NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WITH MULTIPLE ZEROS AND POLES

BY

XUECHENG PANG*'**

Department of Mathematics, East China Normal University Shanghai 200062, P.R. China e-maih xcpang@euler.math.ecnu.edu.cn

AND

LAWRENCE ZALCMAN**

Department of Mathematics and Statistics, Bar-Ilan University 52900 Ramat-Gan, Israel e-mail: zalcman@macs.biu.ac.il

ABSTRACT

Let $\mathcal F$ be a family of functions meromorphic in the plane domain D , all of whose zeros and poles are multiple. Let h be a continuous function on D. Suppose that, for each $f \in \mathcal{F}$, $f'(z) \neq h(z)$ for $z \in D$. We show that if $h(z) \neq 0$ for all $z \in D$, or if h is holomorphic on D but not identically zero there and all zeros of functions in $\mathcal F$ have multiplicity at least 3, then F is a normal family on D .

1. Introduction

In this paper, we study the normality of families of meromorphic functions on plane domains, all of whose zeros and poles are multiple. As a first result, we have

^{*} Partially supported by the Shanghai Priority Academic Discipline and by the NNSF of China Approved No. 10271122.

^{**} Research supported by the German-Israeli Foundation for Scientific Research and Development, G.I.F. Grant No. G-643-117.6/1999. Received April 25, 2002

THEOREM 1: Let $\mathcal F$ be a family of meromorphic functions on a domain D in $\mathbb C$, *all of whose* zeros *and poles* are *multiple. Let h be a continuous function on D* such that $h(z) \neq 0$ for $z \in D$. Suppose that for each $f \in \mathcal{F}$, $f'(z) \neq h(z)$ for $z \in D$. Then $\mathcal F$ is a normal family on D .

For analytic h, this result was observed by Fang $[4, \text{Lemma 6}].$ As an immediate consequence, we have the

COROLLARY: Let $\mathcal F$ be a family of meromorphic functions on a domain D in $\mathbb C$. Suppose that for some fixed positive integer n, $f' f^n \neq 1$ on D for all $f \in \mathcal{F}$. *Then F is a normal family on D.*

Proof: Applying Theorem 1 to the family $\tilde{\mathcal{F}} = \{f^{n+1} : f \in \mathcal{F}\}\$ with $h(z) \equiv n+1$ shows that $\tilde{\mathcal{F}}$ is normal on D. But then $\mathcal F$ is as well.

For a discussion of the history of this last result, see [7, p. 226] and [6, pp. 18 19].

If h is allowed to vanish on D, Theorem 1 may fail, even for analytic functions h. *Example 1:* Let $D = \{z : |z| < 1\}$ and $\mathcal{F} = \{f_n\}$, where

$$
f_n(z) = \frac{(z - \frac{1}{n})^2 (z + \frac{1}{n})^2}{z^2} = z^2 - \frac{2}{n^2} + \frac{1}{n^4 z^2}.
$$

Clearly, F fails to be normal in any neighborhood of 0. However, all zeros and poles of f_n are multiple; and $f'_n(z) \neq 2z$ on \mathbb{C} .

However, requiring that all zeros of functions in $\mathcal F$ have multiplicity at least 3 leads to a positive result.

THEOREM 2: Let $\mathcal F$ be a family of functions meromorphic on a domain D in $\mathbb C$, *all of whose poles* are *multiple* and *whose* zeros *all have multiplicity at* least 3. Let h be a function holomorphic on D, $h \neq 0$. Suppose that for each $f \in \mathcal{F}$, $f'(z) \neq h(z)$ for $z \in D$. Then F is a normal family on D.

The hypothesis that all poles are multiple cannot be omitted, as is shown by the following example.

Example 2: Let $D = \{z : |z| < 1\}$ and $\mathcal{F} = \{f_n\}$, where

$$
f_n(z) = \frac{(z - \frac{1}{n})^3}{z - \frac{3}{n}} = z^2 + \frac{3}{n^2} + \frac{8}{n^3(z - 3/n)}
$$

Clearly, $\mathcal F$ fails to be normal in a neighborhood of 0. However, all zeros of functions in F have multiplicity 3; and $f'_n(z) \neq 2z$ on C.

The plan of the paper is as follows. In Section 2, we record some known results which will be used in the proofs of Theorems 1 and 2 and prove a simple lemma on rational functions needed for those proofs. In Section 3, we prove Theorem 1. We conclude with the proof of Theorem 2 in Section 4.

2. Auxiliary results

We require the following renormalization result, which has become a standard tool in the study of normal families.

LEMMA 1 ([5, Lemma 2] cf. [7, pp. 216-217]): Let $\mathcal F$ be a family of functions *meromorphic on the unit disc, all of whose zeros have multiplicity at least k,* and suppose that there exists $A \geq 1$ such that $|f^{(k)}(z)| \leq A$ whenever $f(z) = 0$. Then if F is not normal, there exist, for each $0 \le \alpha \le k$,

- (a) a number $0 < r < 1$;
- (b) points $z_n, |z_n| < r;$
- (c) functions $f_n \in \mathcal{F}$; and
- (d) *positive numbers* $\rho_n \rightarrow 0$

such that $\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the *spherical metric, where g is a nonconstant meromorphic function on* C, *all of whose zeros have multiplicity at least k, such that* $g^#(\zeta) \leq g^#(0) = kA + 1$. In *particular, g has order at most 2.*

Here, as usual, $g^{\#}(\zeta) = |g'(\zeta)|/(1+|g(\zeta)|^2)$ is the spherical derivative.

We also require some facts about the local degree of a continuous function. See [1, p. 385] for a clear statement of the relevant facts and [3, Chapter 1] for a detailed discussion and proofs.

LEMMA 2: Let M be the set of all triples (φ, U, w) , where U is a bounded open *subset of* C, $\varphi: \overline{U} \to \mathbb{C}$ is a continuous function, and $w \in \mathbb{C} \setminus \varphi(\partial U)$. There *exists a function d:* $M \rightarrow \mathbb{Z}$ *such that*

- (i) *if U* is a piecewise-smoothly bounded Jordan domain and φ is holomorphic on \overline{U} , then $d(\varphi, U, w)$ is the winding number of $\varphi(\partial U)$ about w (and hence, *by the argument principle, the number of times* φ takes on the value w in U);
- (ii) if $\psi: \overline{U} \to \mathbb{C}$ is a continuous function such that $|\psi(\zeta)-\varphi(\zeta)| < \text{dist}(w, \varphi(\partial U))$ *for each* $\zeta \in \overline{U}$, then $d(\psi, U, w) = d(\varphi, U, w)$; and
- (iii) *if* $d(\varphi, U, w) \neq 0$, then $\overline{U} \cap \varphi^{-1}(w) \neq \emptyset$.

We also need the following result from value distribution theory.

LEMMA 3 $([2, Theorem 1.1])$: Let g be a transcendental meromorphic function and let R be a rational function, $R \neq 0$. Suppose that all zeros and poles of g are multiple except for finitely many. Then $g' - R$ has infinitely many zeros.

Finally, we require some facts about rational fimctions.

LEMMA 4 ([6, Lemma 8]): *Let f be a nonpolynomial rational function such that* $f'(z) \neq 1$ for $z \in \mathbb{C}$. Then

$$
f(z) = z + c + \frac{a}{(z+b)^m},
$$

where $a \neq 0$, b, and c are constants and m is a positive integer. If the zeros of f are all multiple, then $m = 1$.

LEMMA 5: (i) *Let Q be a nonconstant rational function, all of whose zeros and poles are multiple. Then* $Q'(z) = 1$ *has a solution in C.*

(ii) *Let Q* be a *rational function, all of whose poles are multiple with the possible exception of* $z = 0$ and all of whose zeros have multiplicity at least 3. *Then for each positive integer k,* $Q'(z) = z^k$ has a solution in \mathbb{C} .

Proof: (i) If Q is a nonconstant polynomial such that $Q'(z) \neq 1$, $Q(z) = cz + d$, where $c \neq 0, 1$, and thus does not have multiple zeros. If Q is a nonpolynomial rational function all of whose zeros are multiple such that $Q'(z) \neq 1$, then by Lemma 4,

$$
Q(z) = z + c + \frac{a}{z + b},
$$

so that Q does not have multiple poles.

(ii) Fix k and suppose that $Q'(z) - z^k \neq 0$ for all $z \in \mathbb{C}$. If Q is a polynomial, then $Q'(z) = z^k + c$, with $c \neq 0$, so that

$$
Q(z) = \frac{1}{k+1} z^{k+1} + cz + d.
$$

Since all zeros of Q have multiplicity at least 3, we have $k \geq 2$ and $Q''(z) =$ $Q'(z) = 0$ whenever $Q(z) = 0$. But $Q''(z) = kz^{k-1}$ vanishes only for $z = 0$. Thus, we must have $Q(0) = 0$, so that also $c = Q'(0) = 0$, a contradiction. Thus Q cannot be a polynomial.

Let $f(z)=Q(z)- \frac{1}{k+1}z^{k+1}+z$. Then f is a nonpolynomial rational function such that $f'(z) \neq 1$. By Lemma 4,

$$
f(z) = z + c + \frac{a}{(z+b)^m}
$$

so that

(2.1)
$$
Q(z) = \frac{1}{k+1} z^{k+1} + c + \frac{a}{(z+b)^m},
$$

where $a \neq 0$, b, and c are complex numbers and m is a positive integer. Suppose that $Q(z_0) = 0$. Then since z_0 has multiplicity at least 3, we have

(2.2)
$$
Q'(z_0) = z_0^k - \frac{ma}{(z_0 + b)^{m+1}} = 0,
$$

(2.3)
$$
Q''(z_0) = kz_0^{k-1} + \frac{m(m+1)a}{(z_0+b)^{m+2}} = 0.
$$

It follows from (2.2) that $z_0 \neq 0$. Solving (2.2) and (2.3) for z_0 and using $ma \neq 0$, we obtain $z_0 = -kb/(m+k+1)$. Thus $b \neq 0$, and by (2.1),

(2.4)
$$
Q(z) = \frac{(z + \frac{kb}{m+k+1})^{m+k+1}}{(k+1)(z+b)^m}.
$$

Hence, again by (2.1) ,

$$
(2.5) \quad z^{k+1}(z+b)^m + c(k+1)(z+b)^m + a(k+1) = \left(z + \frac{kb}{m+k+1}\right)^{m+k+1}
$$

Equating coefficients of z^{m+k} in (2.5), we obtain $mb = kb$, so that $m = k$ since $b \neq 0$. Equating coefficients of z^{m+k-1} in (2.5) then shows that $k = 1$, so that $m = 1$. But this contradicts the assumption that all nonzero poles of Q are multiple. The lemma is proved.

3. Proof of Theorem 1

Since normality is a local property, we may assume that $D = \Delta$, the unit disc. Suppose that $\mathcal F$ is not normal on Δ . Then by Lemma 1, there exist $f_n \in \mathcal F$, $z_n \in \Delta$, and $\rho_n \to 0+$ such that $g_n(\zeta) = f_n(z_n + \rho_n\zeta)/\rho_n$ converges locally uniformly with respect to the spherical metric to a noneonstant meromorphic function g, all of whose zeros and poles are multiple. Taking a subsequence and renumbering, we may assume that $z_n \to z_0 \in \Delta$.

We claim $g'(\zeta) \neq h(z_0)$.

Clearly, $g' \not\equiv h(z_0)$, since then g would be linear and hence could not have multiple zeros. Suppose $g'(\zeta_0) = h(z_0)$. Then $\varphi = g' - h(z_0)$ is a nonconstant analytic function on a neighborhood V of ζ_0 , which vanishes at ζ_0 . Let $\Delta_{\varepsilon} = \{w : |w| < \varepsilon\}$. For $\varepsilon > 0$ sufficiently small, the component U of $\varphi^{-1}(\Delta_{\varepsilon})$ containing ζ_0 is relatively compact in V and satisfies $\varphi(\partial U) = \{w : |w| = \varepsilon\}$ and

 $d(\varphi, U, 0) > 0$, where d is the local degree. Set $\varphi_n(\zeta) = g'_n(\zeta) - h(z_n + \rho_n\zeta);$ then $\varphi_n \to \varphi$ locally uniformly on V. Thus, for *n* sufficiently large, we have $|\varphi_n(\zeta) - \varphi(\zeta)| < \varepsilon$ on \overline{U} . By (ii) of Lemma 2, $d(\varphi_n, U, 0) = d(\varphi, U, 0) > 0$, so that by (iii) of the same result, there exists $\zeta_1 \in \overline{U}$ such that $\varphi_n(\zeta_1) = 0$. But this contradicts $f'_n(z) \neq h(z)$ on Δ . The claim is proved.

Since $g'(\zeta) \neq h(z_0)$, it follows from Lemma 3 that g must be a rational function. But then by Lemma 5(i), g' must take on the nonzero value $h(z_0)$, a contradiction.

4. Proof of Theorem 2

By Theorem 1, it suffices to prove that $\mathcal F$ is normal at points for which $h(z) = 0$. So let us assume, making standard normalizations, that $\mathcal F$ satisfies the conditions of Theorem 2 and that

$$
h(z) = zk + ak+1zk+1 + \cdots = zkb(z), \quad z \in \Delta,
$$

where $k \ge 1$, $b(0) = 1$, and $h(z) \ne 0$ for $0 < |z| < 1$. Consider on Δ the family $\mathcal{F}_1 = \{F = f/h : f \in \mathcal{F}\}\$. If $f \in \mathcal{F}$, $f'(0) \neq h(0) = 0$; hence, since all zeros of f are multiple, $f(0) \neq 0$. Thus, for any $F \in \mathcal{F}_1$, $F(0) = f(0)/h(0) = \infty$. We shall prove that \mathcal{F}_1 is normal on Δ .

Suppose not. Then by Lemma 1 (with $\alpha = k = A = 1$), there exist $F_n \in \mathcal{F}_1$, $z_n \in \Delta$ ($|z_n| \leq r < 1$), and $\rho_n \to 0^+$ such that

$$
\frac{F_n(z_n+\rho_n\zeta)}{\rho_n}=g_n(\zeta)\to g(\zeta)
$$

spherically uniformly on compact subsets of \mathbb{C} , where g is a nonconstant meromorphic function on the plane, all of whose zeros are multiple, such that $g^{\#}(\zeta) \leq g^{\#}(0) = 2.$

We consider two cases.

(a) Suppose $z_n/\rho_n \to \infty$. Then since $g_n(-z_n/\rho_n) = F_n(0)/\rho_n$, the pole of g_n corresponding to that of F_n at 0 drifts off to infinity, and g has only multiple poles. We have

$$
F'_n(z) = \frac{f'_n(z)h(z) - f_n(z)h'(z)}{h(z)^2} = \frac{f'_n(z)}{h(z)} - \frac{h'(z)}{h(z)}F_n(z).
$$

Thus

$$
g'_{n}(\zeta) = F'_{n}(z_{n} + \rho_{n}\zeta) = \frac{f'_{n}(z_{n} + \rho_{n}\zeta)}{h(z_{n} + \rho_{n}\zeta)} - \frac{h'(z_{n} + \rho_{n}\zeta)}{h(z_{n} + \rho_{n}\zeta)}F_{n}(z_{n} + \rho_{n}\zeta)
$$

= $\frac{f'_{n}(z_{n} + \rho_{n}\zeta)}{h(z_{n} + \rho_{n}\zeta)} - \left(\frac{k}{z_{n} + \rho_{n}\zeta} + \frac{b'(z_{n} + \rho_{n}\zeta)}{b(z_{n} + \rho_{n}\zeta)}\right)F_{n}(z_{n} + \rho_{n}\zeta)$
= $\frac{f'_{n}(z_{n} + \rho_{n}\zeta)}{h(z_{n} + \rho_{n}\zeta)} - \left(\frac{k}{z_{n}/\rho_{n} + \zeta} + \rho_{n}\frac{b'(z_{n} + \rho_{n}\zeta)}{b(z_{n} + \rho_{n}\zeta)}\right)\frac{F_{n}(z_{n} + \rho_{n}\zeta)}{\rho_{n}}.$

Clearly,

$$
\lim_{n \to \infty} \frac{k}{z_n/\rho_n + \zeta} = 0 \quad \text{and} \quad \lim_{n \to \infty} \rho_n \frac{b'(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} = 0
$$

uniformly on compact sets of $\mathbb C$. Thus, on compact subsets of $\mathbb C$ disjoint from the poles of g ,

$$
\frac{f'_n(z_n+\rho_n\zeta)}{h(z_n+\rho_n\zeta)}=g'_n(\zeta)+\Big(\frac{k}{z_n/\rho_n+\zeta}+\rho_n\frac{b'(z_n+\rho_n\zeta)}{b(z_n+\rho_n\zeta)}\Big)g_n(\zeta)
$$

converges uniformly to $g'(\zeta)$. Since $f'_n(z)/h(z) \neq 1$, by Hurwitz' Theorem either $g' \equiv 1$ or $g'(\zeta) \neq 1$ for all $\zeta \in \mathbb{C}$. The first alternative contradicts $g^{\#}(0) = 2$. But if $g' \neq 1$, then by Lemma 3, g is rational; and we obtain a contradiction to Lemma 5(i).

(b) So we may assume that $z_n/\rho_n \to \alpha$, a finite complex number. We have

$$
\frac{F_n(\rho_n\zeta)}{\rho_n}=\frac{F_n(z_n+\rho_n(\zeta-z_n/\rho_n))}{\rho_n}\to g(\zeta-\alpha)=\tilde{g}(\zeta),
$$

the convergence being spherically uniform on compact sets of $\mathbb C$ and hence uniform on compacta disjoint from the poles of \tilde{g} . Clearly, all zeros of \tilde{q} have order at least 3 and all poles are multiple except possibly the pole at 0, which has order at least k .

Now

$$
\lim_{n \to \infty} \frac{h(\rho_n \zeta)}{\rho_n^k} = \zeta^k
$$

uniformly on compact subsets of C. Thus, writing

$$
G_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^{k+1}} = \frac{h(\rho_n \zeta)}{\rho_n^k} \frac{f_n(\rho_n \zeta)}{\rho_n h(\rho_n \zeta)} = \frac{h(\rho_n \zeta)}{\rho_n^k} \frac{F_n(\rho_n \zeta)}{\rho_n},
$$

we have

$$
G_n(\zeta) \to \zeta^k \tilde{g}(\zeta) = G(\zeta)
$$

uniformly on compact subsets of $\mathbb C$ disjoint from the poles of \tilde{g} . Note that since \tilde{g} has a pole of order at least k at 0, $G(0) \neq 0$.

We claim that $G'(\zeta) \neq \zeta^k$. Indeed, suppose that $G'(\zeta_0) = \zeta_0^k$. Then G is holomorphic at ζ_0 and

$$
G'_n(\zeta)-\frac{h(\rho_n\zeta)}{\rho_n^k}=\frac{f'_n(\rho_n\zeta)-h(\rho_n\zeta)}{\rho_n^k}\neq 0.
$$

Thus, if $\zeta_0 \neq 0$, we have $G'(\zeta) \equiv \zeta^k$ by Hurwitz' Theorem and hence $G(\zeta) =$ $\zeta^{k+1}/(k+1) + C$. Since all zeros of G are multiple, $C = 0$. But then $\tilde{g}(\zeta) =$ $\zeta/(k+1)$, which contradicts the fact that \tilde{g} has a pole at 0.

The same argument applies if $\zeta_0 = 0$. Indeed, in that case, G is analytic at 0, so \tilde{g} has a pole of exact order k at 0. Since for each n, the pole of $F_n(\rho_n\zeta)$ at 0 has order k, it follows that there exists $\delta > 0$ such that $F_n(\rho_n \zeta)$ has no poles in $\Delta'_{\delta} = \{z : 0 < |z| < \delta\}$. Thus G_n is holomorphic on $\Delta_{\delta} = \{z : |z| < \delta\}$, so $G_n \to G$ uniformly on a neighborhood of 0 as well. We may then apply Hurwitz' Theorem as above.

Thus $G'(\zeta) \neq \zeta^k$. It follows from Lemma 3 that G must be a rational function. However, then Lemma 5(ii) shows that $G'(\zeta) = \zeta^k$ has a solution in C. The contradiction establishes that \mathcal{F}_1 is normal on Δ .

It remains to show that this implies that $\mathcal F$ is normal on Δ . Since $\mathcal F_1$ is normal on Δ (and hence, as a collection of maps from Δ to $\hat{\mathbb{C}}$, equicontinuous on compacta) and $F(0) = \infty$ for each $F \in \mathcal{F}_1$, there exists $\delta > 0$ such that if $F \in \mathcal{F}_1$, then $|F(z)| \geq 1$ for $z \in \Delta_{\delta}$. Hence $f(z) \neq 0$ for $z \in \Delta_{\delta}$ for all $f \in \mathcal{F}$. Now since $h(z) \neq 0$ for $z \in \Delta'_1$, \mathcal{F} is normal on Δ'_1 by Theorem 1. Suppose that F is not normal on Δ_{δ} . Then there exists a sequence $\{f_n\} \subset \mathcal{F}$ which converges spherically uniformly on compact subsets of Δ'_{δ} , but none of whose subsequences converges spherically uniformly on a neighborhood of 0. By the invariance of the spherical metric, the same holds for the sequence $\{1/f_n\}$, whose members are all holomorphic on Δ_{δ} . It follows (by the maximum modulus principle) that $\{1/f_n\}$ diverges uniformly to infinity on compact subsets of Δ'_δ . Thus $\{f_n\}$ converges uniformly to 0 on compact subsets of Δ'_{δ} and hence so does ${F_n}$, where $F_n = f_n/h$. But $|F_n(z)| \ge 1$ for $z \in \Delta_\delta$, since $F_n \in \mathcal{F}_1$. The contradiction shows that F is normal on Δ_{δ} and hence on $\Delta = \Delta_{\delta} \cup \Delta'_{1}$. This completes the proof of Theorem 2.

Remark: In the proofs of Theorem 1 and case (a) of Theorem 2, we could have invoked Theorem 1 (or Lemma 9) of [6] in place of the combination of Lemma 3 and Lemma 5(i) above.

With only the slightest modifications, the proof of Theorem 2 also yields the following result.

THEOREM 3: Let $\mathcal F$ be a family of functions meromorphic on domain D in $\mathbb C$, all *of whose* zeros *all have multiplicity at least 4. Let h be a function holomorphic on D, h* \neq 0. Suppose that for each $f \in \mathcal{F}$, $f'(z) \neq h(z)$ for $z \in D$. Then $\mathcal F$ is a *normal family on D.*

Details are left to the reader.

References

- [1] D. Bargmann, M. Bonk, A. Hinkkanen and G. J. Martin, *Families* of mero*morphic functions avoiding continuous functions, Journal d'Analyse Mathématique* 79 (1999), 379 387.
- [2] W. Bergweiler and X. C. Pang, *On the derivative of meromorphic functions with multiple zeros,* Journal of Mathematical Analysis and Applications, to appear.
- [3] K. Deimling, *Nonlinear Functional Analysis,* Springer-Verlag, Berlin, 1985.
- [4] M. L. Fang, *A note on a problem of Hayman*, *Analysis* **20** (2000), 45-49.
- [5] X. C. Pang and L. Zalcman, *Normal families and shared values,* The Bulletin of the London Mathematical Society 32 (2000), 325 331.
- [6] Y. F. Wang and M. L. Fang, *Picard values and normal families of meromorphic functions with multiple zeros,* Acta Mathematica Sinica. New Series 14 (1998), 17 26.
- [7] L. Zalcman, *Normal families: new perspectives,* Bulletin of the American Mathematical Society 35 (1998), 215 230.