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A b s t r a c t .  For a family of weight functions h,~ invariant under a finite re- 
flection group on ~ ,  analysis related to the Dunkl transform is carried out for the 
weighted Lp spaces. Making use of the generalized translation operator and the 
weighted convolution, we study the summability of the inverse Dunkl transform, 
including as examples the Poisson integrals and the Bochner-Riesz means. We also 
define a maximal function and use it to prove the almost everywhere convergence. 

1 I n t r o d u c t i o n  

The classical Fourier transform, initially defined on Ll(~d), extends to an 

isometry of  L 2 (1R d) and commutes with the rotation group. For a family of weight 

functions h~ invariant under a reflection group G, there is a similar isometry of 

L2(R a, hl), called the Dunkl transform ([3]), which enjoys properties similar to 

those of  the classical Fourier transform. This transform is defined by 

f(x) = Ch ~d E(x,-iy)f(y)h2(y)dy, 

where the usual character e -i(x'y) is replaced by E(x,- iy)  = V~(e-i("~))(x) for 

some positive linear operator V,~ (see the next section). If the parameter ~ = 0, 

then h,~(x) -- 1 and V,~ = id, so that f b e c o m e s  the classical Fourier transform. 

The basic properties of the Dunkl transform have been studied in [3, 7, 13, 15] 

and also in [12, 19] (see also the references therein). These studies are mostly for 

L2(~ d) or for Schwartz class functions. 

The purpose of  this paper is to develop an L p theory for the summability of 

the inverse Dunkl transform and to prove a maximal inequality that implies almost 

everywhere convergence. 

*ST wishes to thank YX for the warm hospitality during his stay in Eugene. The work of YX was 
supported in part by the National Science Foundation under Grant DMS-0201669. 
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The classical Fourier transform behaves well with the translation operator f 

f ( .  - y), which leaves Lebesgue measure on ~a invariant. However,  the measure 

h](x)dx is no longer invariant under the usual translation. One ends up with a 

generalized translation operator, defined on the Dunkl transform side by 

~ f ( x )  = E (y , - i x ) f ( x ) ,  x E R d. 

An explicit formula for T u is unknown in general. In fact, 7y may not even be a 

positive operator. Consequently, even the boundedness of  Ty in LP(~d; h~) becomes 

a challenging problem. At the moment,  an explicit formula for Tyf is known only 

in two cases: when f is a radial function and when G = Z d. Properties of  Ty are 

studied in Section 3. In particular, the boundedness of  the TU for radial functions 

is established. 

For f ,  g in L 2 (R d ; h~), their convolution can be defined in terms of  the translation 

operator as 

(1 g)(x) = ](y) -xgV (y)h (y)dy. 

Based on a sharp Paley-Wiener  theorem, we are able to prove that f . ~  ee converges 

to f in Lp(~d; hl) for certain radial r  where r is a proper  dilation of  r This and 

other results are given in Section 4. 

The convolution .~ can be used to study the summability of  the inverse Dunkl 

transform. We prove L p convergence of  the summability under mild conditions, 

including as examples Gaussian means (heat kernel transform), Abel means and 

the Bochner-Riesz  means for the Dunkl transform in Section 5. 

In Section 6, we define a maximal function and prove that it is strong type (p, p) 

for 1 < p < oc and weak type (1, 1). As usual, the maximal inequality implies 

almost everywhere  convergence for the summability. 

In the case G = Z d the generalized translation operator is bounded on LP(~ d ; hl). 2, 

Many of  the results proved in the previous sections hold under conditions that are 

more relaxed in this case and the proof  is more conventional. This case is discussed 

in Section 7. 

The following section is devoted to the preliminaries and background. The 

basic properties of  the Dunkl transform are also given there. 

2 Pre l iminar ies  

Let G be a finite reflection group on /IU with a fixed positive root system 

R+, normalized so that (v, v) = 2 for all v E R+, where (x, y) denotes the usual 

Euclidean inner product. For a nonzero vector v E I~ d, let av denote the reflection 
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with respect to the hyperplane perpendicular to v, xa,, := z - 2( (x, v) /llvll2)v, 
x E ]~a. Then G is a subgroup of the orthogonal group generated by the reflections 

: r e  R+}. 
In [1], Dunkl defined a family of first order differential-difference operators 

79i, which play the role of the usual partial differentiation for the reflection group 

structure. Let ~ be a nonnegative multiplicity function v ~ ~v defined on R+ with 

the property that tq, = toy whenever au is conjugate to av in G; then v ~ i% is a 

G-invariant function. Dunkl's operators are defined by 

7)if(x) = Oil(x) + E kv f ( x )  - f (xav)  (v, ~i), 1 < i < d, 

where e l , . . . ,  Cd are the standard unit vectors of I~ d. These operators map pd to 

p d  1, where pd is the space of homogeneous polynomials of degree n in d variables. 

More importantly, these operators mutually commute; that is, 7)d)j = 79j79i. 

Associated with the reflection group and the function ~ is the weight function 

h,~ defined by 

(2.1) h (x) = IX I<z'v)l x e 
vER+ 

This is a positive homogeneous function of degree % := ~]~veR+ av and is invariant 

under the reflection group G. The simplest example is given by the case G = Z d 2~ 

for which h,~ is just the product weight function 

d 

= 1 - I  I '1 _ 0.  
i = 1  

The Dunkl transform is taken with respect to the measure h~(x)dx. 

There is a linear isomorphism which intertwines the algebra generated by 

Dunkl's operators with the algebra of partial differential operators. The intertwin- 

ing operator V. is a linear operator determined uniquely by 

V~Pn C Pn, V~1=1,  l)iV~ = V~Oi, l < i < d. 

An explicit formula of V,~ is not known in general. For the group G = Z~, it is an 

integral transform 

d 

(2.2) V J ( x )  = b~ [ f ( x l t l , . . . ,  xdtd) H ( 1  + ti)(1 -- t2 )~- ld t .  
J[- 1'1] a i=1  

If some tq = 0, then the formula holds under the limit relation 

f lim b~ f(t)(1 - t )X-ldt  = [f(1) + f ( -1)] /2 .  
)~-~0 1 
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It is known that V,~ is a positive operator ([13]); that is, p > 0 implies V~p > O. 
The function E(x,  y) := V,, (~) [e(~'v>], where the superscript means that V,~ is 

applied to the x variable, plays an important role in the development  of  the Dunkl 

transform. Some of  its properties are listed below ([2]). 

Proposition 2.1.  For x, y E R n, 

1. E(x,  y) = E(y,  x). 

2. IE(x,y)I <_ e IIzII'IlylI, x ,y  e C n. 

3. Let v(z) = z~ + . . . + z~, zi �9 C For z, w �9 C a , 

[ E(z,  x)E(w, x)h2(x)e-Ilxll2/2dx = e(V(*)+~'(~'))/2E(z, w), Ch 
JR d 

where Ch is the constant defined by Ch 1 = fR. h2 ( x) e-Ilxll2/2 dx" 

In particular, the function 

: x , y  �9 

plays the role ofe  i(x,u) in ordinary Fourier analysis. The Dunkl transform is defined 

in terms of  it by 

(2.3) f (y )  = ch fR ,  f ( x ) E ( x ,  - iv)h~(x)dx.  

If ~ = 0, then V,~ = id and the Dunkl transform coincides with the usual Fourier 

transform. If  d = 1 and G = Z2, then the Dunkl transform is related closely to the 

Hankel transform on the real line. In fact, in this case, 

E ( x , - i y )  = F(~ + 1/2)(Ixyl/2) -~+1/2 [J,~-l/u(Ixyl) - i sign(xy)J,~+l/2(Ixyt)] , 

where J~ denotes the usual Bessel function 

( t )  a n ~  ~ (_1) n ( ~ ) 2 n  
(2.4) Ja(~) = = n! r (n  + a + 1) 

We list some of  the known properties of  the Dunkl transform ([3, 7]) below. 

P r o p o s i t i o n  2.2.  1. For f �9 LX(Rd; h~), f is in Co(~d). 

2. When both f and fare in LIr d" h2~ we have the inversion formula 

f (x )  = JR[~ E(ix ,  y)f(y)h2(y)dy.  
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3. The Dunkl transform extends to an isometry of L2(Rd; hl). 

4. For Schwartz class functions f, Z)Tf (y ) = iy3 f (y ). 

There are two more results which we need. First we require the definition 

of h-harmonics. The h-Laplacian is defined by Ah = D r + . . .  + D~; it plays 

the role similar to that of the ordinary Laplacian. Let Pn a denote the subspace of 

homogeneous polynomials of degree n in d variables. An h-harmonic polynomial P 

of degree n is a homogeneous polynomial P 6 Pn a such that AhP ---- 0. Furthermore, 
d 2 let 7/n(h,~) denote the space of  h-harmonic polynomials of  degree n in d variables 

and define 
f 

:: Jed-1 I (x)g(x)h~ (x)d~(z), 

- d 2 where a~ 1 = fs~_l h2(x)dw. Then (P,Q)~ = 0 for p 6 7/n(h~) and Q 6 IId_i . 

The spherical h-harmonics are the restriction of h-harmonics to the unit sphere. 

Standard Hilbert space theory shows that 

= 7-ln(h,~ ). 
n=O 

Throughout this paper, we fix the value of  A := A,~ as 

(2.5) A := 7~ + _ _ d  - 2 with 7~ = E ~v. 
2 v6R+ 

Using the spherical-polar coordinates x : rx', where x' 6 S d-l, we have 

(2.6) fR~ f(x)h~(x)dx = fo ~176 fsd-1 f(rx')h:(x')dw(x')r2X~+Xdr' 

from which it follows that 

Ch 1 = f h~(x)e-Ilxll2/2dx = 2X-F(A,~ + 1)a~ -1. 
JR d 

The following formula is useful for computing the Dunkl transform of  certain 

functions ([3]). 

d 2 P r o p o s i t i o n  2.3. Let f E 7tn(h~), y 6 I~ d and # > O. Then the function 

g(x) = a~ fsa-~ f(~)E(x,-i#{)h~({)dw({) 

satisfies Ahg = _#2 g and 

g(x, ( - i ) n f ( l ~ x l [ ) ( ~ )  -)~" = ( # l l z l l ) .  
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We also use the Hankel transform Ha defined on the positive reals 1~+. For 

a > -1 /2 ,  

1 foo ,Ja(rs)  2a+lJ 
(2.7) Haf(s )  . -  F(a + 1-----~ Jo r ( r ) - ~ - r  ar. 

The inverse Hankel transform is given by 

1/0  (2.8) I(r) - r (a  + 1) I-Ij(s) s2~+lds, 

which holds under mild conditions on f ,  for example, if f is piecewise continuous 

and of bounded variation in every finite subinterval of (0, co), and v'Tf E L 1 ( l~ )  

([20, p. 4561). 

P r o p o s i t i o n  2.4.  If f(x)  = f0(llzll), then f(x) = g x ,  fo(llxll). 

Proof .  This follows immediately from (2.6) and Proposition 2.3. [] 

3 G e n e r a l i z e d  t r a n s l a t i o n  

One of the important tools in the classical Fourier analysis is the convolution 

( f  * g)(x) = fu~ f (y)g(x  - y)dy, 

which depends on the translation 79 : f (x )  ~ f ( x  - y). There is a generalized 

translation for the reflection invariant weight function, which we study in this 
section. 

3.1 Bas ic  proper t i e s  and  expl ic i t  formulas .  Taking the Fourier trans- 

form, we see that the translation zuf  = f ( . - y )  ofR  a satisfies r-~(z) = e-i(~,~)f(x). 

Looking at the Fourier transform side, we can define an analogue of the translation 

operator for the Dunkl transform as follows. 

Defini t ion  3.1. Let y E Ra be given. The generalized translation operator 
f ~ ruf  is defined on L2(Rd; h2~) by the equation 

(3.1) ruf(x) = E(y , - i x ) ' f ( x ) ,  x E ~d. 

Note that the definition makes sense, as the Dunkl transform is an isometry of 

L 2 (l~d; h~) onto itself and the function E(y,  - i x )  is bounded. When the function 

f is in the Schwartz class, the above equation holds pointwise. Otherwise it is to 
2 d. 2 be interpreted as an equation for L 2 functions. As an operator on L (~ , h~),T u 
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is bounded. A priori it is not at all clear whether the translation operator can be 

defined for L p functions for p different from 2. One of the important issues is 

to prove the L p boundedness of the translation operator on the dense subspace of 

Schwartz class functions. If it can be done, then we can extend the definition to all 

L v functions. 
The above definition gives ryf  as an L 2 function. It is useful to have a class of 

functions on which (3.1) holds pointwise. One such class is given by the subspace 

A,~(]I{ d) : {f C L1 (]l{d; h~): f ' e  L:(]l{d; h2)}. 

Note that A,~ (~{d) is contained in the intersection of L: (~d; h2) and L ~ and hence 
is a subspace of L 2 (]~d; h2). For f E A~ (If{d), we have 

"cyf(x) = fR~ E(ix, ~)E(-iy, ~)f(~)h 2 (~)d~. (3.2) 

Before stating some properties of the generalized translation operator, let us 

mention that there is an abstract formula for r~ given in terms of  the intertwining 

operator V~ and its inverse. It takes the form [19] 

(3.3) r~f(x) = V(~ x) | V (y) [(vzl f)(x - y)] 

for f a Schwartz class function. Note that Vg: satisfies the formula Vglf(x) = 
e-(U,v)f(x)ly=o. The above formula, however, does not provide much information 

on r~f. The generalized translation operator has been studied in [13, 15, 19]. In 

[19], the equation (3.3) is taken as the starting point. 

The following proposition collects some of the elementary properties of this 

operator which are easy to prove when both f and g belong to A~(Ra). 

Propos i t i on  3.2. Assume that f E Aa ( Rd ) and that g E L 1 ( ~d ; h ~ ) is bounded. 
Then 

1. fR ryf(~)g(~)h~(~)d~ = fR f(~)v_ug(~)h~(~)d~; 

2. v~f(x) = r-z f ( -y) .  

Proof .  The property (2) follows from the definition since E()~x, ~) = E(x, ~ )  
for any A E C. To prove (1), assume first that both f and g belong to A~(l~a). Then 

both integrals in (1) are well-defined. From the definition, 

fRd v~f(')g(')h~(')d'= fRa (fRa E( ix ' ' )E(- iy ' ' ) f ( ' )h2( ' )d ' )  g(x)h~(x)dx 

= JRfd f(r ~)h~(r 
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We also have 

fRd f(~)r-vg(~)h~(')d~= L" (fR ~E(ix'~)E(iy'~)'~(')h2(~)d~) f(x)h~(x)dx 

= ~ f(-~)'ff(~)E(iy, ~)h~(~)d~ 

= 

This proves (1) when both / and g belong to A,~(~d). 

Suppose now f �9 A,~(R d) but g is in the intersection o f L  1 (Rd; h 2) and L ~ .  Note 

that g �9 L2(~d; h2), so rug is defined as an L 2 function. Since / is in L2(~a; h~) 

and bounded, both integrals are finite. The equation 

2 d 2 which is true for Schwartz class functions, remains true for f ,  g �9 L (~ ; h~) as 

well. Using this, we get 

= 

By the same argument, the integral on the right hand side is also given by the same 

expression. Hence (1) is proved. [] 

We need to prove further properties of  r w In the classical case, the ordinary 

translation satisfies 

f~ f(x -- y)dX = fR f(x)dx. 
Such a property is true for r u if  / is a Schwartz class function. Indeed, 

ruf(x)h (x)ax = = 7 ( 0 ) .  

Here we have used the fact that ry takes S into itself. Although r y / i s  defined 

for / E A~(~a), we do not know if  it is integrable. We now address the question 

whether the above property holds at least for a subclass o f  functions. 

For this purpose, we use the following result, which gives an explicit formula 

for r y f  when f is radial; see [15]. We write x t = x/Ixl for non-zero x E I~ d . 

Proposition 3.3. Let f E A~(~ d) be radial and let f(x) = f0(llzll). Then 
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This formula is proved in [15] for all Schwartz class functions. A different 

proof can be given using expansions in terms of h-harmonics. For that, one needs 

to invert Hankel transforms of h-harmonic coefficients of f of  various orders. Once 

we assume that f E A~ (Na), it follows that all h-harmonic coefficients of f and 

their Hankel transforms are integrable, so that inversion is valid. A special case of 

the above theorem is the formula 

(3.4) Tuqt(x) = e-t(ll=ll2+llullZ) E(2tx, y), 

where 

qt(x) = (2t)-(7+a/~) e-tll~ll2 

is the so-called heat kernel. This formula has already appeared in [12]. The other 

known formula for ~-uf is the case when G = Z~. 

T h e o r e m  3.4, Let f E A~(R d) be radial and nonnegative. Then TUf > O, 
T~S G L:t~d'h , ,,, and 

fR 7"yf(x)h~(x)dx= fR f(x)h~(x)dx. 

Proof .  As f is radial, the explicit formula in Proposition 3.3 shows that r~ f > 0 

since V,~ is a positive operator. Taking g(x) = e -tllxll2 and making use of (3.4), we 

get 

fRd vu/ (x)e-tftzll2 h~ (x)dx = ~d / (x)e-t(Ijxll2+lluf?) E( V~x' v/~y)h~ (x)dx. 

As IE(x,y)] < ell~ll Ilull, we can take the limit as t ~ 0 to get 

L t--+0 d d 

Since ruf  > 0, monotone convergence theorem applied to the integral on the left 

completes the proof. O 

We would like to relax the condition on f in the above proposition. In order to 

do that, we introduce the notion of generalized (Dunkl) convolution. 

Definition 3.5. For f,g G L~(Ra; h~), 

f *,~ g(x) = JRT" $(Y)T'gV(y)h~(y)dy' 

where gV(y) = g(_y). 
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Note that as r~g v E L2(Ra; h]), the above convolution is well-defined. We can 

also write the definition as 

f *,, 9(x) = f f(()~(~)E(ix, ~)h](~)d~. 
JR d 

If  we assume that 9 is also in L I (~d; h i ) ,  so that ~ is bounded, then by the Plancherel 

theorem we obtain 

tl/*  gll ,2 _< [lgll ,llt/[l , . 
We are interested in knowing under what conditions on g the operator f -~ f .,~ 9 

defined on the Schwartz class can be extended to L p (]~d ; h2n) as a bounded operator, 

But now we use the L 2 boundedness of the convolution to prove the following. 

T h e o r e m  3.6. Let 9 E La(~a; h 2) be radial, bounded and nonnegative. Then 
rug > O, rug E L 1 (IIU; h 2) and 

fR Tug(x)h~(x)dx = fRag(x)h:(x)dx. 

P r o o f .  Let  qt be the heat kernel defined earlier, so that ~(~) = e -ttl~II~ . By the 

Plancherel theorem, 

[[9 *,~ qt - g[[~,2 = fR~ 19(~)[2(1 - e-tll~ll2)Zh~(~)d~' 

which shows that 9 *~ qt -+ 9 in L2(Rd;h]) as t -+ 0. Since r u is bounded on 
2 d. 2 L (R ,h,,), we have ru(g,,, qt) -+ Tug in L2($a;h2) as t --+ 0. By passing to 

a subsequence if  necessary, we can assume that the convergence is also almost 

everywhere. 

Now as 9 is radial and nonnegative, the convolution 

qt(x) ----" f g(y)rxqt(y)h2~(y)dy g 
d 

is also radial and nonnegative. Also, g ,~ qt E An(Ra), as 9 is both in Ll(l~d; h~) 
and 2 a. 5 .  L (R , h~), in fact, g ,,~ qt E LI(R d, h~), as qt ~ A,,(R d) and, by the elancherel 

theorem and H61der's inequality, [Ig-'~q~ qtH,~,l = [19" ~[]~,1 _< [I9[[~,zHqt[[,,,2. Thus, 

by Theorem 3.6, ru(g ,,~ qt)(x) > O. This gives 

lira ru(g *~ qt)(x) -" ryg(x) > 0 
t--+O 

for almost every x. Once the nonnegativity of  rug(x ) is proved, it is easy to show 

that it is integrable. As before, 
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Taking limits as t goes to 0 and using monotone convergence theorem, we get 

fRdTyg(x)h~(x)dx = fRdg(X)hZ~(x)dx. 

This completes the proof. [] 

There is another way of proving the above result which avoids the intermediate 

steps. I f  we assume that fad g(x)h~(x)dx = 1, our result is an immediate conse- 

quence of  Proposition 6.2 in [19]. We thank the referee for pointing this out. We 

are now in a position to prove the following result. Let P d. irad(l~ , h~) denote the 

space of  all radial functions in LP(Rd;h~). 

T h e o r e m  3.7. The generalized translation operator TU, initially defined on 
the intersection of  Ll(~d; h~) and L ~176 can be extended to all radial functions in 

p d 2 LP(~,d;h 2) isa LP(/I~d; h2), 1 < p < 2; and Ty : Lrad(l~ , h~) ~ bounded operator. 

P roo f .  For real valued f E L 1 (~d. h 2 ~ fq LOO which is radial, the inequal- 

ity - I l l  -< f -< Ill together with the nonnegativity of  ry on radial functions in 

Ll(ll~d; h~) n L ~ shows that ITyf(x)l <_ rylf[(x ). Hence 

We also have Ilruf]l,~,2 < Hflla,2. As L p is the interpolation space between L 1 and 
P d .  2 L 2, we get IiTyfH~,p <_ IIflia,p for all 1 < p _< 2 for all f E Lrad(~ , h~). This proves 

the theorem. For the interpolation theorem used here, see [18]. [] 

1 d .  2 T h e o r e m  3.8. For every f E Lrad(l~ , ha), 

fRdr~f(x)h~(x)dx= fRdf(X)h~(x)dx. 

P roo f .  Choose radial functions fn E A~(~ d) such that f,~ ~ f and Tyfn ~ T~f 
in Ll(~d; h~). Since 

f. = f. 
for every g E A,(]~d), taking the limit as n tends to infinity, we get 

Now set g(x) = e -tllxll2 and take the limit as t goes to O. Since ryf  E LltlI~ d" h ~~ k ~ a / '  

by the dominated convergence theorem we obtain 

f. _- f. 
f o r / E  Ll(~d;h2~). [] 
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It remains an open problem whether TUf can be defined for all f E LItiR a" h 2~ 

3.2 Pos i t iv i ty  o f  ry. As an immediate consequence of the explicit formula 

for the generalized translation of radial functions, if f (x)  E A,~ (iR a) is nonnegative, 

then ryf(x)  > 0 for all y E iRd ([15]). 

One would naturally expect that the generalized translation defines a positive 

operator; that is, Tuf(x) > 0 whenever f (x)  >_ O. This, however, turns out not to be 

the case. For G = Z2, the explicit formula given in Section 7 shows that ~-y is not 

positive in general (signed hypergroup, see [I I]). Below we give an example to 

show that ru is not positive in a case where the explicit formula is not available. It 

depends on a method of computing the generalized translation of simple functions. 

The explicit formula (3.2) can be used to define ryf  when f is a polynomial. 

L e m m a 3 . 9 .  Lety  E iRd. For1 < j <_ d,'r~{xj} = x j - y j ;  a n d f o r l  <_j,k <_ d, 

vER+ 

Proof .  We use (3.4) and the fact that 7:)3% = %:Dj. On the one hand, since 

the difference part of 7:)j becomes zero when applied to radial functions, 

= -2t-,-,, ( { . } f , H  

On the other hand, it is easy to verify that 

7)jT~e-tllzll~ = ~D~ [e-'(ll=ll=+llull=) E(2tx, y)] = 2te-t(ll=ll=+llull 2) E(2tz ,y)(yj  - x j ) .  

Together, this leads to the equation 

7"~ (xje -tll'll=) = 2e-t(ll'll=+llvll=)E(2tx, y)(xj -y j ) .  (3.5) 

Taking the limit as t ~ 0 gives ry{zj} = xj - yj. 
Next we repeat the above argument, taking (3.5) as the starting point. Using 

the product formula for Dk [5, p. 156], we have after a simple computation 

e-t(llxll2+llyll 2) [ - 2t(xj - y~)(xk -- yk)E(2tx, y) 

VkVj 

vER+ 

On the other hand, computing :Dk (xie -tll=l12) leads to 

�9 ~ ~ VkVj ] 
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Hence, by (3.4), the equation Dkrv(xje -tllxll2) = ry79k(xje -tll~l12) gives 

(x xke-*ll = - - y )  

vkv 3 E(2tx, y) - E(2txa~, y) 
+ ]. 

vER+ 

Taking the limit as t ~ 0 gives the formula of r~{xjxk}. [] 

Proposition 3.10. The generalized translation Ty is not a positive operator 

for the symmetric group Sd. 

Proof .  The formula Tu{XjXk} depends on the values of  V~x 3. For the sym- 

metric group Sd of d objects, the formula of V~xj is given [4] by 

1 
V~xj - dn + 1 (1 + xj + ~lxl), Ixl = xx + . . .  + Xd. 

Let x(j, k) denote the transposition of the variables zj and xk. It follows that 

k ~ j  

= (x~ - yj)~ + ~ [(xj  - x k ) Y ~ ( y j  - Yk)] 

= ( X j  --  y.7) 2 +dtr  +-'--'~ 
k ~ j  

Choosing x = (1 ,0 ,0 , . . . ,0)  and y = (0,2 ,2 , . . . ,2) ,  we see that vy({.}~)(x) = 

- ( (d  - 2)n + 1)/(dn + 1) < 0. This proves the proposition. [] 

By (3.2), this proposition also shows that VZ 1 is not a positive operator for the 

symmetric group. In the case of Z2, an explicit formula for VZ 1 is known ([22]) 

which is not positive. 

3.3 A Paley-Wiener  theorem and the support o f  r~. In this subsec- 

tion, we prove a sharp Paley-Wiener theorem and study its consequences. The 

usual version of the Paley-Wiener theorem has been already proved by de Jeu in 

his thesis (Leiden, 1994). Another type of Paley-Wiener theorem has been proved 

in [19]. Our result is a refined version of the usual Paley-Wiener which is analo- 

gous to an intrinsic version of the Paley-Wiener theorem for the Fourier transform 

studied by Helgason [6]. Recently, a geometric form of the Paley-Wiener theorem 

has been conjectured and studied in [8]. 
Let us denote by {Yj,n : 1 < j < dim 7-/d(h2)} an orthonormal basis of 7-/d(h~). 

First we prove a Paley-Wiener theorem for the Dunkl transform. 
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Theorem 3.11.  Let f E S and B be a positive number. Then f is supported 
in {x : Ilxll <_ B} if and only if for every j and n, the function 

Fj,n(p) = p-n fSd-1 ]`(Px)YJ'n(x)h2 (x)dw(x) 

extends to an entire function of p E C satisfying the estimate 

IF~,,~(p)I < cj,neSll~pll. 

Proof. By the definition of ] ' and  Proposition 2.3, 

~Sd-, ]`(px)Yj,n (x)h 2 (x)dw (x) 

= c fR" ~d- ,  E(y,-ipx)Yj,n(x)h~(x)dw(x)f(y)h~(y)dy 

-_ c f R f(y)~,.(y,) J~+.(pllyll) h2(y)dy 
d (pl ly l l )~  

fo ~ r Cr~ Jx~+n(rp) r2X=+n+ldr, = e j~,n~ j (rp)Xk 

where c is a constant and 

fj,n(r) r-n f s  r ' Y, ' h 2 ' dw ' = a_ f ( Y )  j,n(Y) ~(Y) (Y). 

Thus, Fj,n is the Hankel transform of  order A,~ + n of  the function f~,n(r). The 

theorem-then follows from the Paley-Wiener  theorem for the Hankel transform 

(see, for example, [9]). [] 

C o r o l l a r y  3.12. A function f E S is supported in {x : Ilxll _< B} if and only if 
]`extends to an entire function of ~ G C d which satisfies 

I]`(r -< e e  B''~r 

P roo f .  The direct part follows from the fact that E(x , - i~)  is entire and 

IE(x,-iff)l < ce11~11.1I~r For the converse, we look at 

fSd-a ^ 114, I h 2 Idw i S(PY) ~,n(Y) ~(Y) (Y), p e C ,  

where dw is the surface measure on S d-~. This is certainly entire and, from the 

proof of  the previous theorem, has a zero of  order n at the origin. Hence 

p--n fsd_ 1 ^ t y, i h 2 t doJ i I(PY ) j,n(Y ) ~(Y ) (Y ) 

is an entire function of  exponential type B. The converse now follows from the 
theorem. [] 
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Proposition 3.13. Let f 6 S be supported in {x : Ilxll ~ B}. Then ruf is 
supported in {x: Ilxll ___ B + IlYlI}- 

Proof. Let g(x) = ryf(x). Then ~(~) = E(y,-i~)f(~) extends to C d as an 

entire function of  type B + Ilyll. o 

This property of TU has appeared in [19]. We note that the explicit formula for 

r~ shows that the support set of ru given in Proposition 3.13 is sharp. 

An important corollary in this regard is the following result. 

Theorem 3.14. If  f 6 C~(~  d) is supported in IIxll <_ B, then 
II~~f - flip <- cllYll(B + IlYll)N/p f o r  I < p < oo, where N = d+ 27~. Consequently, 
limu--*0 II~-yf - f l l~ ,p  = O. 

Proof. From the definition, we have 

- f(x) = fRa (E(y, -i~) - 1) E(x, i~)f(~)h2(~)d~. ryf(x) 

Using the mean value theorem and estimates on the derivatives ofE(x ,  i~), we have 

the estimate 

IIryf - -  flloo < cllyll Jfud II~ll If(~)lh~(~)d~. 

As ruf  is supported in Ilzll ___ (S  + IlYlI), we obtain 

Ilruf - flip -< cllYll(B + IlYll) N/p, 

which goes to zero as y goes to zero. [3 

4 T h e  g e n e r a l i z e d  c o n v o l u t i o n  

4.1 Convo lu t i on .  Recall that in Section 3 we defined the convolution f ,~g  
for f ,g  6 L2(~d; hl) by 

( f *~ g)(z) = fRa f (Y)rxgV (y)h2 (y)dy" 

This convolution has been considered in [12, 19]. It satisfies the following basic 
properties: 

. . . . . . - - - - - . . . . . _  

1. f *~g= f . ~ ;  

2. f * ~ g = g * ~ f .  
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We also noted that the operator f --r f ,~ g is bounded on L2(~d; h2~) provided 

is bounded. We would like to know under what conditions on g the operator 

f ~ f ,,~ g can be extended to L p as a bounded operator. I f  the generalized 

translation operator can be extended as a bounded operator on L p (Rd; h~), then the 

convolution will satisfy the usual Young's inequality. At present, we can only say 

something about convolution with radial functions. 

T h e o r e m  4.1, Let g be a bounded radial function in L 1 (iRd; h~). Then 

f *~ g(x) = fR ,  f(Y)TzgV(y)h2(y)dy' 

initially defined on the intersection o f  L 1 (]~d; h~) and L 2 (R d; 2 h~), extends to all 
LP(Rd; h2~), 1 << p < co, as a bounded operator. In particular, 

(4.1) IIf *~ 911~,p <_ Ilgll~,lll/ll~,p. 

P r o o f .  For g E L x (iR a; h~) which is bounded and radial, we have Ir~gl _< ~-~lgl, 
which shows that 

Therefore, 

i /  g(x) lh2 (x)dx 

We also have ]if ,~ gl[oo _< ]].fiiooilgli~,l. By interpolation, we obtain Hf *~ gll~,p 

i [ ,q i l~ , l l l f i l~ ,p"  [ ]  

For r E L 1 (iRd; h 2) and ~ > O, we define the dilation r by 

(4.2) ee(x) = e-(2~+d)r 

A change of  variables shows that 

JR d J R d  

T h e o r e m  4.2. Let r E L 1 (R d" h 2 ~ be a bounded radial function and assume 

that Ch fR d r  = 1. Then for  f E LP(iRd; h2~), 1 _ p < co, and f ~ Co(Sd), 
p =  co, 

lim Ill *~ ee -- fll~,p ---- 0. 
~---+0 

P r o o f .  For a given ~ > 0, we choose g E C~ ~ such that lag - flla,p < z]/3. The 
triangle inequality and (4.1) lead to 

II.f *,~ r - fll , , ,p < ~w + Iig *,~ r - gll,~,,,, 
,o 
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where we have used IIg - fll~.p < 0/3. Since r is radial, we can choose a radial 

function r E C8 ~ such that 

I1r162 < (1211glkp)-lrl. 

If we let a = ch fR,~ r (Y) h2 (y)dy, then by the triangle inequality, (4.1) and (4.2), 

IIg *~ r - gll~,p _< I lgl l~ , , l lr  - r  + IIg *~ r - agll,, ,p + la - l l l lgl l~,p 

< r~/6 + IIg *~ r  - agll,,,p 

since Ilgll~,pllr - r _< ,7 /12  and 

l a -  11 = Ich jfR, (r -r dx < (1211gl]~,p)-lr/. 

Thus 

I I / * ~  r - YlI~,p < 6 7 + IIg *~ r - agll,,,p. 

H e n c e  it s u f f i c e s  to s h o w  that  IIg *~ r - agll~,p _< 0 / 6 .  

But now g E A~(iRd), and so 

dpe(x) = f g(y)rzcVe(y)h~(y)dy = f r-xg(y)r g 
JR d J R  d 

We also know that r-xg(y) = v-ug(x) as g E C ~ .  Therefore, 

r = fR,  T~g(x)r g 

In view of  this, 

Ce(x) - ag(x) = JfR, (rug(x) -- g(x) ) Ce(y)h2 (y)dy, g 

which gives by Minkowski 's  integral inequality, 

IIg *~ r - agll~,p < f a ,  IIr~g - gll,~,~,lr 

I fg  is supported in Ilzll ___ B, then the estimate in Theorem 3.14 gives 

IIg *~ r - agile,,, < c .~  d IlYll (n + IlYll) N/" ICe(y)lh~(y)dy 

fR, Ilyll (n + II~Yll) NIp Ir < C~ 

which can be made smaller than 77/6 by choosing e small. This completes the proof  
of  the theorem. [] 

The explicit formula in the case of  G = Z2 a allows us to prove an analogous 

result without the assumption that r is radial; see Section 7. 
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5 S u m m a b i l i t y  o f  t h e  i n v e r s e  D u n k l  t r a n s f o r m  

Let ~ E Ll(~d;h~) be continuous at 0 and assume (I)(0) = 1. For f E S and 

> 0, define 

TJ(z). = fRd f(y)E(iz, y)r 

It follows from Plancherel's theorem that T~ extends to the whole of L 2 as a 

bounded operator. We study the convergence of T J  as ~ -~ 0. Note that Tof = f, 
by the inversion formula for the Dunkl transform. If  T~f can be extended to 

all f E LP(l~d;h 2) and if T J  --+ f in LP(]~d;h~), we say that the inverse Dunkl 

transform is r  

Proposition 5.1. Let ~ and r = ~ both belong to LI(I~a; h2). If ~ is radial, 
then 

TJ(x)  = (f  *~ Ce)(x) 

for all f E L2(i~d;h2~) ande > O. 

P roo f .  Under the hypothesis on if, both T~ and the operator taking f into 

( f  .~ r extend to L2(Rd; h]) as bounded operators. So it is enough to verify 

T~f(x) = (f .~ r for all f in the Schwartz class. By the definition of  the Dunkl 

transform, 

T J  (x) = 9fDd T-~f (y)~(-~y)h~ (y)dy 

= fR r-xf(~)ch fR'~(-eY)E(y,-i~)h~(y)dyh~(~)d~ 

= e-(d+Z'Y,) f r-zY(~)~(-e-l~)h2(~)d~ 
JR a 

= (f ,~ r 

where we have changed variable ~ ~ - ~  and used the fact that r - x f ( - ~ )  = rJ(x) .  
[] 

If  the radial function r satisfies the conditions of Theorem 4.2, we obtain the 

following result. 

T h e o r e m 5 . 2 ~  Let~(x) E Ll(]~d; h~) be radialandassumethat~ E Ll(l~d; h~) 

is boundedand ~(0) = 1. For f E LP(~a;h]), 1 < p < oc, Tef converges to f in 
Lp(Rd; h 2) as e ~ 0,. 

The following remarks on the above theorem are in order. In general, the 

convolution f �9 g of  an L p function f with an L 1 function g is not defined, as 
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the translation operator is not defined for general L p functions even when p = 1. 

However, when g satisfies the conditions of  Theorem 4.2, we can define the 

convolution f �9 g by integrating f against ~-~g, which makes sense (see Definition 

3.5). It is in this sense that the above convolution f �9 ~0, is to be understood. Then 

as f * ~ agrees with T~f on Schwartz functions, and as the convolution operator 

extends to L v as a bounded operator, our theorem is proved. 

We consider several examples. In our  first example, we take �9 to be the 

Gaussian function, O(x) = e -IIx112/2. By (3) of  Proposition 2.1 with z = iy and 

w = 0, ~(x) = e -11~112/2. We choose ~ = 1 / v / ~  and define 

qt (x) = ~ (x) = (2t)-('~+d/2)e -Ilxll21tt. 

Then qt (x) satisfies the heat equation for the h-Laplacian, 

AhU(X, t) = Otu(x, t), 

where Ah is applied to x variables. For this O, our summability method is just 

f *~ qt. By (3.4), the generalized translation of  qt is given explicitly by 

ryqt (x) = (2t)-('Yk+d/2)e-Cllxfl2+ll~ll2)/ttE(x/v/~, y/v/~) ,  

which is the heat kernel for the solution of  the heat equation for  h-Laplacian. Then 

a corollary of  Theorem 5.2 gives the following result in [14]. 

T h e o r e m  5.3.  Suppose f E LP(II~d; h2~, 1 < p < ~ or f E Co(~d), p = c~. 

1. The heat transform 

Htf (x)  := ( f  *~ qt)(x) = Ch f f(y)Tuqt(x)h~(y)dy, t > 0, 
JR d 

converges to f in Lp(~d; h~) as t -r O. 

2. Define Hof(X) = f(x). Then the function Htf(x)  solves the initial value 
problem 

~hu(z, t) = O~u(x, t), u(x, 0) = f(z) ,  (z, t) ~ ~d • [0, oo). 

Our second example is the analogue o f  Poisson summability, where we take 

O(x) = e-Ilxll. This case has been studied in [16]. In this case, one can compute the 

Dunkl transform ~ just  as in the case o f  the ordinary Fourier transform, namely, 

using 

1 foo  e-"  -t~/4,-  
(5.1) e-Z= - ~  Jo V~ e au, 
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and using the fact that the transform of  the Gaussian is itself (see [18, p. 6]). The 

result is 

1 2.Y~+d/2 r(,7, ' + d.4_+A) 
e-Ilxll = ca,,, (I + Ilzll2)'r-+(a+i)/2' ca,,` = v ~  2 

In this case, we define the Poisson kernel as the dilation of  ~, 

(5.2) Pc(x) := ea,a (e 2 + ilxll2)~+(d+a)/2 . 

Since if(0) = 1, it is easy to see that fP (x , e )h] (x )dx  = 1. We have 

T h e o r e m  5.4. Suppose f E LV(IRd; hi),  1 < p < ~ ,  or f E Co(~d), p = o0. 
Then the Poisson integral f .,` Pe converges to f in LP(~a; h2). 

Again, the proof is a corollary of  Theorem 5.2. For a = 0, it becomes Poisson 

summability for the classical Fourier transform on I~ d. We remark that this 

theorem is already proved in M. Rosler's habilitation thesis by using a different 

method. We thank the referee for pointing this out. 

Next, we consider the analogue of  the Bochner-Riesz means, for which 

if(x) = / ( 1  -Ilzl12) n, Ilzll _ 1, 

( 0, otherwise, 

where 5 > 0. As in the case of  the ordinary Fourier transform, we take e = 1/R, 

where R > 0. Then the Bochner-Riesz means are defined by 

S~f (x )  =Ch flIuII<_R (1--l'~5----~2)'f(y)E(ix, y)h](y)dy. 

Recall that A,` = (d - 2)/2 + 7,` and N = d + 27~. 

I f  f e Lp(Rd;h~), 1 <<_ p < or or f E Co(l~d), p = oc, and T h e o r e m  5.5. 

6 > (N - 1)/2, then 

I IS~f  - fll,`,p --+ 0, a s  R ~ oo. 

P r oo f .  The proof follows as in the case of an ordinary Fourier transform 

[18, p. 171]. From Proposition 2.4 and the properties of  the Bessel function, we 
have 

~ (x )  = 2 x~ I I~ l l -x~-n - l J~ .+n+l ( l l z l I ) .  

Hence, by J~(r) = O(r-1/2), ~ E Ll(l~d; h 2) under the condition 6 > A,̀  + 1/2 = 

(N  - ~)/2.  D 
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Note that A'` = ( d -  2)/2+7, ,  where 7"` is the sum of  all (nonnegative) parameters 

in the weight function. If  all parameters are zero, then h,, (x) - 1 and we are back 

to the classical Fourier transform, for which the index (d - 1)/2 is the critical index 

for the Bochner -Riesz  means. We do not know if the index (N - 1)/2 is the critical 

index for the Bochner-Riesz  means o f  the Dunkl transforms. 

6 Maximal  function and almost everywhere 
summabil i ty  

For f E L2(ll~d; h~), we define the maximal function M j  by 

1 
M j ( x )  = sup If *'` XB, (x)[, r>0 d~r d+27~ 

where XB. is the characteristic function o f  the ball Br o f  radius r centered at 0 

and d'` = a'`/(d + 27~). Using (2.6), we have fB. h~(y)dy = (a'`/(d + 27"`))r d+2"~. 

Therefore,  we can also write M'`f(x) as 

[fR~ f (y)~xs. (y)h~ (y)dy[ 
M'`f(x) = sup 

~>o f.,. h2~(y)dy 

If  ~ e C~(ll~ d) is a radial function such that XB,(x) <_ ~(x), then from Theorem 

3.6 it follows that ryXB. (x) <_ Ty~(X). But ry~ is bounded; hence r~XB , is bounded 

and compactly supported, so that it belongs to Lp(Rd; h2~). This means that the 

maximal function M'`f  is defined for all f e LP(IRd;h~). We also note that as 

T y X B  . > 0, we have M'`f(x) < M'`lfl(x ). 

T h e o r e m  6.1.  The maximal function is boundedon Ln(Rd; h~) for  1 < p < o0; 
moreover, it is o f  weak type (1, 1), that is, for  f E L 1 (Rd; h 2) and a > O, 

rE(a) h~(x)dx < Cllfll'`,x, 

where E(a) = {x : M j ( z )  > a} and c is a constant independent o f  a and f . 

P r o o f .  Without loss of  generality, we can assume that f > 0. Let  a = d+27"` + 1 

and define for j > 0, Br,j = {x : 2 - J - l r  < Ilzll ___ 2-Jr}. Then 

Xs,a (Y) = (2-Jr)  ~ ( 2-jr)-~XB.,~ (Y) 

2-J r  
C(2-Jr) a-1 ((2_Jr)2 + Hy]]2) ~/2 XB.,i (Y) 

< c(2-~)'- lp2_~(y),  
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where P~ is the Poisson kernel defined in (5.2) and C is a constant independent of 

r and j. Since XB. and P, are both bounded integrable radial functions, it follows 

from Theorem 3.6 that 

7"xX13,.,(y) < C(2-Jr)'~-lTxP2-~r(y). 

This shows that for any positive integer m, 

m o o  

j = 0  j = 0  

< C r d+2"~ sup f *,~ Pt (x). 
t > o  

m As ~j=oXB~,~(Y) converges to XB.(Y) in Ll(Rd;h~), the boundedness of ~-~ on 
1 d .  m 77 Lrad(l~ , h~) shows that ~i=o ~XB~,j(Y) converges to TxXB~(Y) in Ll(~d; hl). By 

m passing to a subsequence, if necessary, we can assume that ~ = o  T~XBr.~ (Y) con- 

verges to vxXB. (Y) for almost every y. Thus all the functions involved are uniformly 

bounded by T~XB, (y). This shows that ~ j~0  T~XB,,~ (Y) converges to r~XB~ (y) in 
L p' (l~d; h~), and hence 

m 

lim fR f(Y)ZTxXBrJ(y)h2(y)dy= fR f(Y)TxXB~(y)h2(y)dy" 
m----r r d j = 0  d 

Thus we have proved that 

f *~ XB. (X) <_ Cr d+2"r" sup f *~ Pt (x), 
t > 0  

which gives the inequality M,J(x) < CP*f(x), where P ' f  (x) = supt>0 f .~ Pt(x) 
is the maximal function associated to the Poisson semigroup. 

Therefore, it is enough to prove the boundedness of P*f. Here we follow a 

general procedure used in [17]. By looking at the Dunkl transforms of the Poisson 
kernel and the heat kernel, we infer that 

f *,~ Pt(x) = v ~  (f  *'~ qs)(x)e-t2/2"s-a/2ds' 

which implies, as in [17, p. 49], that 

P ' f  (x) <_ C sup 1 f0 t t>o ~ Qsf(x)ds, 

where Qsf(x) = f .,~ q~(x) is the heat semigroup. Hence using the Hopf-Dunford- 

Schwartz ergodic theorem as in [17, p. 48], we get the boundedness of P*f on 
Lp(~ct; hl) for I < p < c~ and the weak type (1,1). [] 
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The Hardy-Littlewood maximal function M~f can be used to study almost 

everywhere convergence of f ,~ r under certain conditions on r Recall that 

N = d + 27~. 

T h e o r e m  6.2. Let r E A~ (~d) be a real valued radial function which satisfies 

]r < c(1 + ]lx]l) -u -1 .  Then 

sup If *,~ r < cM~f(x). 
e > 0  

Consequently, f *~ r ~ f(x) for almost every x as ~ goes to O for  all f in 
Lp(Rd; h~), 1 < p < cx). 

Proof .  We can assume that both f and r are nonnegative. Writing 

oo 

j = - o c ~  

we have 

m 

r (y) -< c ~ (I + ~2J)-N-%~x~2,<Iry,<~2~+~ (y). 
j= - -m  j = - - m  

This shows that 

rn 

Xe2~ <llull<e2~+l (y)h~(y)dy 
j = - m  

rn 

< e (1 + 
j = -  7F/, 

< cM~f(x). 

Since r < c(1 + Ilyll) - N - 1  ___ ePI(y), it follows that Txr < CTxPI(y) is 

bounded. Arguing as in the previous theorem, we can show that the left hand side 

of the above inequality converges to f ,~ r (x). Thus we obtain 

sup If *~ Cs(x)l < c M j ( x ) ,  
e > 0  

from which the proof of almost everywhere convergence follows from the standard 

argument. [] 

The above two theorems show that the maximal functions M,, f  and P*f  are 

comparable. As a corollary, we obtain almost everywhere convergence of Bochner- 
Riesz means. 
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Corollary 6.3. When 5 >_ (N + 1)/2, the Bochner-Riesz  means S~f(x) 
converge to f ( x )  f o r  almost every x f o r  all f E LP(I~d; h~), 1 <__ p < (x). 

We expect the corollary to be true for all 5 > (N - 1)/2, as in the case of  the 

Fourier transform. This could be proved if in the above theorem the hypothesis 

on r could be relaxed to Ir _< c(1 + Ilxll) - N - '  for some e > 0. Since we do not 

know that r~((1 + Ilxll) -N-x)  is bounded, we cannot repeat the proof of the above 

theorem. 

7 P r o d u c t  w e i g h t  f u n c t i o n  i n v a r i a n t  u n d e r  Z~ 

Recall that in the case G = zd2, the weight function h,~ is a product function 

d 

(7.1) h~(x) -- I-[ Izil '~'' ,r _> 0. 
i= l  

In this case, the explicit formula of  the intertwining operator V~ is known (see 

(2.2)); and there is an explicit formula for 7- u. The following formula is contained 

in [11], where it is studied in the context of signed hypergroups. 

Theorem 7.1. For G = g~ and  h~ in (7.1), 

T y f ( Z )  : Ty 1 �9 " ' T y d f ( z ) ,  Y : ( Y l , - - .  ,Yd) E ~d; 

here f o r  G = Z2 and  h,,(t) = Itl ~ on ~,, 

// (7.2) r . y ( t )  =-~ 1 I  + - + ~/t 2 + s 2 -  z s~u .  

1 1 t -  2stu)O,~(u)du, 

where ~,~(u) = b,~(l+u)(l-u2) '~-t. Consequently, f o r  each y E I~ d, the generalized 

translation operator r~ for  Z~ extends to a bounded operator on Lp(Nd; h~). More 

precisely, Ilr~fll~,p < 311fll~,pfor 1 <_ p < oo. 

Since the generalized translation operator Ty extends to a bounded operator on 

LP(R d ; h~), many results stated in the previous sections can be improved and the 

proofs can be carried out more conveniently, as in classical Fourier analysis. In 

particular, the properties of r~ given in Proposition 3.2, Theorem 3.6 and Theorem 

3.8 all hold under the more relaxed condition of f E L a (l~d; h~). 

The standard proof [231 can now be used to show that the generalized 
convolution satisfies the following analogue of Young's inequality. 
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P r o p o s i t i o n  7.2. Let G = Z ~. Let p, q, r _> i andp- 1 = q- 1 + r -  1 _ 1. Assume 
r d 2 f 6 Lq(IRd,h~) andg E L (~ ,h~), respectively. Then 

[]Y *,~ gll~,p -< cl[fll~,q[[g[]~,r. 

In the following, we give several results which improve the corresponding 

results in the previous sections significantly. We start with an improved version of  

Theorem 4.2. The boundedness of  % allows us to remove the assumption that O is 

radial. 

T h e o r e m  7.3. Let r E LI(~ d, h 2) andassume f~d r = 1. Then for 
f E Lp(~d;h~), 1 <p  < oc, o r f  E Co(R d) ifp = oo, 

lira [If *,~ ee  - fl[,~,p = 0, 1 < p < oo.  

P r o o f .  First we assume that f E C~~ d). By Theorem 3.14, [[%f(x)-f(x)I[s,p 

-~ 0 as y ~ 0 for 1 _< p _< oo. In general, for f E LP(Rd; h~), we write f = f l  + f2, 

where fz is continuous with compact support and [[f2[[,,,p _< J. Then the first term 

of  the inequality 

[ l%f(x) - f(x)l[~,p <_ Hryfl(x) - fl(x)ll~,p -F II%f2(x) - A(z)l[~,p 

goes to zero as e ~ 0, and the second term is bounded by (1 + c)J, as 

IIr~f211~,, _< cllfll~,p. This  proves that [l~-vf(z) - f(z)ll~,p -~ 0 as y ~ 0. We 
then have 

~ if  *~ g~(x) - f(x)[Ph~(x)dx Ch 

fH~,p[ge(x)[h~ (x)dx 

= ch fR; IIr'~f - fll~,l, lg(z)lh~(x)dx, 

which goes to zero as e --r O. [3 

Our next result is about the boundedness of  the spherical means operator. As 

in [10], we define the spherical mean operator on A,~(~ a) by 

:= ~ f s , -~  
s,.f(z) rryf  (x)h~ (y)dw(y). 

The generalized convolution of  f with a radial function can be expressed in terms of  

the spherical means S J .  In fact, if  f e A,~(R d) and g(x) = go([Ix[I) is an integrable 
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radial function, then using the spherical-polar coordinates, we have 

( f  *~ g)(x) = Ch .~d ~-Yf(x)g(y)h2 (y)dy 

= Ch r2X'+lg~ d-a r u ' f ( ) h ~ ( y )  y dr 

= Ch foo Srf(x)go(r) r2x'+ldr. 
aa Jo 

We make use of  this later in this section. Regarding boundedness,  we have 

T h e o r e m  7.4.  Let G = Z d. For f E LP(R d, h2), 

[[Srfll~,p <_ c[Ifll~,p, 1 < p < oo. 

Furthermore, IIS, f - fll~,p ~ 0 as r ~ 0+. 

P r o o f .  By H61der's inequality, 

___ a~ fs,-1 ISry(x)  l p Irr~f (x) lPh~ (y)d~(y). 

Hence, a simple computation shows that 

Ch fRd 'Sr f(x)lPh2 (x)dx <- ch fad a~ fSd-a 'Tr~f(x)l 'h:(y)dw(y)h2 (x)dx 

a,, ; IIr~ufll~,ph~(y)d~(y ) 
J S  d - - 1  

___ cllfJl~,p. 

Furthermore,  we have 

fll~,p ___ a~ f s , - ,  IIr~yf - fll~,ph~(y)d~(y), IIS~f 

which goes to zero as r --r 0, since IIT~Y -- fll~,p ~ 0. [] 

We remark that the spherical mean value operator is bounded on L p for any 

finite reflection group, not just for G = Z d. To see this, we can make use of  a 

positive integral representation of  the spherical mean operator, proved in [15]. In 

fact, it follows easily that S~ is actually a contraction on L p spaces. 

The boundedness of  7-~f in LP(~d; h~) also allows us to relax the condition of  

Theorem 6.2. 

T h e o r e m  7.S. Set G = Z d2 . Let r = r E Z 1 (R d , h 2) be a radial func- 
tion. Assume that Co is differentiable, l i m ~  r = 0 and f ~  r2X.+2[Co(r)ldr < 
oo. Then 

I ( f  *~ r  < c M j ( x ) .  

In particular, i f  C �9 L 1 (R d , h 2) and Ch fa~ r (x)dx = 1, then 
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1. for 1 < p < oo, f *~ r converges to f as e ~ 0 in LP(~a; h2); 

2. for f E LX(~d,h]), (f *~ Ce)(x) converges to f(x) as e ~ O for almost all 
X E ]~ d. 

P r o o f .  By definition of  the spherical means St f,  we can also write 

Ifo s, f(x) tl M j ( x )  = sup 
r>0 f :  t2)~+ldt 

Since IMj(x) l  <_ cMnlfl(x), we can assume f(x) >_ O. The assumption on 4)0 

shows that 

l irn Co(r) SJ(x)t2a~+ldt = lim Co(r) Tuf(x)h2(y)dy 
r ---).oo d 

= l im  Co(r) f f(y)h~(y)dy = O. 
JR d 

Hence, using spherical-polar coordinates and integrating by parts, we get 

/5 (f *a r ---- r 

= -  fo~176 forStf(x)t2x~+ldtr 

which implies that 

/5 J(/*~ r < cMJ(x)  r2X'+2Jr 

The boundedness of  the last integral proves the maximal inequality. [] 

As an immediate consequence of  this theorem, the Bochner-Riesz means 

converge almost everywhere if  ~ > (N - 1)/2 for G = Zd; this closes the gap 

left open in Corollary 6.3. 

We can further enhance Theorem 7.5 by removing the assumption that r is 

radial. For this purpose, we make the following simple observation about the 

maximal function. 

L e m m a  7.6. If  f E LI(IR a, h~) is a nonnegative function, then 

fm ruf(z)h](y)dy 
M~I(z) = sup 

r>o fB, h2(y)dy 

In particular, if f and g are two nonnegative functions, then 

M~f + M~g = M~(f + g). 
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Proof .  Since %XB. (x) is nonnegative, 

( f  *~ XB.)(x) = fR" f(y)TyXB. (x)h~ (y)dy 

is nonnegative if f is nonnegative. Hence we can drop the absolute value sign in 

the definition of M,J .  [] 

T h e o r e m  7.7. Set G = Z d. Let r E Ll(Ra,h~) and let r = r 
Ll(Ra,h2) be a nonnegative radial function such that Ir _< r Assume 
that r is differentiable, limr~oo C0(r) = 0 and f o  r2X~+21r < oo. Then 
sup,>0 If *~ r176 is of  weak type (1, 1). In particular, if r E Ll(l~d,h~) and 

h,~), (f  *~ r converges to f(x) as Ch fR~ r = 1, then for f E LI(R a, z 
e --~ O for almost all x E R a. 

Proof .  Since M j ( z )  ___ M~III(z), we can assume that f (x)  > O. The proof 

uses the explicit formula for vyf. Let us first consider the case of d = 1. Since 

is an even function, by (7.2) r~r is given by the formula 

T~f(x) = f l l  f (~/x2 + y2-- 2xyt)C~(t)dt. 

Since (x - y)(1 + t) = (x - yt) - (y - xt), we have 

15_- y_l 
X/x 2 + y2 _ 2xyt (1 + t) < 2. 

Consequently, by the explicit formula (7.2) for ryf,  the inequality Ir _< r 
implies that 

ITyC(x)l < T C(Z) + 2 ~ r  

where 

I 

Note that ~ r  differs from ~-~r by a factor of  (1 +t) in the weight function. Changing 
variables t ~ - t  and y ~ - y  in the integrals shows that 

where F(y) = (f(y) + f ( -y ) ) /2 .  Hence, it follows that 

*~ r = I f  f(y)r~r <_ ( f  ,~ r + 2(F *,~ r I(/ 
I JR 
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The same consideration can be extended to the case o f Z  d for d > 1. Let {el,. �9 �9 ed} 

be the standard Euclidean basis. For 6j = • define x6j = x - (1 + 6j)xjej (that 

is, multiplying the j - th  component of  x by 6j gives x6j). For 1 < j _< d, we define 

F.71 ..... J~ = 2-k Z f(x~j~ .. "~Jk)" 
(6~1 ..... 6 ~ ) ~ Z ~ }  

In particular, Fj(x)  = (F(x) + F(x~j)) /2,  Fj~,j2(x ) = (F(x) + F(x~j~) + F(x~j2 ) + 
F( x6j~ ~ j2 ) ) / 4, and the last sum is over Z d, F1 ..... d( X ) = 2 -d ~-,,,eZ~ f ( xa  ). Following 

the proof in the case of  d = 1, we see that 

d 

I(f *~ r _< ( f  ,,~ r + 2 Z ( F j  ,~ r + 4 Z (Fja,j2 *,~ r 
j - -  1 j l # j 2  

+ ' " +  2d(F1 ..... d*,~r 

For G = Z d, the explicit formula of  TU shows that M,, f (x)  is even in each of  its 

variables. Hence, applying the result of  the previous theorem on each of  the above 

terms, we get 

d 

I(f *,~ r -< M,,f(x)  + 2 Z M,~Fj(x) + 4 Z MnFj ',j2(x) 
j = 1 j I #J2  

+ ' " + 2 d M , , F 1  ..... d(X). 

Since all Fj are clearly nonnegative, by Lemma 7.6, the last expression can be 

written as M,~H, where H is the sum of  all functions involved. Consequently, since 

[[F~I ..... jd 11,,,1 < [If lib,l, it follows that 

f{ h2(y)dy < cllHll~,x < ca [Ifll',l" 
z : ( l  *,,g~)(x)>a} a a 

Hence, f ,n r is of  weak type (1, 1), from which the almost everywhere convergence 

follows as usual. [] 

We do not know whether the inequality [(f ,,~ r _< cM,, f (x)  holds in 

this case, since we only know M,~(R(6)f)(x) = R(5 )M,J (x )  = M,J (x6) .  where 

R(5)f(x)  = f (x6)  for 6 E G, from which we cannot deduce that M,~Fj~ ..... jk (x) <_ 
cM,J(x) .  
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