t e [t,, tb] �9 

This equivalent formulation of Theorem VII is the well-known Maximum 

Principle of Pontryagin. 
Let us make some comments on the logical structure of the series of theo- 

rems given earlier. 

In Theorem I we associate two different notions: the concept of optimality 

for the particular optimal control problem under consideration and a topo- 

logical property of the set H, which set depends only on the given control 

system with initial conditions but not on any particular optimal control 

problem. 

In Theorems II to V we give a series of implications concerning certain 

properties of the sets H, H([v]) and H([v]). 

In Threoem VI we give the combined result of all the implications contained 

in Theorems II to V. 

In Theorem VII we use Theorem I as an intermediary in order to obtain 

from the topological results of Theorem VI the necessary condition for an 

optimal solution of the particular optimal control problem under consideration. 

Theorem VI is the most important result in the theory of control systems. 
This theorem, we said earlier, depends only on the given control system with 

initial conditions but not on any particular optimal control problem. Hence, 

when a particular optimal control problem is given, we need only to verify 

that Theorem I is valid in order to derive from Theorem VI the appropriate 

necessary conditions for an optimal control. The verification of Theorem I 
is particularly simple in the case of the fundamental optimal control problem 

considered in this work but could also be easily done for a large class of 

different optimal control problems. 

In contradistinction the method of Pontryagin and his associates is the 

following: when confronted with a particular optimal control problem they 

introduce new artificial variables which transform the control system itself, 

and hence the set H in such a way that, for the new control system, the 

particular optimal control problem has the form of the fundamental optimal 
control problem. Unfortunately, the new set H, obtained after introduction 
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of these artificial variables has, with respect to the new event space, a lower 

dimensionality than before. In this case, Pontryagin's Maximum Principle, 

in the form given above, can be trivially satisfied for any control, not 

necessarily optimal, as we shall show in a later paragraph. For such case 

Pontryagin and his associates have given a stronger form of the Maximum 

Principle, including some auxiliary conditions similar to the transversality 

conditions in calculus of variations. 

Finally, let us underline how closely these theorems correspond to the 

intuitive procedure stated in the introduction: "To verify that an element 

I-v] of F* is optimal we adopt the point of view of an observer riding along 

the trajectory Ix(Iv])] and making his observations in a moving frame of 

coordinates attached to the wavefront. For such an observer all the missed 

opportunities, i.e., the directions he could have followed but did not, are 

leading to points on one side of a hyperplane passing through the origin." 

By Theorem II we identify the moving frame of coordinates attached to 

the wavefront with the comoving coordinate system Y([v]) x It~ tb-] along 

the trajectory Ix(Ivl)]. 

By Theorem III we show that for our purposes the set H(lv]) is as good 
+ 

as the set H([v]). In our analogy the set H([-v]) is the most reasonable 

approximation of the set H(Iv]) made by the observer riding along the tra- 

jectory Ix(Iv])] but knowing the function f(x,u,  t) for only those values of 

x and t which are in the neighborhood of his own trajectory. In other words, 

Theorem III states that the most reasonable approximation made by the 

moving observer is good enough as far as the derivation of necessary condi- 

tions is concerned. 
In Theorem IV we identify the vector n([v])with the normal to the hyper- 

plane passing through the origin and such that all missed opportunities are 

directions leading to points located on one of its sides only. 

Theorem V describes the same property as Theorem IV but from the point 

of  view of an observer fixed in the space X x T instead of the moving observer 

considered earlier. 

Remarks  on the d i m e n s i o n a l i t y  of  the set  H 

By construction the set H is a subset of the n-dimensional Euclidean space 

X. In Theorems II to VI we have derived some properties of the elements 
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l'u] e F* for which X(tb; [U]) is a boundary point of the set H. In other words, 

we have given some necessary conditions on [u] in order that x(t; [u]) be a 

boundary point of the set H. If  the dimension of the set H is less than n then 

all the previous results become trivial since for any [u] E F* the point 

X(tb;[U]) will be a boundary point of the set H. This happens, for instance, 

when the set H is a subset of a sufficiently smooth n - 1  dimensional mani- 

fold H* nontangent to the line B' projection on X of the line B in X x T. 

In such a case the set H c~ B' has only isolated points and therefore all [u] E F* 

with (x(tb;[U]),tb)~ B are locally optimal. This explains why the necessary 

conditions for an optimal solution can be trivially satisfied in such a case 

for any control, not necessarily optimal. This example shows the need of 

stronger conditions. This need is partially satisfied by the consideration of 

the so-called "transversality conditions." 

Application to linear systems. 

We saw at the end of  Section 2 that, for the linear* system (2.16) we have 

(4.10) [~V([u],[v])] = [y([u],[v])] for all [u] and Iv] in F . 

In particular, this implies 

(4.11) +Y(tb;[U],[V])=y(tb;[U],[V]) for all [u]~F 

i.e., 

(4.12) H ( [ v ] )=  h(Ev]) . 

The relation (4.12) simplifies greatly the derivation of  the necessary condition 

for the optimal control of  a linear* system. Indeed, Theorem III is trivially 

true for a linear* system and since none of  the other theorems are particularly 

difficult, as we shall see in Section 10, we may now consider the entire theory 

for the optimal control of  a linear* system as very simple. 

In the case of  the linear system (2.15), the relation (4.8) takes the simple 

form: 

(4. l 3) p(t; [v]) = - Ar(v(t), t) p(t; Iv]) . 
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S E C T I O N  5 

N o r m s  fo r  the  S p a c e  of  C o n t r o l  F u n c t i o n s  and fo r  the  
S p a c e s  of  T r a j e c t o r i e s  

In this section we define various norms for the space F of control functions 

and for the spaces of  trajectories. These norms will be extensively used in the 

remaining sections of this work. 

Let us consider an arbitrary collection G of functions from l'to, tb] t o  a 

Euclidean space. An element {(z(t) , t ): t  ~ [t~,tb] } in that collection will be 

denoted by I-z]. 

ILet us define 

(5.1) d([z] ,  [~3) = ess sup I z(t) - ;~(t) I 
t ~ [t~.t~] 

and 

(5.2) a([z] ,  [;~]) = p({t : z(t) ~ 2(t) and t E [to, tb]}) 

for every [z] and [~] in G. 

By the symbol "ess sup"  we mean the essential supremum, i.e., 

(5.3) ess sup lz( t ) -  e(t) I = inf sup lz(t) - ~(t)l 
t~[to,tb] Otr 0 t E ~  

where 

(5.4) = {[to ,  tb] ~ n : , ( B )  = o ) .  

It is easy to prove that d(. , .)  and a( . , . )  are norms for a space of 

continuous functions and semi- norms for a space of measurable functions. 

In this work we shall use d(. , .)  over the spaces of trajectories, continuous 

by definition, and we shall use d(. , .)  and er(., .) over F, the space of control 

functions, measurable by definition. 

If we define the equivalence relation - on F by 

(5.5) ['u] - [v] if and only if u(t) = v(t) for a.e. t e [t a, tb] 

then d(. , .)  and a( . , . )  are norms for the quotient space F =  F / - .  
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In order to simplify the notations we shall talk of  the set F even where we 

should talk strictly of  the set F of equivalence classes of  F under - ,  and 

we shall simply write 

(5 6) Eu] = E,;l 

even where we should write strictly 

(5.7) D ] -  D] . 

It should be stressed that the two norms a(., .) and d(., .) are not equivalents 

they give rise to two completely different topologies on F. 

To simplify the notation d(l-z],0) shall be written d(Ez]) and similarly 

a(l-z],0) shall be written o(Ez]). 

A subset ff of  F such that there exists a k with 

(5.8) d(l'u]) <- k for all [u] ~/~ 

is called a d-bounded subset of  F. 

In particular, we shall denote by F~ the set of  all elements in F such that 

d(l-u]) < k, i.e., 

(5.9) F~ = { D ]  : Eu] ~ F, d (D] )  _-< k } .  

Similarly, F* will be the set 

(5.10) F~* = {D2 : [ , ]  ~F*,d(Eu]) Z k). 

SECTION 6 

Curvilinear Coordinate Space along a Given Trajectory 

In Section 2 we have associated to every element I'v] of  the function space 

F* a space Y(l-o]) x ['t,, tb] called the comoving coordinate space along the 

trajectory I'x(['v])]. In this section we shall associate to every element I'v] 

of  the function space F* another space denoted by Z([v]) x I't,, tb] and called 

the curvilinear coordinate space along the trajectory I'x(l'v])]. The consi- 

deration of the spaces Z(l-v]) x l-t,, tb] is a very convenient tool in the study 
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of the existence and uniform convergence of the trajectories corresponding 

to control functions in a d-bounded subset of F in terms of the norm a defined 

in Section 5 over the space F of control functions. 

In the case of the linear system introduced in the last paragraph of  Section 

2, we shall prove that Z( [v] )=  Y([v]) and we shall show that for a linear 

system the results given in this section take a much simpler form. Moreover, 

if the system is a linear* system we proved already in Section 2 that we have 

the relation [y([u],[v])] = } ([u], [v])]. This will enable us to show that 

for a linear* system the results given in this section could be easily derived 

from the classical theory of nonhomogeneous linear differential equations. 

In the last paragraph of this section we shall consider briefly the case of 

linear and linear* systems. 

If  [w] e F* and (~, t) ~ X x [t,, tb] let 

(6.1) [x([w],  ~, 0 ]  = {(x(t; [w], ~, 0 ,  0 : t e [t,, t~]} 

be a continuous vector-valued solution of the differential equation 

(6.2) ~ t ;  Cw], ~, 0 = f ( x ( t ;  Cw], s 0,  w(t), t) a.e. t e It,, tb] 

satisfying the initial condition 

(6.3) x(r; Ew],~, 0 = x(~; [w]) + :~ .  

For every [w] e F* we shall now introduce a Euclidean n-dimensional 

space Z([w]) with elements z = (zt, ..., z ') by the mapping 

(6.4) ' i ' ( [w])  : X  x It, ,  t~] ~ Z( [wl)  x [t,,  t~] 

for which 

(6.5) (z, t) = V(x,  t; [w]) 

is determined by the relation 

(6.6) z = x(t  b; [w], x -  x(t; [w]),t) - x(t  b; [w]) 
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or equivalently the inverse mapping 

(6.7) ~ -  l([w]) : Z([wl) x [ta, tb] "-* X x It,, tb] 

for which 

(618) (x, t) = q ' -  1 (z, t ;[w]) 

is determined by the relation 

(6.9) x = x(t; I-w], z, t b). 

In other words, the mapping qJ([-w]) associates to an element (x,t) of 

X x ['ta, tbl an element (z,t) in Z([-wl) • I-ta, tbl determined as follows: z is 

the difference of the projections on the terminal hyperplane, i.e., the hyper- 

plane X x {tb}, of the points (x, t) and (x(t; J-w]), t) of the hyperplane X x {t} 

where the projecting lines are the solutions of the differential system with thc 

control function I-w-]. Conversely, the inverse mapping W-l(l-wl)associates 

to an element (z, t) in Z([wl) x [to, tbl an element (x,t) in X x [-ta, tbl deter- 

mined as follows: x is the projection on the hyperplane X x {t} of the point 

(x(tb;[w]) + z, tb) of the terminal hyperplane X x {tb}. The projecting lines 

are as before the solutions of the differential system with the control 

function I-w]. 

In the following propositions we shall prove some results concerning the 

existence, uniqueness and boundedness of the mappings q'([wl) and their 

inverses W- l(['wl). 

D e f i n i t i o n .  I f  I-v] 6 F*, k is a positive number and e is the positive 

n,~mber associated to I-v] in the definition of E, let us define F*(l-vl, k) to be 

the set 

(6.10) {[w] :[w]~F*,d([w],[v]) < k,d([x([w])],[x([v])]) <= 2}. 

It should be remarked that we do not know at this point if the set F*( l-v], k) 

contains any other elements besides I-v]. In Proposition (6.10) we shall exhibit 
a large class of  elements in F which also belong to F*([vl, k) and afor t ior i  

to F*. The set F*(l-vl, k) plays a very important role in this work: the neces- 

sary condition for the optimality of the element I-vl of F* will be derived from 
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the comparison of Iv] with only those elements in F* which also belong to 

F*(Ev], k). 

Proposit ion 6.1. I f  [w]~F*([v] ,k)  and ~ is the positive number 

associated to Iv] in the definition of E then ~/2 can be used as the positive 

number associated to [w] in the definition of E. 

Proof  of Proposit ion 6.1. From the definition of E we know that 

f ( x ,  u, t) and fx(x ,  u, t) satisfies certain conditions for all 

(x, t, u) e U([x(Ev])] ,  x n *  

(6.11) 

where f~* is any bounded subset of f~. But d(Ex(Ew])], [x([v])] =< e/2 implies 

N([x([w])],e/2) c N([x([v])],e) hence f ( x ,  u, t) and f~(x, u, t) will a fo r t io r i  

satisfy the same conditions for all (x, t ,u )~  N([([w])],e/2) x f~*. This con- 
cludes the proof  of Proposition (6.1). 

Proposit ion 6.2. I f  Iv] E F*, ~ is the positive number associated to [v] 
in the definition of E and k is an arbitrary positive number, then there exists 

an M > 0 such that for  all --< e/2M, all ?~ [t,,tb] and all [w] eF*([v],k)  

we have 

(i) [x([w],~,?)] and [ 8x([w],)7,~)]~~ exist and are unique 
l o x  I 

(6.12) 

Proof  of Proposi t ion 6.2. 

(ii) d([x([w], 2, r)], Ix([w])]) < M .  

From our assumption we know that 

(6.13) 

(6.14)i 

(i) Ix([w])] exists 

(ii) f ( x ,  w(t), t) and af(x, w(t), t) 0x exist and are uniformly 

bounded for all (x, t) e N  ( I x ( [ w ] ) ] , 2 ) .  

By definition [x([w])] and [x([w],)?, ~)] are solutions of the same differential 
equation 

(6.15) 2 = f ( x ,  w(t), t) a.e. t e [t,, tb] 
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but corresponding to different initial values. Hence from the theorem on the 

continuous dependence of the solution of a differential equation, we know 

that there exists a constant M([w]) such that for all 121 < = 2M([w.]) and all 

[ O~(Ew], 2, ~)] 
e[to, to] the functions [x([w.],~,t)] and ~ j exist and 

are unique. It remains to show that we can find a constant M such that 

M([w.]) < M for all [w.] e F*([v], k). 

I ~-~ ~g f ( x , u , t ) 
Let df( , t) denote the norm of the matrix ax . This norm is 

defined as usual by the relation 

(6.16) 

Let 

(6.17) 

df(x,  u, t) df(x,  u, t) 

lyl~_t 

l Of(x, u, t) 1 R = sup tgx 

over all values of (x, t) e N([x(Ev])'], e) and all values of u with ] u ] < d([v]) + k. 

Let 

(6.18) M = 2e R(tb-t~ . 

We shall now show that this constant M satisfies our requirements. 

Let [z1,*2] be the supremum of all closed intervals [01,02] ~ [t.,tb] such 

that 

(6.19) (i) x( t ;[w] ,  2, 0 exists and is unique on [01,02] 

(6.20) (ii) [x(t;[w],2,O- x(t;[w])[ ~ [ 2 [ M f o r a l l t e [ O t , O z ]  . 

The previous definition makes sense since the class of closed intervals 

satisfying the conditions (6.19) and (6.20) is not empty: it contains the closed 

interval [~,~J. 

We then have 
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(6.21) 

and 

. /  

~ l  x(t; Ew], ~,~) - x(t; Ew]) I __< r I ~(t; Ewl ,~ ,r) -  ~(t; Ew])l 

for a.e. t ~ Ell , t2] 

(6.22) I x( r; Ew], ~, ~) - x(r; Ew]) I = I ~ I. 

This implies 

. M 
(6.23) [ x(t; [w], .~, ~) - x(t; [w]) I < I "rl ea('b- '') = I x I T .  

Hence [rx,~z] = [to, tb] because otherwise there would be a closed interval 

0 *  c [01,02] [t,,tb] for which the conditions (6.19) and [ 1,0"] with [~I,T2] ~ * * 
(6.10) would be satisfied, contradicting the definition of [zl,z2]. 

The relation (6.23) now becomes 

(6.24) d([x( [wl ,  P,, 0], [x(l 'w])]) < I~I M = ~--. 

This concludes the proof  of Proposition (6.2). 

Propposition (6.2) leads immediatelly to the following result : 

P r o p o s i t i o n  6.3. I f  I'v] ~ F*, e is the positive number associated to l-v] 

in the definition of E, k is an arbitrary positive number, and M is the positive 

constant introduced in Proposition (6.2), then for  every [w] ~ F*([v], k) the 

mapping W([w-]):X x [ta, td - - '  Z([wl) • [to, t ] described by the relation 

(6.6) is well defined for  all (x, t) in X x [ta, t b] such that lx - x(t;[w]) I < ~--~- 
= 2 M  

and the resulting (z, t) in Z([w]) x ['to, tb] is such that lz [ <= M i x  - x(t; Iwl)I" 
Conversely, the mapping W- 1 ([w]) :Z([w]) x [ta, t b] ~ X x ['t~, t b] described 

by the relation (6.9) is well defined for  all (z, t)  in Z([-wl) x [to, t~l such that 

~8 I z l  < ~  and the resulting (x, t)  in X x [to, tb] is such that 

Ix- x(t;[w])l < Mlzl. 
C o n v e n t i o n  1. We shall write x(t;[w],.~) for x(t;[w],.~,tb). 
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2. In the remaining part of this work I-v] will always be an element in F*, e 

will be the positive number associated to I-v] in the definition of  E, k will be 

an arbitrary positive number and M will be the positive number introduced 

in Proposition (6.2). 

D e f i n i t i o n .  For [w]~F*([v],k)  and Izl _-< ~/M let 

(6.25) D(t;[w],z) = Of(x,w(t):t) for all t6[t~,tb] . 
~X IX=r(t;[W],Z) 

P r o p o s i t i o n  6.4. The matrix valued function D(t;[w],z) is measurable 

with respect to t and uniformly bounded for  all t ~ [t~,tb], all I-w] ~ F*([v-l,k) 

and all I zl < e/2M. 

Proof of Proposi t ion 6.4. From [w]~F*([v] , k )and  < e / 2 M w e  

know that 

(6.26) 

(6.27) 

hence 

(6.28) 

(i) (x(t;[w],z),t) eN([x([v])],~) for a l l  t ~ [t.,tb] 

(ii) I w(t)l 6 d(Ev]) + k for all t e [t, ,tb] 

ID(t;[w],z)] <= R for all tE[t~,tb] 

where R is the positive constant introduced in the proof of Proposition (6.2). 

This concludes the proof of Proposition (6.4). 

Def in i t ion .  For [w]~F*([v],k) ,  Izl<: /EM let G(t;[w],z) be the 

continuous solution of the matrix differential equation 

(6.29) G(t;[w],z) = - G(t;[w],z)D(t;[w],z)  a.e. t~[to, tb] 

with the terminal condition 

(6.30) G(tb; [w], z) = I 

where I is the identity matrix. 
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Proposition 6.5. Tile matrix G(t; [w],z)  exists, is uniformly continuous 

with respect to t and uniformly bounded for all t e [t~ all [w] e F*([v],k) 

and all l z [<  ~/2M. 

P r o o f  of  P r o p o s i t i o n  6.5. Immediate from Proposition (6.4) and the 

theory of  linear differential equations with bounded measurable coefficients. 

Moreover, 

(6.31) l G(t; l-w], z)] < e~('b-'*~ < M 

for all t~[to, tb], all [w]sF*([v],k) and all lzl <=~/2M, where M is the 

positive constant introduced in the proof  of Proposition (6.2). This concludes 

the proof of  Proposition (6.5). 

Proposition 6.6. The matrix G-l(t;[w],z),  inverse of the matrix 

G(t;[w],z) exists, is uniformly continuous with respect to t and uniformly 

bounded for all t E [ta, tb], all [w] ~ F*([v], k) and all [z ] < e/2M. 

Proof of  P r o p o s i t i o n  6.6.  Let G*(t;[w],z) be the continuous solu- 

tion of the matrix differential equation 

(6.32) d*(t;[w],z) = D(t;[w],z)G*(t;[w],z) a.e. te[ta, tb] 

with the terminal condition 

(6.33) G*(tb; I'w], z) = I . 

For the same reasons as in Proposition (6.5), we know that the matrix 

G*(t;[w],z) exists, is uniformly continuous with respect to t and uniformily 

bounded for all t~ [ta, tb], all [w] ~ F*([v],k) and all ]z ] < ~/2M. We will 

now prove that 

(6.34) G(t;[w],z)G*(t;[w],z)= I for all te[to, tb] 

i.e., 

(6.35) G*(t;[w],z) = G-X(t;[w],z) for all t e [to, tb] . 
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We already know that 

(6.36) G(tb; [w], z) G*(t b; [W], Z) = I I  = I 

and that G(t ; [w] , z )G*( t ; [w] , z )  is continuous over [t, ,tb]. It 
verify that 

(6.37) (G(t; [wl, z) G*(t; [w], z))" = 0 a.e. t e [t,, tbl �9 

This last relation is immediate since 

(6.38) d ( t ; [ w ] , z ) G * ( t ; [ w ] , z )  + G ( t ; [ w ] , z ) d * ( t ; [ w ] , z )  

= - ~(t; [w], z) o(t; [w], z) G*(t; [w], z) + 6(t; [w], z) o(t; [w], z)G*(t; [w],z) 

= 0  a.e. tr 

This concludes the proof of Proposition (6.6). 

Propos i t ion  6.7. 

]z]~_~lM we have 

(6.39) 

Proof  of  Propos i t ion  6.7. Let 

(6.40) 

we have 

(6.41) 

and 

remains to 

G- ' ( t ;  D ] ,  z) = 

(6.42) ~(t) = 

a(t) = G-'  (t; [w], z) 

ax(t; [w], z) 
~x 

ax(t; [w], z) 
Oz 

A(tb) = I - -  I = 0 

D(l; [w], z) G- 1(1; [W], Z) -- ~zzf(X(t; [w], z), w(t), t) 

ax(t; [w], z) 
o O ; [ w ] , z ) c - ' ( t ; [ w ] , z )  - D(t; [w], z) az 

D(t ;[w] ,z )A( t )  a.e. t e [ t ~  

For all t~Et=,tb], all rw]~F*(rv],k) and all 
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From the relations (6.41) and (6.42), we obtain 

(6.43) A(t) = 0 all t ~ [to, t b] �9 

This concludes the proof  of Proposition (6.7). 

Under the mapping 

qS([W]) :X X [ta, tb] "-~ Z([W]) X [to, tb] (6.44) 

the trajectory 

(6.45) [x([u])]  = {(x(t; [u]), t) :t  ~ [ta, t0] } with [u] ~ F* 

will be transformed into the trajectory 

(6.46) [z(Eu],  [ . ] ) ]  = {(z(t; [u] ,  0 : t [to, t , ] }  

acccording to the relation 

(6.47) z(t; ru], rw]) = x(tb; [w],x(t; [u]) - x(t; rw]), t) - x(tb; rw]) 

for all t~[to, t~l. 

Conversely, under the mapping 

(6.48) qJ- ' ( [w])  :Z(Ew]) x [to, t d ~ X  x [ta, t~l 

41 

(6.49) x(t;[u])=x((t;[v],z(t;[u],[v])) all tE[to, t J .  

In other words, the mapping qJ([w]) associates to a trajectory [x([ul)]  in 

X x [to, t b] a trajectory [z(ru],  [w])l in Z([w]) x It~ t b] determined as follows: 
z(t;Fu],[w]) is the difference of the projections on the terminal hyperplane 

X x {tb} of the points (x(t; [ul),  t) and (x(t; [wl), t) of the hyperplane X x {t} 

where the projecting lines are the solutions of the differential system with the 

control function rw]. Conversely, the inverse mapping q r l ( [ w ] )  associates 

to a trajectory [z([ul,[w])] in Z ( [w] )x  [ta, tb] a trajectory [x([u])] in 

the trajectory rz([u],  rw])] will be transformed into the trajectory [x([u])] 

according to the relation 
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X x [t,,tb] determined as follows: x(t; [u]) is the projection on the hyperplane 

X x {t} of the point (x(te;[w]) + x(tb;[U]),tb) of the terminal hyperplane 

X x {tb}. The projecting lines are as before the solutions of  the differential 

system with control function [w]. 

Proposi t ion 6.8. I f  [u] and [w]~F*([v],k)  then 

(6.50) (i) z'(t; [u], [w]) 

= G(t; [w], z(t; [u], [w])) ( f (x ( t ;  [u]), u(t), t) - f ( x ( t ;  [u]), w(t), t)) 

for  a.e. te[ t . , tb]  

(6.51) (ii) z(t,;[u],[w]) = 0 . 

Proof  of Proposi t ion 6.8. If [u] and [w] e F*([v], k) then [z([u],[w])] 
exists and we have the relation 

(6.52) x(t; [u]) = x(t; [w], z(t; [u], [w])) for all t E Et., tb] 

By differentiation of  (6.52) with respect to t we obtain 

(6.53) f (x(t;[u]),u(t) , t )  

= f (x( t ;  [u]), w(t), t) + G-1(t; [w], z(t; [u], [v]))~(t;  [u], [w]) 

since 

(6.54) 

for a.e. t~[t , , tb]  

Ox(t; [w], z)= G_~(t;[w],z) 
az 

as was proved in Proposition (6.7). From the relation (6.53), we obtain the 

relation (6.50). 

If  we let t = t, in relation (6.47), we have 

(6.55) z(t~ I u ] ,  [w-I)  = x(tb; [ w l , 0 , t . )  - x(tb; [ w l )  

= x(tb; I 'w])  - -  X(tb; [W-I) = 0 . 

This concludes the proof  of  Proposition (6.8). 
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Proposit ion 6.9. There are positive constants P and Q such that for 

all [wl] �9 and all [w2] � 9  with 

(6.56) (i) d([wl],[w2]) < k 

(6.57) (ii) tr([wx], EW2]) =~_ Q 

we have 

(6.58) (i) ['w2] ~F* 

(6.59) (ii) d([x([wl])],l'x(I-w2"[)]) < 

(6.60) (iii) d([x([wl])],[-x([w2])]) < Pa([wl], [w2]). 

Proof  of Proposit ion 6.9. Let 

(6.61) L = s u p  If(x,u,t) I 

over all (x,t) �9 N([x([v])'l,e), all l u I < d([v]) + 2k. Let M be the positive 

constant introduced in Proposition (6.2). We shall prove that the relations 

(6.58),(6.59) and (6.60)are valid when the constants P and Q are determined by 

(6.62 P = 2M2L 

(6.63) Q = 8M3L. 

Let z be supremum of all times 0 �9 [ta, tb] such that 

(6.64) (i) x(t;[w2]) exists and is unique on [to, O] 

(6.65) (ii) Ix(t; lw2]) - x(t; lwl])l -< T ~  for all t �9 [to, 0J 

(6.66) (iii) z(t;[w2],[wl]) exists and is unique on [to, O] 

(6.67) (iv) I z(t; [w2], [wl])l  < ~-~ for all t �9 [ to,0] .  
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This definition makes sense since the set of  all times 0 such that the relations 

(6.64) to (6.67) are satisfied on It , ,0] is not empty: it contains the time to. 
From (6.65) and (6.61) we have 

(6.68) [f(x(t;[w2]),w2(t),t ) - f (x( t ;[w2]) ,wl( t ) , t ) l  <= 2L for all t E [to, Z].  

From the relation (6.67) and Proposition (6.5), we have 

(6.69) IG(t;[wi],z(t;[w2],[wl]))l <= M for all t e [ t ~  

By definition, we have 

(6.70) I~({t:f(x(t;[w2]),w2(t),t)--f(x(t;[w2]),wl(t),t) ~ O, t e [t~ 

=< [We]). 

From the relations (6.68), (6.69) and (6.70), and from the differential equation 

(6.50) with initial condition (6.51), we obtain 

(6.71) Iz(t;[We],[Wl])l ~ 2LMtr([wl],[w2] ) for all t~[to, Z] . 

With the help of  relations (6.57) and (6.63), the inequality (6.71) becomes 

8 
(6.72) I z(t:EWe],EWl])l < ~ for all t e I-to, Q .  

Applying Proposition (6.3) to relations (6.71) and (6.71), we obtain the 

two relations: 

(6.73) Ix(t;[w2]) - x(t;[wll)l < 2LM2a([wl],[w2]) for all t e  I-ta, T] 

(6.74) ~ for all t~[to, Q .  

From (6.72) and (6.74) we conclude that 

(6.75) z = tb 

because otherwise there would be a 0*e  (T, tb] for which all the conditions 

(6.64) to (6.67) would be satisfied, in contradiction with the definition of  r. 

Hence 
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(6.76) [w2] ~F*  

and the expression (6.74) can now be written 

(6.77) 

i.e., 

(6.78) 

and a for t io r i  

(6.79) 

I ])1 e. for all x(t;  [w2]) - x(t;  l-wl < 4M 

d(Cx(Cwd)],Cx([wl])]) < ~ 
= 4M 

d(l-x([w,])], [ x ( [ w d ) J )  _~ 2 " 

t ~ l-t,, tb] 

F rom relations (6.62), (6.73) and (6.75), we have 

(6.80) 

i.e., 

(6.81) 

[ x ( t ; E w z ] )  - x(t; [Wl]) [ = Pa ( l -wd , [w2] )  for all t e [to, t b] 

d ( r x ( r w d ) ] , r x ( r w , ] ) ] )  =< P,(~w~],l-w~]) . 

Relations (6.76), (6.79) and (6.81) are the required relations (6.58),(6.59) 

and (6.60). This concludes the proof  of Proposition (6.9). 

Proposition 6.10. I f  Q is the positive constant introduced in Propo- 

sition (6.9), then for  all l-u] ~ F with d(l-u'],l-v]) <- k and a(~'u'[,['v'])~ Q, 

we have [u] ~ F*(I-v], k). 

P r o o f  of Proposition 6.10. By applying Proposition (6.9) to [wl] = Iv] 

and [wz] = [u],  we obtain 

(6.82) (i) [u] ~F*  

(6.83) (ii) d([x(Ev])],[x(Eu])]) < 2 " 

From relations (6.82) and (6.83) and from the assumption d([u],[v])< k 

we then have 

(6.84) I'u] ~ F*([v], k) . 

This concludes the proof  of Proposition (6.10). 
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Proposit ion 6.11, I f  Q and P are the positive constants introduced 

in Proposition (6.9), then for all [ul ]  and [u2] ~F with d([ua],[v])< k, 

d['(u2] , Iv]) =< k, tr([Ul] , [v]) ~ Q and tr([u2], Iv]) < Q, we have 

d([x([u,])], [x( [u2]) ]  ) < Pe([u, ] ,  [uz] ). 

Proof  of Proposi t ion 6.11. By applying Proposition (6.10) to 

[u] = I /q]  we obtain [ul]  mF*([v],k), and by applying Proposition (6.9) to 

[wL]-- [u2] and [w2] = [/-/2] we obtain d([x([ul])] ,  [x([u2])]) _-< Pa([ux], [u2]). 

This concludes the proof of Proposition (6.11). 

Proposit ion 6.12. ~If Q is the positive constant introduced in Propo- 

sition (6.9), then there is a positive number K such that for all [ul]  and 

[ u 2 ] e F  with d([ux],[v])<k, d([uz],[v])<k,  la([u~],[v])<_Q and 

tr([u2], Iv]) <= Q, we have 

(6.85) d(Ey([u,],Ev])],EY(EU2],[v])])<Ka([u,],[u2]). 

Proof  of Proposi t ion 6.12, By definition (see (2.8)), we have 

(6.86) y(t;[u],[v]) = G(t;Ev])(x(t;[u]) - x(t;[v])) for all t~[ta, t~] . 

From Proposition (6.5), we have 

(6.87) i G (t; Ev])l = l G(t; Ev],O) I < M 

From relation (6.86), we have 

for all t ~ [t,, tb] . 

(6.88) y(t; [ u , ] ,  [ v ] )  - y(t; [ u 2 ] ,  [ v ] )  = G(t; [v])(x(t; [ u , ] )  - x(t; [ u 2 ] ) )  

for all t ~ [to, t b] . 

From relations (6.87) and (6.88), we have 

(6.89) d([y([u~],[v])],[y(Eu2],[v])])<=Md([x(Eu~])],[x([u2])]). 

But by Proposition (6.11), we have 

(6.90) d([x([u~])], [x(l-u2])]) < Po([ui], [u2] ) .  
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From (6.89) and (6.90), we then have 

(6.91) d([y([u,], Iv])], [y([u2], [v])]) 

N PMcr([u,], [Um]) = Kcr([u,], [um] ) . 

This concludes the proof of Proposition (6.12). 

All the resullts of this section which we shall need later on can be summa- 

rized as follows: 

P r o p o s i t i o n  6.13. I f  [v]EF*, e is the positive number associated 

to Iv] in the definition of E, k is an arbitrary positive number, then there 

exist two positive numbers K and Q such that for all [ul] and [u2] ~F with 

(i) d([ul] ,[v])  and d([uz],[v]) =< k 

(ii) o'([u,], Iv]) and o([Uz], Iv]) _< Q 

(6.92) 

(6.93) 

we have 

(6.94) 

(6.95) 

(i) [ut]  and Eum]~F * 

(ii) d(Ey(Eu,], Evl)], Ey(Euml, Ev])3) N g (ru,1, Eum]) �9 

A p p l i c a t i o n  to a l i n ear  s y s t e m .  

We shall assume that f ( x ,  u, t) has the particular form given in relation 

(2.15), namely 

(6.96)~ f ( x ,  u, t) = A(u, t)x + q~(u, t) . 

The results obtained in this section in the case of a nonlinear system can a 

fortiori be applied to a linear system. We want to show here how these results 

could be obtained directly in the case of a linear system. 

Since for any I-u] ~ F the coefficients of Equation (6.96) are measurable 

and bounded, we know that a solution [x([ul)] will always exist, i.e., [u] ~ F*. 

In other words, we have 

(6.97) F = F* . 
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Hence the question of existence of a solution for a particular [u] E F which 

was the main difficulty in the treatment of the general nonlinear system, 

given in the beginning of this section, is trivially solved in the case of a linear 

system. To complete this direct study of a linear system, we shall perform 

some algebraic manipulations and prove the existence of uniform bounds 

for some constants associated to each element of F. 

The study of a linear system is particularly simple because the matrix 

(6.98) D(t; [w], z) = Of(x, w(t), t) ] 
OX x = x(t  :tw],z) 

= A(w(t), t) for all t e [t,, tb] 

is independent of z. From there follows that the matrix G(t; [w],z) will also 

be independent of z and we shall write G(t;[w]) instead of G(t;[w],z). 
Proposition (6.7) can now be stated 

(6.99) 

and from the relation 

(6.100) 

defining the mapping 

(6.101) 

it follows that 

(6.102) 

But by definition 

(6.103) 

hence 

(6.104) 

6- ' ( t ; [w])  = 
ax(t; [w], ~) 

az 

x = x ( t ;  [w], z) 

v - ' ( [ w ] )  :Z([w]) x [to, td-~  x x [to, t~] 

x : x ( t ; [ w ] , O )  + 6 - ' ( t ; [ w ] ) z .  

x(t; [w], o) = xO; [w]) 

x = xO; [w]) + (~-' (t;[wl)z 
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(6.105) 
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z = - x ( t ;  [w])). 

If we compare relation (6.104) with the relation 

(6.106) y = G(t; [wl)(x - x(t; [w]) 

de fining the mapping (see Section 2) 

(6.107) ~([w]) :X x It,, tb] ~ Y([wl) x [to, tb] 

we obtain 

(6.108) ~P([w]) --- q)([w]) 

i.e., 

(6.109) Z([w]) x [t.,tb] = Y([w])x  [t~ 

and in particular 

(6. I I0) [z(Eu], [w])]  = [y(Eu], [w ] ) ] .  

For  a linear system Propositions (6.9), (6.10), (6.11) and (6.12) are combined 

into the following result: 

Proposition 6.14. For any positive number k, there is a number P 

such that for  all [u] and [w] �9 F~ we have 

(6.111) d([y([u],([w])]) < Pa([u] ,  [w]) .  

Proof of Proposition 6.14. For any positive number  k there exist 

uniform bounds for each of the expressions on the right side of the differential 

equation (2.26), hence there exists a P such that 

(6.112) I )~(t; [u], [w]) [ ~ P 

for a.e. t �9 [t,, tb], all [u] and [w] �9 F, .  
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Moreover, 

(6.113) 

and 

(6.114) 

for all 

HUBERT HALKIN 

y( o; [u],  [w])  = o 

[w]) = o 

t ~ [ t ~  such that u(t)=w(t)  . 

From relations (6.112), (6.113) and (6.114) we immediately have 

(6.115) d([y([u-l, I-w])]) < ea(Fu], [w]) 

This completes the proof  of Proposition (6.14). 

Applicat ion to a l inear* system. 

If we assume that the system is linear*, i.e., if the function f ( x ,  u, t) has the 

particular form given in relation (2.16): 

(6.116) f ( x ,  u, t) = A(t)x + dp(u, t) 

the treatment given above for linear systems can be further,  implified, since 

the matrices D(t ; [w]) and G(t; [w]) are indelzendent of [w] in the case of a 

lineal* system. We shall write G(t) instead of G(t; [w]). 

The differential equation for [y([ul , [w])]  becomes 

(6.117) p(t; [u], [w]) = G(t)(~(u(t),  t) - dp(w(t),t)) 

for a.e. t e [to, tb] 

and may be directly integrated to give 

Y (6.118) y(t; [u], [w]) = G(z) (r z) - r r)) dr 

to  

all t e [to, tb] 

which implies 
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(6.119) x(t ;  [ , , ] )  - x 0 ;  [w] )  = G - ' ( 0  G ( O ( r  - r  dr 

all t ~ Ira, It, ] . 

The results of Proposition (6.17) may then be immediately read off from 

relation (6.118). 

Relation (6.119) could have been immediately derived from the theory of 

nonhomogeneous linear differential equations. Indeed, we have 

(x ( t ; [u])  - x(t;  [w]))" = A(t ) (x ( t ,  [u]) - x( t ; [w]) )  + c~(u(t), t) - c~(w(t), t) 

(6.120) for a. e. t ~ [ta, tb] 

and relation (6.119) is the well-known solution of the differential equation 

(6.120) for the initial condition 

(6.121) x(to; [ u ] )  - x(to; [ w ] )  = 0 .  

SECTION 7 

Approximation of the Comparison Trajectories in the Comoving 
Space along a Given Trajectory 

In Y([v])x Eto, tb], the comoving ccordinate space along the trajectory 

Ix(Iv])], we have for every [u] e F* a trajectory [y([u],[v])] which is the 

image of the trajectory [x([u])] and a trajectory [f([u] ,  [v])] which is a certain 

approximation of the trajectory [y([u],[v])].  In this section we shall study 

the properties of this approximation. More precisely, this section will be 

devoted to the proof of Proposition (7.3) in which we give an upper bound 

for the uniform distance between [y([u], [-v])] and [~([-u], [v])] as a function 

of the distance between the two control functions [u] and Iv] when this dis- 

tance is measured with respect to the norm a. 

We remind the reader that the results of this section are highly 

trivial when the system is linear*, since in that case we already know 
+ 

that [y([u],  [v])] -= [y([u],  [v])] (see Section 2). When the system is 

linear the situation is not trivial but nevertheless very simple as is shown in a 

paragraph at the end of this section. 
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P r o p o s i t i o n  7.1. Let F(t,x) be an n-dimensional vector-valued func- 

tion defined for all t~[t.,tb] and all n-dimensional vectors x with lxl ~ ~, 

where rl is a fixed positive number, such that 

(7.1) (i) F(t,x) is measurable with respect to t for all Ix[ < r/, uniformly 

equicontinuous wit respect to x and uniformly bounded for all l E[ta, tb] 

and all Ix [ < rl 

[v(t,x)l  o 
(7.2) (ii) 151-.olim [xl = uniformly for t e It,, tb] 

(7.3) (i) limG:r'lt~ = 0 

r--,O r 

[O,r/] such that 

~t ~b (7.4) (ii) ] F(t, a(t))] dt <= G(d([a])) 
n 

for all bounded measurable n-dimensional vector -valued functions [a] such 

that d([a]) < n. 

P r o o f  of  P r o p o s i t i o n  7.1. Let 

(7.5) G(r) = ( t b -  t.) sup IF(t,x)[ for all r E [0,~/] . 
Ixl_~r 

By construction G(r) is continuous and nondecreasing over [t3, q]. We also have 

(7.6) lira a(~_;r,. = 0 
r--~O r 

since we have assumed that 

(7.7) lira IF(t' x)[ = 0 uniformly for t ~ It., t~] . 
Ixl--,o 

then there exists a function G(r) defined, continuous and nondecreasing over 



ON THE NECESSARY CONDITION FOR O P T I M A L  CONTROL . . .  

Moreover, 

(7.8) f"l ))1 F(t,a(t dt <= ( t  b - - t a )  sup 

=< (t b - t~ )  sup 
t E [ta,tb] 
Ixl~d([a]) 

__< G(d([a]) .  

This concludes the proof of Proposition (7.1). 

IF(t, a(t)) I 

IF(t,x) l 
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(i) K(t,x,u) is measurable with respect to t and u, uniformly 

equicontinuous with respect to x and uniformly bounded for 

all t~[ta, tb], all Ixl__<n and all lul=<  

(7.10) (ii) K(t,O,u)=O all t~[t~,tbl,all lul =<3 

(7.1i) (iii) K(t,x,O)=O all t~[t,,t~], all Ixl _-__n 

then there exists a .function H(r) defined, continuous and nondecreasing 

over [0,r/] such that 

(7.12) (i) H(0) = 0 

(7.13) (ii) ~tTlK(t,x(t),u(t))ldt __< n ( d ( [ x ] ) ) a ( [ u ] )  . 

P r o o f  o f  P r o p o s i t i o n  7.2. Let 

(7.14)~ H(r)= sup [K(t,x,u)] . 
t r [ta,tb] 
Ixl _-< r 
lul ~ 

(7.9) 

P r o p o s i t i o n  7.2. Let K(t,x,u) be an n-dimensional vector-valued 

function defined for all t c [ t~,t b] , all n-dimensional vectors x with Ix [ < ~l, all 

r-dimensional vectors u with ]u] __< 3, where ~1 and ~ are fixed positive 

numbers, such that 
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Then H(r) is continuous and nondercreasing over [O,q] since K(t ,x ,u )  is 

uniformly equicontinuous with respect to x for all t E [to, tb] and all ]u ] < 6. 

We also have 

(7.15) H(0) = 0 

since we have assumed K(t ,O,t , )= O. Moreover, 

u(t)r 

< f ,b s u p  IK(t,r,~)ldt 
a t E [ t a , t b ]  

u(t)~o Irl-<_d([xl) 

J7 ([ < H(d x]))dt 
a 

u(t)~.O 

< H(d(Ex]))a(Eu]) 

This concludes the proof of Proposition (7.2). 

P r o p o s i t i o n  7.3. IfE v] ~ F* and if Q is ~he positive constant introduced 

in Proposition (6.9), then there exists a function g(r) defined, continuous and 

nondecreasing over [O,Q] such thai 

(7.17) (i) l img( r )  = 0 
r--*O r 

(7.18) (ii) for all [u] eF*([v],k)  with a([u],[v]) <= Q, we have 

+ 

d([y([u], I-v])l, [ y (D], M) ] )  < g(o(D], [v])) 

P r o o f  of  P r o p o s i t i o n  7.3. By definition, we have 

(7.19) y(t;[u],[v]) = G(t;[v])(x(t;[u]) - x(t;[v])) all t e[to, tb] . 
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By differentiation with respect to t of  relation (7.19), we obtain 

(7.20) 

+ 

+ 

-t- 

.~(t; [ , , ] ,  [ , , ] )  

r  D ' ] ) ( x ( t ;  [ , , ] )  - ~( t ;  [v ] ) )  

+ G(t; [v])(:~(t; [ . ] )  - .,~(t; [~])) 

G(t; [v ] )  D(t; Iv])  (x( t ;  [ u ] )  - x(t; [v] ) )  

G(t; [v])( f (x( t ;  [u l ) ,  u(t)~ t) - f ( x ( t ;  Iv]), v(t), t)) 

G(t ; [v]) ( f (x( t  ; [v]) ,  u(t), t) - f ( x (  t; [v]), v(t), t)) 

F(t; x(t; [u]) - x(t; [v])) 
K(t ;x ( t ;  [u']) - x(t; Iv]) ,  u(t)  - v(t)) a.e. t E [ta, tb] 

where the functions F and K are defined by 

(7.21) 

(7.22) 

F( t ;x )  = - G(t;  [v ] )D( t ;  [v])x + G(t; [ v ] ) ( f ( x ( t ;  [v]) + x, v(t), t) 

- f ( x ( t ;  Iv]), v(t), t)) 
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K ( t ; x ,  s) = G(t" [ v ] ) ( f ( x ( t ;  [v]) + x,  v(t) + s, t) - f ( x ( t ;  [v]), v(t) + s, t) 

+ f ( x ( t ; [ v ] ) ,  v(t), t) - f ( x l . t ;  Iv]) + x,  v(t),t)) . 

By definition we have 

(7.23) +y'(t; [u], Iv]) = G(t; [v ] ) ( f ( x ( t ;  [vl), u(0, t) - f (xU;  [v]), v(0, l)) 

for a.e. t ~ [t~ tb] . 

From relations (7.20) and (7.23), we obtain 

+ .  
(7.24) .f(t; [u], Iv]) - y (t; [u], [v]) 

= F ( t ; x ( t ;  [u]) - x( t ;  Iv])) + K( t ;  x( t ;  [u]) - x(t;  Iv]), u(t)  - v(/)) . 

By definition we also have 

.4. 
(7.25) y(t~ [u], [v]) = y(t~ [u], Iv]) = 0 . 

Hence, from relations (7.24) and 7.25), we may write: 
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(7.26) d(Ey([u], Iv-I)], E ~ (Eu], [v])]) 

~ ~'[ I t(t;x(t;[u])-x(t;Ev]))l dt + r I K(t;x(t;Eu])-x(t;[v]),u(t)-v(t))]dt. 

Let us first estimate the integral 

(7.27) ft[FO;x(t;Eu])- x(t;E~]))ldt . 

From the definition of  F(t;x) we have 

F(t;O) = 0 (7.28) 

and 

(7.29) Fx( t ;0)= - G(t; Ev])D(t; [v]) + G(t; [v])D(t; [v]) = 0 . 

From the relations (7.28) and (7.29), we then have 

(7.30) lira IF(t' x)l  = 0 .  
,~l-.o Ixl 

By Proposition (7.1) there then exists a function G(r) defined, continuous 

and nondecreasing over [0,e/2] such that 

(7.31) (i) lim G(r) = 0 
r ~ O  r 

Jj' (7.32) (ii) I F(t; x(t; [u]) - x(t; [v])) I dt <= G(d(Ex(Eu])], [x(Ev])])). 
a 

From Proposition (6.11) we know that 

(7.33) d([x(Eu])], Ex(Ev])]) __< Pe(Eu], [v]) . 

If  we define Gl(r) = G(Pr), relations (7.32) and (7.33) may then be written 

(7.~) ["l ~ , ; . * ;  E~1)- * ;  E~)I ~, ~ o.(o(E.l. E ~  �9 
J t o  
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By definition Gx(r) is continuous, nondecreasing over [0,Q] and such that 

Gl(r) 
7.35) lira ~ = O.  

r~O r 

Let us now estimate the integral 

["1 (7.36) K(t;  x(t; [u]) - x(t; [v]), u(t) - v(t)) I dt . 
d t a  

From the definition of  K(t, r, s) we have 

(7.37) 

and 

(7.38) 

K(t, x, O) = 0 for all t E [to, tb] and all x with Ix I < ~ 
= 2  

Hence by Proposition (7.2), there is a function H(r) defined, continuous 

and nondecreasing over [0,e/2]  such that 

(7.39) (i) H(0) = 0 

f" (7.40) (ii) IK(t;x(t;[u])-x(t;[y]),u(t)-v(O)ldt 
a 

=< tZ(d([~([u])], [x([~])]))~ ([~], [~]).  

From Proposition (6.11) ,we know that 

(7.41) d([x([u])], [x([v])]) < Pa([u],  [v]) . 

I f  we define G2(r) = rH(Pr) then relations (7.40) and (7.41) may be written : 

f" (7.42) ]K(t; x(t; [u]) - x(t; [v]),u(t) - v(t))ldt < G2(tr([u], Iv])) . 

By definition G2(r) is continuous, nondecreasing over [0, Q] and such that 

(7.43) lira G2(r) = 0 .  
r~O /" 

K(t,O,s) = 0 for all t ~ [t,,t~] and all s with I sl _< k . 
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Combining relations (7.26), (7.34) and (7.42), we obtain 

+ 
(7.44) d([y([u], l 'v])], [ y ( [u] ,  [v ] ) ] )  __< G,(a([u], Iv]))  + G2(a([u],  [v])) . 

We define 

(7.45) g(r)  = Gl (r )  + G2(r) . 

From (7.35) and (7.43) it follows that the function g(r)  is continuous. 

nondecreasing over [-0,Q] and such that 

7.46) lim g ( r )  = 0 
r~O I" 

Moreover, combining relations (7.44) and (7.45), we obtain 

(7.47) d([y ( [u] ,  [v])], [ f ([u], Iv])]) < g(a([u], Iv])) . 

This concludes the proof of Proposition (7.3). 

A p p l i c a t i o n  to  a l i n e a r  s y s t e m .  

We shall again consider the linear system 

(7.48) f ( x ,  u, t) = A(u ,  t )x + (o(u, t) 

introduced in Section 2 and show how the results of this section could be 

obtained directly for a linear system. 

In Section 2 we have derived the following relations: 

(7.49) S ' ( t ; [ u ] , [ v ] ) -  ~'(t; [u], Iv]) 

= G(t; [v]) (A(u(t), t) - a (v( t ) ,  t ) )G -  ' (t;  [v]) y (t; [u], Iv]) 

for a.e. t e It,, tb] 

+ 
(7.50) y(ta; [u], Iv]) = y( ta;  [u], [v]) = 0 .  

We know that the coefficient G(t; [ v ] ) (A (u ( t ) , t )  - A ( v ( t ) , t ) ) G - 1 0 ; [ v ] ) ,  

occuring in the right side of Equation (7.49), is uniformly bounded by some 

constant Vfor all [u] and Iv] ~Fk, and we have proved in Proposition(6.14) 

that there exists a positive constant P such that 
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(7.51) d([y([u],  [w])]) < Pa([u],  [w]) 

From relations (7.49) and (7.51), it follows that 

+.  
(7.52) [ ~ ( t ; [ u ] , [ v ] )  - y ( t ; [ u ] , [ v ] )  l <= VPa( [u ] , [ v ] )  

for a.e. t ~ [t,, tb] �9 

Moreover, we immediately see from relation (7.49) that 

(7 .53)  [u ] ,  [ ,q )  - [u ] ,  Iv ] )  = o 

for all t ~ [t~,tb] such that u(t) = v(t) . 

If we write 

(7.54) P* = P V  

then from relations (7.50), (7.52), (7.53) and (7.54), we immediately obtain 

the following result: 

P r o p o s i t i o n  7.4. I f  k is a positive real number, then there is a positive 

constant P* such that  

(7.55) + d([y([u],  [v])],  [y([u],  [v])]) __< P*(o-([u], [v])) 2 

f o r  all [u] and Iv] ~ Fk �9 

In the case of a linear system, Proposition (7.4) implies Proposition (7.3) 

since the function g ( r ) =  P*r 2 satisfies the conditions of Proposition (7.3): 

P*r 2 is continuous, nondecreasing for positive r and lira P-r2  = 0. 
r-~O r 

S E C T I O N  8 

The Range  of  a Vector  In tegra l  over Borel  Se t s  

In this section we shall derive some properties of  the set H([v]). In Propo- 
+ 

sition (8.11) we shall prove that the set H([v]) is convex. This result will be used 
+ 

later in the proof  of Theorem IV. Let F : F --* H([v]) be the mapping which 
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+ 
maps an element I-u] of  F into the element y(tb; [u], [v]) of/~([v]). In Proposi- 

tion (8.13) we shall prove that if 0 is an interior point of the set H+([v]) then 

there is a subset F([v]) of F such that 0 is also an interior point of the image 

of F([v]) under the mapping F and such that the restriction to F([v]) of the 

mapping F has a continuous inverse. We shall need Proposition (8.13) in the 

proof of Theorem III. 

We shall assume that the reader knows the basic elements of the theory of 

measure which can be found in Halmos' book, "Measure Theory".  

First let us recall some classical notations and definitions: 

1. If  A is a set, ~r a a-algebra of subsets of A, It a non-negative measure 

defined on ~r with It(A) < + ~ ,  then (A,~r It) is called a measure a-algebra. 

2. An element B ~ r  is called an atom of the measure a-algebra (A,,~r It) if 

It(B) ~ 0 and if D c B with D ~ r  implies either 

(8.1) It(D) = 0 

o r  

(8.2) It(O) = It(B) . 

3. A measure a-algebra (A,~r #) is called nonatomic if it has no atom. 

Proposition 8.1. I f  (A,s l ,  it) is a nonatomic measure a-algebra, 

B ~ r  d B = { O : D ~ d ,  D c B }  then (B ,dB,  it) is a nonatomic measure 

a-algebra. 

Proof of Proposition 8.1. Let d n  ~ d n  be the minimal a-algebra 

containing ~r We have by construction ~r c ~r moreover, D ~ d B implies 

D c B, hence d B  c t i n .  In other words, ~r = ~r and (B, t i n ,  It) is a measure 

a-algebra. Finally, (B ,dn ,  it) is nonatomic since any atom of (B,.~cn, it) is 

also an atom of ( A , d ,  It). This concludes the proof of Proposition (8.1). 

Proposition 8.2. I f  ( A , d ,  it) is a nonatomic measure a-algebra, 

~r = {B : B ~ C ,  It(B)= ~it(A)}, then there exists a nest J ~ " c d  such that 

. /V'c~d, # r for all ~ [ 0 , 1 ] .  

Proof of Proposition 8,2. Let ~ be a maximal nest in ~r Such a 

nest exists by the Hausdorff Maximal Principle. Let ./V',=~r n~r 
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Jf/'~ = w Jt'~, jt/'~ + = u ~",,  then JV'~" # r since r e-/fro, similarly 
O_~a~, , ~ a _ l  

. h r ~ r  sinceAe.A/'l .  L e t N ,  + =  n B , N , - =  u B. Since Jg" is a 

maximal nest over the a-algebra d ,  then N ,  ~JV', N + ~.A/', #(N,-)_~ ~, 

p(N + ) >  ~, N~- = N + and there is no N e d  such that N r N~-, N r N +, 

N~ = N = N + . Moreover, we have # ( N , )  =/~(N +) = ~. Otherwise, from 

the nonatomicity of  (A,~, / l ) ,  there would be a subset K of N~ +,~ N , -  such 

that #(K) ~ 0 and #(K) ~ u(N + ~ N ; )  = ~(N +) - u(N~-), i.e., such that 

N~" L) K r N~, N~ U K ~ N~ + and N~ = N~- U K = N, + which contradicts 

our previous results. For every cc ~ [0,1] we have exhibited elements N~ and N + 

in ..4/', = .4/" n~r This concludes the proof of Proposition (8.2). 

P r o p o s i t i o n  8.3. I f  (A,~r is a nonatomic measure a-algebra, then 

there exists a set ~ = {D~ : ~t e [0, 1]} such that 

(8.3) (i) DuEs/  all ~E[0,1]  

(8.4) (ii) p(D,) = ~#(A) 

(8.5) (iii) D,, c D,2 if  and only if  ~q <- ct 2 . 

Proof of Proposition 8.3. For every cte[0,1] let D, be an element 

of the nonempty set ~4/',. Such D, exists by the axiom of choice. The conditions 

(i), (ii) and (iii) are then satisfied by construction. This concludes the proof 

of Proposition (8.3). 

Proposition 8.4. I f  (A,d , l~)  is a nonatomic measure a-algebra, 

{a I : i = 1,..., k} a finite set of nonnegative real numbers, then there exists 

a set {A~:i = 1,... ,k} such that 

(8.6) (i) A l e d  for  i = 1,..., k 

(8.7) (ii) A~ n Aj = O for i = 1, ..., k ; j  = 1, ..., k 

(8.8) (iii) ~ A , = A  
1=1 

as #(,4). (8 .9)  ( iv) u ( a , )  = k 

al 
J = l  

and i ~ j 
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P r o o f  o f  P r o p o s i t i o n  8 .4 .  Let  

at (8.10) ~t = ~ for  i =  1 , . . . , k  . 
k 

Z 
j= l  

By Proposi t ion (8.3) there is a AI E ~  such that  

(8 .11)  # (A1)  = a t p ( A )  . 

Let  

(8.12) A (1) = A ,-~ At 

and 

(8.13) d l =  d A t ,  �9 

By Proposi t ion (8.1), ( A ~  1, #) is a nona tomic  measure a-algebra and by 

Proposi t ion(8.2)  there  is a A 2 E d l  such tha t  

(8 .14 )  # (A2)  = ~2# (AO))  �9 

Let  

(8 .15)  A (2) = A (1) N A2 

and  

(8.16) d~42 = d ~ A { 2 )  . 

By proposi t ion (8.1), (A ~2), d 2 , p )  is a nona tomic  measure a-algebra and 

by Proposi t ion (8.2) there  is a A 3 ~ d 2  such that  

(8.17) #(A3) = a3p(A ~2)) �9 

By repeating k -  1 t imes the same process, we obtain a set {A, : i = 1, . . . ,k}. 

It is a trivial mat ter  to verify that  the set {A, : i = 1, . . . ,  k) satisfies condit ions 

(i) to (iv). This concludes the p roo f  of  Proposi t ion (8.4). 
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P r o p o s i t i o n  8.5. I f  ( A , ~ , # )  is a nonatomic measure a-algebra, f a 

bounded and ~ measurable function over A, there is a set D ~  with 

p(D) = �89  = �89 I f dp .  
D A 

P r o o f  o f  P r o p o s i t i o n  8.5. F rom Proposi t ion (8.2) there is a subset 

= {O~ :~ e [0,1]} of  ~ such that  

(i) v(D,) = ~tv(A) 

(ii) D~, c D~2 if and only if ct t __6 ~2. 

Let  B~ = O~ ,-, D~_ t/2 all ~t ~ [�89 hence B~ ~ &  and 

v ( B ~ )  = v ( D ~ )  - ~ ( O ~ _  1/2)  = ~ - ( ~  - �89 = �89 �9 

We shall assume temporar i ly  that  J" f d #  # O. 
Let  A 

I fd~, 
eO(s)  = s 

- I f d  " , # 

.,4 

We then have 

(8.18) ~(Bt) + ~(B1/2) = 1 

since (O(D1) - O(DI/2)) = ( ~ ( D 1 / 2 )  - ~(Do)) = (1 - �89 + ( �89  0) = 1. Moreover ,  

(8.19) 

since 

@(B~) is cont inuous o v e r .  ~ [�89 

I .(B~,) - o(B~) I ~ I (~(D~,) - . (D .~_ . : ) )  - (r - * ( n ~ _ . : ) ) l  

___ [ . ( D ~ , ) -  O(D~) [ + [ O ( D . , _ . ~ ) -  * ( n . = . ~ ) [  

=< M [ p.(D~,) - ~(D~) I + M I # ( D ~ , _ I / 2 )  -- # (D ,~ - , / 2 ) ]  

_-_ + �9 

From  (8.19) we know that  ~(Btl/2.1])----{@(B~):cter�89 is a segment.  

Moreover ,  t~(B[,/2, ,l) contains ~(B~) and ~(B1/2) = 1 -- @(B1), f rom (8.18), 

hence ~ ( B [ 1 / 2 "  1]) contains 
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~(B1) + ~(B1/2) = O(B1) + (1 - ~I)(B1) ) 1 
2 2 2 

since a segment is a convex set. 

Let ~ ~ [�89 be such that ~(B~) = �89 then D = B, is the requested set. 

If  f fdIt = 0 let ~(s) = f f d #  then 
A S 

O(BI) + ~(Bx/2) = 0 (8.20) 

and 

(8.21) O(B~) is continuous for ~t e [�89 1] 

for the same reasons as (8.18) and (8.19). 

From(8.20) and (8.1), we conclude as before that there is a ~ ~ [�89 such 

that ~(Bs) = 0. This ends the proof  of  Proposition (8.5). 

P r o p o s i t i o n  8.6. I f  (A,~,I t )  is a nonatomic measure a-algebra, f a 

uniformly bounded and ~ measurable function over A, d the minimal 

a-algebra over ~ = {D+ : i = O, 1,2, ...,} where the sets Dt have the following 

properties: 

(8.22) 

(8.23) 

(8.24) 

(8 .25)  

(8.26) 

(8.27) 

then 

(8.28) 

D o = A  

D. E ~  

D2.+1 riD2.+2 = r 

D2.+l UD2.+ 2 = D. 

It(D2.+x) = It(D2.+2)  = �89 

f faIt=f fdIt=+f fdit 
D l n +  t D2.  + 2 D 

f f dit = It(D) f fdIt 
D A 

~ r a l l D e d .  
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P r o o f  of  P r o p o s i t i o n  8.6. Let 
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(8.31) ko = 0 

(8.32) k~+l = 2kl + 1 or  kt+x = 2k~ + 2, 

(8.33) k,  = k 

hence 

1 
(8.34) f f d~ = ~ f 

Dkl § t Dk I 

and 
1 ~(D,,~,) = ] ~(D,,) 

Relations (8.34) and (8.35) imply 

~(D,,.,) 
(8.36) f f dp = ~ f f dbt 

DIq , t D k i 

i.e., 

~(D,.) 
(8.37) f f dp •: f 

Dk a Dk o 

o r  

i = O, 1, ...,n - 1 

f dp  

for  all t ffi 0, . . - ,  n - 1 . 

all i - 0, ..., n - 1 

fd~ 

~(D) f/d/, (8.29) 21(D) ffi /~(A) 

A 

(8.30) ~2(D) = ~ fdt, i 

I #  

D 

We then have to  prove  that  21(D ) - ~ 2 ( D )  for  all D ~ d .  We may assume 

without  loss o f  generali ty that  fa fdl~ > O. Indeed,  the case fA fdl~< 0 can be 

reduced to the case f~fdl* ~_ 0 by in t roducing the funct ion f *  --- - f .  

1. The proposition is true for each D k in ~.  
I f  k is a nonnegat ive  integer  then there is a unique sequence of  nonnegat ive 

integers k o, k t , . . . ,  k n with 
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(8.38) f dp = ~(Dk) f #(A) f dp 
Dk ,4 

and 

al l  D k E 

(8.39) 22(Dk)  = 21(D k all Dk ~ .  

Hence the proposition is true for each D k e ~ .  

2. The proposition is true for  each D in the minimal algebra .~  over ~'. 

If 

(8.40) D ~ ,~ 

then 

(8.41) D = t~ D,,  
i = 1  

with 

(8.42) Dn,oD,, j = r for i # j  . 

From definition (8.29) and relations (8.41) and (8.42), we obtain 

k 

(8.43) ;tl(D ) = ~ 21(D~). 
~=1 

Similarly, from definition (8.30) and relations (8.4]) and (8.42), xve obtain 

k 

(8.44) 22(D) = E 22(Dn,) �9 
I = 1  

From relations (8.39), (8.43) and (8.44), it follows that 

(8.45) 21(D ) = 22(D). 

Hence the proposition is true for each D ~ ~ .  

3. The proposition is true for each D e# , .  

The position is the following: 
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(a) 2~ and 22 are two set-valued functions defined over the a-algebra ~'. 

(b) 2t is a measure over ~ since # is a measure over ~ .  

(c) 21(D) = 22(D) for all D c ,o~-, where J~is a subalgebra of M. 

Since ,sr the a-algebra generated by the algebra ~,~, is by construction a 

subalgebra of  the a-algebra M, it follows from the theorem on the uniqueness 

of the extension of a measure that 2~(D) = 22(D)for each D c a ' .  (See Halmos, 

Measure Theory, page 54). This concludes the proof  of Proposition (8.6). 

P r o p o s i t i o n  8.7. I f  (A,M,p) is a nonatomic measure a-algebra, f a 

bounded and ~ measurable function over A, then there is a nonatomic 

measure a-algebra (A,~C, lz ) with ~r c M such that 

(8.46) f fdl t v(o) f = /t(~l)" fdlt f o r a l l D c d .  
D A 

P r o o f  o f  P r o p o s i t i o n  8.7. Let us call D O = A and "~oo = ~ .  Let P, be 

the following precedure: 

If  (D~,~o.,lO is a nonatomic measure a-algebra, then by Propoition (6.1) 

there are sets D2,+1 and D2,+2 eMo. such that 

(8.47) D 2 n +  1 ( ' ~ D 2 n + 2  = 

(8.48) D2.+1 UD2,,+ 2 = D. 

1 
(8.49) /z(O2,+l) = P(D2,+2) = S I~(O") 

1 
(8.50) f f dlz = f f d# = ~ f f da 

D 2 , + I  D2,, + 2 D.. 

and (D2,+1,~o2 . . . .  /~) and (D2n+2~D2.+2,//) are nonatomic measure a- 

algebras by Proposition (8.1). 

Let us apply recurrently Pn to (Dn,~o., i a) for n = 0, 1,2, . . . .  This is possible 

since D O and ~Do are given. Let d be the minimal a-algebra generated by 

{Di:i  = 0,1,2,. . .}.  By construction, (A,d,/~) is a nonatomic measure a- 

algebra and d c ~ .  Moreover,  d satisfies the assumptions of Proposition 

(8.6), hence 
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f uCD) f (8.51) fd#  = p(A) J f d #  for all D ~.at . 
D A 

This concludes the proof of Proposition (8.7). 

Proposi t ion 8.8. I f  (A,g#,l~) is a nonatomic measure a-algebra, 

f =  ( f t , . . . , f , )  an n-dimensional vector-valued, bounded and g# measurable 

function over A, there is a nonatomic measure a-algebra (A,zd,#), d c  

such that 

j j for~176 
D A 

Proof  of Proposit ion 8.8. Let us apply Proposition (8.7) to f l  over 

(A,M,/I) and let (A,~Cx,p), d l  c & be the nonatomic measure a-algebra 

so obtained. More generally, let us apply for i = 1,2, . . . ,n - 1, Proposition 

(8 .7 ) t a f t  +l over (A,dMz) and let (A,.~t+l,p) , .~g~+xc.~l be the non- 

atomic measure a-algebra so obtained. 

Let.~r = ~r We then have 

f -_ f (8.53) f'd~, ~(a) d 
D A 

i.e., 

(8.54) f f dlz = It(D.____)) p(A) f fd# 
D A 

This concludes the proof of Proposition (8.8). 

i = 1, ..., n for all D ~ r  

for all D e.~r . 

Proposit ion 8.9. (Lyapounov's Theorem). I f  (A,&,IO is a nonatomic 

measure a-algebra, f =( fx , f2 , . . . , f f )  an n-dimensional vector-valued, 
bounded and ~ measurable function over A, then 

(8.55) R - - { f  f d l t : B e ~ }  
B 

is convex. 

Proof  of Proposi t i ion 8.9. It is enough to prove that if bl and 

b2 e R, then 



(8.57) 

Let 

(8.58) 

and 

(8.59) 
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(8.56) {~bi + (1 - ~)b~ :~ ~ [0, 1]} c R .  

If b I and b2 e R, then there are Bl and B2 e ~ such that 

f f d # =  b~ f o r i = l , 2 .  

B~ 

f~ = fz(B~) for i = 1,2 

y, = (/;,:?, ,, ,, "'" ,f t  ,f~, "" ,f~ ) -  

69 

(8.60) #(Do) = ag(A) all a ~ [0 ,1 ] .  

exists by Proposition (8.3). We then have 

(8.61) 

(8.62) 

D.. A ~ D .  

f# (D, , ) f  . , #(A..~D.) f f 2 d / t : a e [ O ,  1]} (8.63/ = ~--~-~'J Jt  ag + #(A) J 
A A 

= {~bl + (1 - ~)b~ :~ ~ [ 0 , 1 ] } .  

X 

This concludes the proof  of  Proposition (8.9). 

Proposition 8.10. I f  (A,~,/a) is a nonatomic finite measure a-algebra 

X is an n-dimensional Euclidean space, S is a class of bounded ~ measurable 

functions f rom A to X such that f and g e S implies 

If we apply Proposition (8.8) to f *  over (A,~,#) ,  we obtain a nonatomic 

measure a-algebra ( A , d , p ) ,  ~1 c &. Let ~ =  {D, : ~  [0,1]} be a subset 

o f d  such that 
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(8.65) f z(B) + gz(A ,,, B) ~ S for all B ~ ,~ 

then 

(8.66) L(S)=  { f  f d# : fES}  
A 

is convex. 

P r o o f  of  P r o p o s i t i o n  8.10. L e t f  and g6S. We shall prove that 

there is a set L(f,g) such that 

(8.67) (i) L(f,g) is convex 

(8.68) (ii) L(f,g) c L(S) 

(8.69) (iii) f fdl~andf gdl~eL(f,g). 
A A 

The existence of such a set L(f,g) is a sufficient condition for the convexity 

of the set L(S). 
Let 

(8.70) 

and 

(8.71) 

L(f,g)= {f (fz(B) + gz(A~ B)dI~:Be~} 
A 

A 

We may write L*(f,g) = {fa(f-g)z(B)dl~:B e.~}, hence L*(f,g) is convex 

by Proposition (8.9). The convexity of L(f,g) then follows from the convexity 

of L*(f,g). This proves relation (i). 

Relation (ii) is an immediate consequence of the definitions of L(S) and 

L(f,g). Moreover, for B= A E ~  we have fa fd#eL(f ,g)  and for B =  0 e ~  

we have fagdlt ~ L(f,g). This proves relation (iii) and concludes the proof of 

Proposition (8.10). 

P r o p o s i t i o n  8.11. The set//([v]) is convex. 
+ 

P r o o f  of  P r o p o s i t i o n  8.11. From the definition of H([v]) we have 
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tb 

  Evl, if, Eul F} 
where 

(8.73) ~b(t, u(t); Iv]) = G(t; Iv]) ( f (x( t ;  Iv]), u(t), t) - f (x ( t ;  [v]), v(t), t)) . 

(8.75) 

and 

(8.76) 

From the definition of the class F we know that if I-u1] and [u2] ~ F  and 

if B is a measurable subset of [-t a, tb] there exists an element l-u] E F such that 

(8.74) u(t) = ul(t ) for all t E B 

= u2(t) for all t~[ta, t b ] ~ B  . 

Hence the class S* of all functions ~b(t,u(t);[v]) with [-u]eF satisfies 

condition (8.65), and we may apply Proposition (8.10). This concludes the 

proof of Proposition (8.11). 

N o t a t i o n s .  I f f  and g are elements of the class S introduced in Propo- 

sition (8.10), we shall write 

tr(f, g) = l~({t :f(t) :~ g(t), t ~ A}) 

d ( f , g )  = ess sup If(t) - g ( t ) ]  . 
t ~ A  

The remarks made in Section 5 also apply to these norms. 

P r o p o s i t i o n  8.12. Under the assumptions of Proposition (8.10), /f 

.[afodl~ is an interior point of L(S), then there is a subseet S(fo) of S and two 

positive constants m and k such that 

(8.77) (i) d(fo, g) < k for  all g in S(fo) 

(8.78) (ii) the mapping S(fo) ~ L(S(fo)) is one-to-one 

(8.79) (iii) f fod#  is an interior point of L(S(fo)) 

A 
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f f 
(8.80) (iv) a ( g , h ) < m l J  g d p - - J  h d # l f o r a l l  g and h ~ S ( f o ) .  

A A 

Proof  of  Propos i t ion  8.12. 

Notat ions .  I f A  is a set, then int A is the set of  interior points of  A, co A 

is the convex hull of  A, and int co A is the set of  interior points of  the convex 
hull of  A. 

If  fafodlt E int L(S), then there are functions f t , f2,  "",f ,+ t in S such that 

l o ~ i n t c o M  where M = { l l : i = O ,  1 , 2 , . . . , n + l  } with l~=faf~dlt  for 

i = 0 , 1 , . . . , n + l .  Let M~=(M~{I~})  for i = 0 . 1 , 2 , . . . , n + l .  For  every 

I e co M let 2(0 = {21(/) : i = 0,1, ..., n + 1} be defined by the following rules: 

(i) k is the smallest integer such that l r co M k 

(ii) 2k(l) = 0 

(iii) 2(0 " {2k(l)} are the barycentric coordinates of  I with respect to Ml. 

By construction there exists a positive constant m such that 

n + l  

Z 12,(l') - 2,(l")1 < m I I ' -  l" I for all I' and l" in co M .  
1=0 

(8.81) 

Let 

(8.82) {fo,fo,  . 1 . l . C~= l 2 "" , f  l , f  2, " ' , f .+l} " " , f 0 , f l ,  " �9 

Let ( A , d , # )  with ~r c ~ be a nonatomic measure a-algebra such that 

f u(O) f (8.83) 0d , = 0d , 
D A 

Such an d exists by Proposition (8.8). 

Let {D~:i = 0 , 1 , . . . , n  + 1} be such that 

(8.84) (i) Dj ~.~r 

for all D ~ ~ . 

(8.85) (ii) DiNDj  = r if i # j 

(8.86) (iii) "GtD, = A 
/ = 0  

1 
(8.87) (iv) p(O,) = ~-~---~tt(A). 
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Such a set {Di:i  = 0,1,2,  ..., n + 1} exists by Proposition (8.4). 

Let  ~9~ be a nest {D~ : ~ E [0,1]} c .~o, such that  

(8.88) (i) ct < ct' implies D'~ c D ò " 

(8.89) (ii) Dll= D l 

(8.90) (iii)/~(DT) = ct#(D,). 

Such a nest ~ l  exists for all i = 0,1,2,  ..., n + 1 by Proposit ion (8.3). 

We shall use the following convention: if a is a positive number,  the set 

~, co M is defined by 

co M = {/o + a(l - lo) : l ~: co M} . (8.91) 

Let 

(8.92) Y(,) =Yoz (a ~ ,=~'G~~ ~'(('§ + ,=~Z Az '("§ 

By construction, we have: 

n + l  

(8.93) a(f(r),f(,,,)) = 
i = O  

for all 

Let  

for all I ~ ~ + 2  co M .  

I ~,(r)  - ~,(r)  I 

l '  and l ' S n ~ - - ~ c o M .  

(8.94) S(fo)= {f(o'lE n - - ~ c o M }  �9 

1 
We have S(J'o) c S s incefo ) e S for all 1 e n---g~ co M becausedD, c d c  ~ 

for all i = 0,1 ,2 , . . . ,n  + 1 by Proposit ion (8.2). 

We also have, by construction,  

(8.95) f(odlz = l for all l ~ ~ co M 

A 
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i .e .~  

(8.96) 

But since 

(8.97) 

1 
L(S(f~ - n + 2 co M . 

l o ~ i n t - - 1  2 c ~  
n + 

then relation (8.96) implies 

(8.98) l o ~ int L(S( fo))  . 

Relation (8.98) is the required property (8.79). Property (8.78) is satisfied 

by virtue of relations (8.94) and (8.95). Property (8.77) follows from the fact 

that the class S(fo) has been constructed from a finite number of bounded 

mesurable functions. From relations (8.81) and (8.93), we have 

1 
(8.99) a(fo,),f,, ,  , <= m ] I. - I" I for all 1' and I" ~ ~-~-~- co M . 

Relation (8.99) is equivalent to property (8.80) by virtue of definition (8.94) 

This concludes the proof  of Proposition (8.12). 
+ 

P r o p o s i t i o n  8.13. I f  0 is an interior point of H([v]) then there is a 

subset F([v]) o f f  and two constants m and  k such that 

(8.100) (i) d([u],[v])  < k for  all  [u] EF([v]) 

+ 
(8.101) (ii) the mapping:  F([v]) ~ {y(tb; [u] ,[v])  :[u] ~ F([v])} is one-to- 

o n e  

�9 + 

(8.102) (iii) 0 is an interior point of {y(t b; [u], Iv]): [u] ~ F([v])} 

+ + 

(8.103) (iv) a([ux], [u2]) < m l y(tb; [ul],  Iv]) - y(tb; [u,] ,  Iv]) I 
for all [u , ]  and [u2] ~F([v])  . 

P r o o f  of  P r o p o s i t i o n  8.13. Let S* be the class of functions intro- 

duced in Proposition (8.11). By replacing S by S* in the proof  of Proposition 

(8.12), we immediately obtain Proposition (8.13). 
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S E C T I O N  9 

An Appl ieat lon  of  Brouwer's  Fixed Point  Theorem 

In this section we prove a single proposition which will play a fundamental 

role in the proof of  Theorem III, given in Section 10. 

P r o p o s i t i o n  9.1. I f  f is a continuous mapping of a ball 

s .  = (x : x e ,  l xl <= with rl > O, of the Euclidean space E into E such 

that there exists a function g(r) defined, continuous and nondecreasing 

over [0, r/] and having the following properties: 

(9.1) (i) lim g,r,  ~ 0 
r ~ O  r 

(9.2) (ii) [ a - f ( a ) l < g ( l a ] )  f o r a l l a ~ S "  

then 0 is an interior point of  the set f ( S  ~) image of the set S ~ through the 

mapping f .  

o 
P r o o f  of  P r o p o s i t i o n  9.1. Let pE(O,r/] be such that g(P)<~5' 

i.e., 2g(p__.~) < 1. Such a p exists since 2g(p) is continuous over (O,r/] and 
P P 

lira 2g.~) = 0 by assumption. 
p r o  P 

Let hz(x ) = z + x - f (x ) .  If  z ~ S plz then h~ maps S p into itself since for 

x ~S p we have 

P P P P 
(9.3) Ih=(x)] =< I z l + I x - f ( x )  [ __< -~ + g(lx l) <-- -~ + g(P) <- - f  + T = p 

Moreover, the continuityof the mappingfimplies the continuityofthe mapping 

h~, hence by Brouwer's Fixed Point Theorem, there exists an xl such that 

(9.4) h.(xl)  = xl  

i.e., 

(9 .5 . )  z = f ( x l )  �9 

For all z ~ S P/2there exists an x~ such that relation (9.5) holds, hence 
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(,9.6) S p12 c f ( S O  c f (S~)  . 

The point 0 is then an interior point of the set f (S~) .  This concludes the 

proof of Proposition (9.1). 

R e mar k, A weaker form of this proposition, corresponding to g(r) = M r  2 

for some 0 < M < + oo, has been introduced without proof in a previous 

publication [12]. An elegant proof for the case g(r) = M r  2 has been communi- 

cated to the author by Dr. G. S. Jones of RIAS. The proof given here for the 

larger class of functions g described in the statement of Proposition (9.1) is a 

generalization of Dr. G. S. Jones' proof. 

SECTION 10 

P r o o f s  o f  the  T h e o r e m s  o f  S e c t i o n  4 

P r o o f  o f  T h e o r e m  I.  If x=x( t~ ; [v ] )  is an interior point of the set H, 

there is an 8 > 0 such that 

(10.1) ~ = (xl(tb;[V]),x2(tb;[V]), . . . ,X"-I(t~;[V]),x"(t~; [V]) + 8) 

is also a point of the set H, hence there is a [u] in F* such that 

x(t~; [ u ] )  = ~ .  (10.2) 

We then have 

(10.3) :,,%; [ u l )  = x"(t,; [ , , l )  + ,  > x"(t,; [,,1) �9 

But by construction we also have 

(10.4) (~, t~) ~ B .  

Relations (10.2), (10.3) and (10.4) contradict the assumed optimality of 

the element [v] of F*, hence x = x(t~; [v]) is a boundary point of the set H. 

This concludes the proof of Theorem I. 

P r o o f  o f  T h e o r e m  I I .  The mapping H-~ H([v]) is defined by 

(10.5)  y = G(t.;  [v] )  (x  - x(t~; I v ] ) ) .  
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But G(tb; ['v]) is the identity matrix, hence H([v]) is a simple translation of 
H. This translation conserves thc topological properties of the points in H; 

in particular to a boundary point of H corresponds a boundary point of H([v]) 

and conversely. 

P r o o f  of  T h e o r e m  I I I .  Let us assume that 0 is interior to H([v]) and 

show that 0 is then interior to H([v]). 

I f0  is interior to/~([v]) then by Proposition (8.13) we know that there 
exists a subset F([v]) of F and two constants m and k such that 

(10.6) (i) 0 is interior to { ~ (tb; [u], Iv]) : [u] r F([v])} 

(10.7) (ii) the mapping F([v]) -~ { ~ (tb; [U], IV]) :[U] sF([v])} is one-to-one 

(10.8) (iii) d0u] ,  Iv]) ~_ k for all [u] e F([v]) 

+ § 
(10.9) (iv) a([ul] ,  [uz]) _~ rely (tb; [Ul], IV]) -- y(tb; [Uu], Iv])[ for all 

[u,] and [u~] ~r(Ev]). 

Let F([v], Q) bc the subset of F([v]) defined by 

(10.10) F(Ed, Q) = {[u]: [u] ~ F([d), ~([u], [d) -~ Q} �9 

or all [u] ~ F([v-]) such that 

+ Q 
(lO.11) l y(tb;Eu],Ev])l ~_ -~ 

we have by applying (10.9), 

(10.12) 

which implies 

(10.13) 

We may then write 

~([u],[v])~Q 

[u] E F(l'v'l, Q). 
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+ 
(10.14) (i) 0 is interior to { y (tb; [U], IV]) : [U] �9 F([v], Q)} 

+ 
(i0.15) (ii) the mapping F([v], Q) ~ { y (t b; [u], Iv]) : [u] �9 F([v], Q)} 

is one-to one 

(10.16) (iii) d([u], [v]) < k for all [u] �9 F([v], Q) 

(10.17)(iv) a([ul] ,[u2])  < m I + + = y (t b ; [u 1], [v]) - y (tb; [u22, [v]) l 

for all [u , ]  and [u2] � 9  ). 

From Proposition (6.13) we then have 

(10.18) F([v], Q) c F*([v], k) c F* 

i.e., 

(10.19) y(tb; [u], Iv]) exists for all [u] �9 F([v], Q) . 

We also know that 

+ 
(10.20) (i) the mapping from { y (tb; [u], [v']) :[u] e F([v], Q)} to 

F([v],Q) is continuous (see relation (10.17)) 

(10.21) (ii) the mapping from F([v], Q) to {y(tb; [u], [v]) : [u] e V([v], Q)} 
is continuous (see Proposition (6.13)). 

+ 
(10.22) Hence the mapping from { y (tb; [u], Iv]) : [u] �9 F([v], Q)} to 

{y(tb; [u], Iv]) :[U] �9 F([v], Q)} is continuous. 

From proposition (7.13) we know that there exists a function g(r), defined, 
continuous and nondecreasing over [0,Q] such that 

(10.23) (i) l img(r )  = 0 
r ~ O  r 

(10.24) (ii) [ } (tb; [u], Iv]) - y(tb; [u], Iv])] ~ g(a([u], [v])) 
for all [u] �9 F([v], Q) . 
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We define the fttrtction G(r) by the relation 

(10.25) G(r) = g(mr) . 

From relations (10.17), (10.23) and (10.24) we know that there exists a 

function G(r), defined, continuous, nondecreasing over [0, Q/m] and such that 

(10.26) (i) lira G(r) = 0 
r-~O r 

(10.27) (ii) [ ~ (tb, ['U], IV]) - -  Y(tb; [U], IV])] < G(] ~ (tb; [U], [V])'I). 

We apply Proposition (9.1) to relations (10.14), (10.22), (10.26)and (10.27) 

and we obtain 

(10.28) 0 is interior to {y(tb; [U], IV]) : [U] ~ F([v], Q)} 

and a fortiori 

(10.29) 0 is interior to H([v'I) . 

This concludes the proof of Theorem l I I .  

+ 
P r o o f  of  T h e o r e m  IV. By Proposition (8.11), the set H(l-v]) is con- 

+ 
vex, hence if y = 0 is a boundary point of H([v]) there exists a hyperplane 

<~([v]) I y > = 0 (lO.3O) 

such that 

10.31) <~([v]) I y> ____ o for all y ~/~([v]). 

Let us assume that there is a [u] c F such that 

(10.32) <n([v]) [ G(t; [v])( f (x( t ;  [v]), u(t), t) - f ( x ( t ;  [v]), v(t), t))> ~ e > 0 

for t ~ E, where E ~ M with /~(E) > 0, then by introducing the vector-valued 

function 
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(10.33) 

we obtain 

(10.34) 

We also have 

(10.35) 

HUBERT HALKIN. 

u*(t)  = v(t) + x(E)(u( t )  - v(t)) all t E [to, tb] 

<=([d)l y (t~; [u ], [v])> > ~j,(~ > 0 .  

(t~; Eu*], [d)  e 7z(Ev]) 

since [u*] eF.  Relations (10.31), (10.34) and (10.35) are contradictory. This 

concludes the proof of Theorem IV. 

P r o o f  of  Theorem V. Let the vector p( t ; [v] )  be defined by relation (4.2). 

This vector (p(t; [v]) is nonidentically zero and continuous over [h,  tb] since 

G(t;[v])  and G-~(t;[v]) exist and are bounded over [to, tb]. Relation (4.1) 

may be written under the form: 

(10.36) <~([v]) [ G(t; rv'])0r(x(t; [v']), u(t), t) - f ( x ( t ;  Iv'I), v(t), t)) > ~ 0 

for all [u] in F and a.e. t e It,, tbl 

or, from the definition of a transposed matrix 

(10.37) <Or(t; [v])n(rv]) [ f (x ( t ;  Iv]), u(t), t) - f ( x ( t ;  rv]), v(t), t))  ~ 0 

for all [u] in F and a.e. t r [t, ,  tb] 

i.e., from relation (4.2), 

(10.38) <p( t ; [v] ) [ f ( x ( t ; [v] ) ,u ( t ) , t )  - f ( x ( t ; [ v ] ) , v ( t ) t ) )  ~ 0 

for all ru] in F and a.e. t ~ [t~ �9 

This proves relation (4.3). By differentiation with respect to t of relation (4.2), 

we obtain 

(10.39) D(t; [ d )  = (oT(t; Iv]))'=([.])  

= ( d ( t ; [ v ] ) ) r n ( [ v ] )  a.e. t r  [to, tb] 

but by definition (see relation (2.3)), we have 
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hence 
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(10.41) p(t;  [v]) = ( -  6 0 ;  [o ] )  o ( t ;  [ v ] ) ) r ~ ( [ v ] )  

= - o T ( t ;  [ v ] ) 6 T ( t ;  [ o ] ) n ( [ o ] )  

= - o " ( t ;  [ , , ] )p(t ;  [ , , 3 ) .  

This proves the relation (4.4) and concludes the proof  of  Theorem V. 

P r o o f  of  Theorem VL This theorem is just a logical conclusion of 

Theorem II, III, IV and V: if the point x( t~;[v])  is a boundary point of  the 

set H, then the point y = 0 is a boundary point of  the set H([v]) (see Theorem 

II), then the point y = 0 is a boundary point of  the set/-~([v]) (see Theorem III), 

then there exists a non-zero constant vector n([v]) such that condition (4.1) 

is satisfied for all [u] in F (see Theorem IV), then there exists a vector p(t;[vl) 

continuous, nonidentically zero on I't,, t~] and satisfying conditions (4.3) and 

(4.4)(see Theorem V). This concludes the proof  of  Theorem VI. 

P r o o f  of  Thereto VII .  This theorem is just a logical conclusion of  

Theorems I and VI: if an element Iv] of  F* is optimal, then the point x(t~; [v]) 

is a boundary point of  the set H (see Theorem I), then there exists a vector 

p(t ;[v])  continuous, nonidentically zero on It,, tb] and satisfying conditions 

(4.3) and (4.4)(see Theorem VI). This concludes the proof  of Theorem VII. 
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