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THE EIGENVALUES OF 
NON-SINGULAR TRANSFORMATIONS 

BY 

J O N  A A R O N S O N  

ABSTRACT 

The elgenvalues of a non-singular conservative ergodlc transformation of a 
separable measure space form a Borel subgroup of the circle of measure zero. 
We show that this is the only metric restriction on their size. However, the 
larger the eigenvalue group of the transformation, the "less recurrent" it is. 

w Non-singular transformations 

Let  (X, ~ ,  m )  be a separab le  probabi l i ty  space and T : X ~ X a non-singular ,  

conserva t ive  ergodic  t rans format ion .  

A measurab le  funct ion f:X--->C is called an eigenfunction if there  is a 

complex  n u m b e r  A E C (eigenvalue) such that  f(Tx)= Af(x)  for  m-a .e ,  x E X. 

The  conservat iv i ty  of T implies that  all e igenfunct ions  have  constant  modulus ,  

and hence  that  all e igenvalues  are un imodular .  The  ergodici ty of T implies that  

e igenfunct ions  are unique up to cons tant  mult ipl icat ion.  

We  consider  the collect ion of e igenvalues  of T, which we deno te  by: 

e(T) = {s E [0, 1): ::lfs : X---~ T measu rab le  such that  f, (Tx) = e2='sfs ( x )  a.e.}. 

(Here ,  T = {A E C: [A I =  1}.) Clearly,  e(T) is a g roup  under  addi t ion m o d  1. 

If T has a finite invar iant  measu re  P - m, then  the e igenfunct ions  {f~}~e(~) 
fo rm an o r t h o n o r m a l  sys tem in L:(P) which is separable ,  so e(T) is countable. (If 

T is a l lowed to be a finite measu re  preserving t r ans fo rma t ion  of a non-sepa rab le  

measu re  space,  then  e(T) can be any subgroup  of [0, 1).) 

It  is known that,  in genera l  (when X is separable) ,  e(T) is a Bore l  subset  of 

[0, 1) and there  is a joint ly measu rab le  funct ion (Lebesgue  • Borel)  f : X  x 
e ( T ) - - ~ T  so that  
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f (Tx,  s) = e~-"~[(x, s) for every s, x E Xs 

where m (X \ X,) = 0. 

One way to prove this result is by considering the operator Pg = gg o T on 

unimodular measurable functions g. This operator is actually well defined on 

equivalence classes of constant (unimodular) multiples of such functions. On 

such objects, it is one-to-one by the ergodicity of T, and continuous with respect 

to convergence in measure of these classes. The collection of these classes g for 

which Pg is constant is closed and hence a complete separable metric space. The 

constants obtained are clearly eigenvalues of T. Thus e(T),  being the continu- 

ous, one-to-one image of a complete separable metric space, is a Borel set. The 

required function f is obtained by choosing a version of a suitable lifting of P- '  

to the unimodular functions. 

It now follows from the conservativity of T that e (T) is a weak Dirichlet set, 
that is, whenever p is a probability measure charging e(T)  (p (e (T) )= 1): 

liT._~m ~ I1 - e 2 .... 12dp(s) = 0 

(see [41, [9]). In particular, e(T)  has Lebesgue measure zero. Our first example 

shows that this is the only metric limitation on the size of e(T): for every gauge 
function 0 : [ 0 ,11~[0 ,~ ]  satisfying p(t) l ,O,  p(t) / t  t ~ as t 1,0, there is a 
conservative ergodic transformation T of a separable measure space, with a 
cr-finite invariant measure, so that the P-Hausdorff measure of e ( T) is positive. 

However, transformations with large eigenvalue groups are forced to be "less 

recurrent". The term "less recurrent" refers to a concept introduced by Krengel 

([81). 
Let T : X - - - ~ X  be a conservative ergodic transformation of (X, 9~, m). Let 

~" : L '(X, m )---~ L I(X, m)  be defined by 

f ---~ dm r = f fdm ~ dm r �9 T-1/dm 

Then fx'[ ' fgdm = f x f g "  Tdm, and the Chacon-Ornstein theorem states that: 

Trf(x) /~=o fdm gdm a.e. 
r=o 

for f, g E L  1, f gdm~O. 
Using this, one can show ([8]) that if u, ~ 0 as n ~ ~ then : 

either n~ ,~uJ ' " [ (x )=~  a.e. for every f => 0, fx f d m > O ,  
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or ,=1 ~ u.J'"fCx)<oo a.e. for every f>=0, fx fdm <oo. 

In the former case, T is called u,-conservative, and in the latter case, T is called 

u, -dissipative. 
In case T has a tr-finite invariant measure / z -  m, then u,-conservativity 

corresponds to: 

~ u . f "  T" =oo a.e. 

and u.-dissipativity corresponds to: 

~ u . f ' T " < w  a.e. 
n = l  

It is known that T has a finite 

whenever Y~=I u. = ~. 

It turns out that: 

for every f >= O, fx fd~ > O, 

f 
for every f _-> 0, J~ fdu < oo. 

invariant measure iff T is u,-conservative 

THEOREM 1. If the Hausdorff dimension of e ( T) is larger than a E (0, 1), then 
T is 1/n 1-a_dissipative. 

Our second example shows that this proposition is sharp in the sense that: 

For every a E (0, 1) there is an ergodic, l/n ~-~-conservative transformation of a 
separable measure space with a o--finite invariant measure whose eigenvalues have 
Hausdorff dimension a. 

In w we prove Theorem 1, and Theorem 2 - -  a related result. In w we recall 

the definition of, and some facts about, dyadic towers over the adding machine. 

w is a lemma on Hausdorff measures (probably well known, but the author 

knows no reference). Examples are constructed in w 

w Proof of Theorem I 

Under  the assumption that the Hausdortt  dimension of e(T) is greater than 

a + e, we have, by a theorem of Frostman (see [3], [6]), that there is a probability 

measure p on [0, 1) satisfying p(e(T)) = 1, and p((a, b)) <= M(b - a) ~+'. This 

implies that: 
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1 
�9 , ( t )  = I(sin ~'t)l ~ " 

Now (I). is convex on (0, 1) and so ([6]) ~ (n) > 0 ( ~  (n) = f~ e 2=., r (s)ds) and 

this means that ([6]): 

Y~ [~(n)12+o ( . )  = I. < 
n ~ Z  

It can be shown ([6]) that 

and so, recapitulating, we have 

p(e(T)) = 1 

Next, we set 

+ o ( n ) - - -  

(.,=Io 

and 

const 
/7, 1-a 

and ~ I~(n)12/n '-" <oo.  
n = l  

G = {g : [0, 1] ~ T measurable} 

dp(g, h ) = { fol t g(s ) - h(s )lZ dp(s ) } '/2. 

Then (G, de) is a complete separable metric space, and a topological group under 

pointwise multiplication. 

The above-mentioned function 

f :X•  f(Tx, s)=e2~"f(x,s) 

yields a function II : X - o  G satisfying H(Tx) = goH(x). (Here, go(s) = e 2''~ and 

rl(x )(s ) = f (x, s ).) 
Let A ( g , e ) = { x E X : d , ( H ( x ) , g ) < e } .  Choose h E G  so that 

m (A (h, 1/2)) > 0. Suppose that x E G, n => 1 and T"x E A (h, 1/2). Then 

SO 

4 (h, II(x)) < �89 d(h, II(T"x))<�89 

de (1, g~) = d(II(x), g~H(x)) = d e (H(x), H(T"x)) < 1. 
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Now d, (1, g?0 = 2(1 - Re/~ (n)) < 1 entails It3 (n)t --> Re/~ (n) -> 1/2. 
this, we have that 

1A (h.,m(X )IA~h.m)(T"x ) <= 1,/Z,,l(t/~ (n)[ ). 

1 - - a  Dividing by n , summing over n and integrating over X we get: 

2 h ~ 1 < ~ (1/nl-,,)lo/2,11(l/~(n)[) ,=~ m(A(h,�89 T -"A( ,~ ) )  nl_o =.=a 

N4 ~ [~(n)t2/n ~-~ <~.  
n = l  

In other words, 

Rewriting 

~ ( 1 / n ' - = ) T " I a ~ h . : m < ~  a.e. on A(h , t /2 )  

and T is l /n t-~_dissipative. [] 

More generally suppose that ~ :  (0,1)---~[0,~) is convex, and integrable on 

(0, 1), qb(t) 1' o~ as t $ 0. As remarked before, (~(n) => 0. 

Let E C [0, 1] be a Borel set. One says ([6]) that the ~-capacity of E is positive 
(~ - cap E > 0) if there is a probability measure p on [0, 1] with p(E)  = 1 and 

f0 i01 r +(n)[/~(n)l~ < ~. 
n = l  

Any such measure p satisfies p((a, b)) < M/d~(lb - a  [) and so the existence of 

such a measure ensures that the 1/~-Hausdorff measure of E is positive. The 

latter part of the proof of Theorem 1 can be used to prove: 

TX-mOREM 2. Suppose that r is such a function and c, ~ +(n ), c. ~ 0 as n ~ ~. 
If  ~ -  cap e(T) > 0 then T is c,-transient. 

This theorem has content when there is such a c,, with X c, = ~, for example 
~ = ~ .  

We conclude this section with some more examples of functions �9 for which 

Theorem 2 has content. 

Suppose that ~ ( x ) = r  ~ ( x ) ~ ' ~  as x ~0. If t3~"( t )$as  t Sthen 

dO(n)-C.  ,LO as n l'oo. 

If 

r - L (x) (x o) 
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where L (x) is slowly varying ([2]) as x ~ 0 and 2 =< 3' < 3, then it can be shown 

using the theory of slowly varying functions that 

~ ( n ) ~ c o n s t  ~3 ~" ( 1 ) =  const n--~-l-~ L ( 1 )  

which decreases in n. 

Note that ~ " ( t ) ~  a ( a  + 1)/C § as t ,L 0, and hence r If 

�9 ,o~(t) = log, (1/I sin r I), 

then 
q~7og(t) ~ const const 

t ~ , ~,o~(n)~ as n--->~. n 

w Dyadic towers over the adding machine 

All of the examples to be constructed are dyadic towers over the adding 
machine. 

Let l~ = {0, 1} N, and ~ be the tr-field generated by cylinders. Suppose x E f L  

Then x = (el(x), e2(x),... ). Define l(x) = min{n = 1 : e, (x) = 0}. Then, x = 
( 1 " "  1,0, e,~)§ ). Define 

~'(x) = ( 0 " "  0, 1, e,x)§ ). 

It is easy to see that for every x E f~, n => 1 

{(~10-~x), e ~ ( ~ x ) ,  . .  ., e ,  ( ~ x ) ) :  0 _- k _--- 2" - ~} = {0,1} ~ 

and hence that z preserves the measure P = 1 ~ N (~,~) and is ergodic (one proves 
constant limit in the ergodic theorem for functions depending on finitely many 
coordinates e.). 

Recall from [1] that the dyadic height [unction with heights {3,(n)} ( y ( n ) E  
N,n  =>1) is 

q~(x) = T(/(x)), 

and that the dyadic tower over the dyadic adding machine (X, ~ ,  tz, T) with 

height function ~ is defined by 

X={fx,  n):(pfx) > >I} ~n 

= v (~n[,p>nl, n), 
n=l 

m --'-- ~ PIf~tn[~,,],,,), 
n=l 
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= / ( x ' n + l )  i fq~(x)=>n+l ,  
T(x,n)  

(rx, 1) if r  = n. 

Then ([7]), (X, ~, m, T) is a conservative measure preserving transformation, 

and ([51) 

m ( X ) =  q~dP = .=, 2" 

Set/3(0) = y(l)  and [3(n) = E7,=, 2" ~3,(k) + y(n + 1) (called a growth sequence 

in [1]). Then 
n - 2  

~/(n) =/3(n - 1 ) -  if'. /3(k) for n >=2. 
k = O  

It will be convenient to determine the dyadic tower over the adding machine, 
n-- I  T, by determining the sequence {/3(n)}~=o C_ N with/3 ( n ) >  Ek=O/3 (k). We then 

call T the dyadic tower with growth sequence {/3(n)}. This is because ([1]): 

2 n - 1  
A , . /k r = ~ q~o >_-fl(n-1) and P(~2.=fl(n))>-_�89 

k = O  

Let c(n)  =sup{k ~ 1 : /3 (k)_  -< n}. It was shown in [ll that T is rationally 
ergodic with asymptotic type equivalent to 2 ~).  From "this follows a property 

which we shall need: 

there is an A E N ,  m ( A ) > 0  such that for every B ~ ,  B C A ,  m ( B ) > 0 :  

n - I  

~'. m(B f'l T-kA )~2 c("'. 
k = O  

PROPOSITION 3. Let u. ~ 0 as n '~ ~, and {/3(n)} be a growth sequence. The 
dyadic tower over the adding machine is u.-conservative iff E.=~ (u. - u.+~)2 ~"~ = 
O 0  

PROOF. Let A be as in the above property: 

2u.  laoT"=~".(u.-u.§176 k 
n = l  n = l  k ~ l  

since u. => Un+ 1. 

If T is u,-conservative, then 

and 
0 0 ~  

• U~IA o T n = ~  

n = l  
a.e. 

~A ~ u. 1A~ T"dm = 2 ( u . -  u.§ ~ m ( A  N T-kA)  
n = l  n = [  k = l  
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which implies that 

(u. - u.+,)T ~") = 
n = l  

since 2 m(A C'l T - k A ) ~ T  ("~. 
k = l  

If T is u,-6issipative then Z~ =1 u, la ~ T" < o~ a.e., an6 there is a set B C A, 

B E N ,  m ( B ) > 0  such that 

oo> fB ,~1= U"lA~ = .=12 (U.- U,,+I) k=12 m(B CI T-~A) 

which implies that 

(u. - u.+1)2 ~("~ < m since ~ m(B f'l T-~A).> 2 ~"~. [ ]  
n = l  k =1 

PROPOSITION 4. Let T be the dyadic tower over the adding machine with 

growth sequence/3(n): 
(a) If s E[0,1]  and E:~lll-e:"~"~'l<~ then s Ee(T) .  
(b) If  s E e(T) then e 2"nm")" �9 1. 

PROOF. (a) is proved in [4] (see also [I]). To  see (b) note that s E e(T) itt 

there is a measurable function /:f~---~T with f o r  = e~"*[, whence / o r  ~ =  

e2"'*~"f for n => 1. It is easy to see that g o ~.2. ~ g in measure for any g : 1)--* C 
n ~  

measurable (since ek (z~"x) , ~  ek (x)). Hence e ~"~*~ ~ 1 in measure, and, since 

P(~o2- = /3(n) )  > !  e a"~~ =2, ~1. [] 

The examples T we construct will have growth sequences o~ the form 

/3 (n) = 2 ~("), 6 (n)  </~(n + 1) where {6(n)}:=1 = K C_ N, 

K =  U [nk, nk +mk]f'lN (nk+l>nk +mk +k),  
k = l  

and we will write T = TK, /3(n)=/3K(n)  etc. 

We have cK(n)=KO[1,[log2n]] and hence a , ( T K ) ~ T  ~"~. Given a set 

L _C N, set 

A ( L ) =  s =  - - : e , = O ,  l a n d e . = O f o r n ~ L  . 
= n 

We shall need to know when Hausdortt  measures of A(L) are positive, since, if 

K =  I,.J [nk ,nk+mk] f ' lN  and K , =  [,.J [nk, n k + m k + k ]  
k ~ ]  k = l  
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where nk+~ > nk +mk + k, then: 

A(K,) C_ e(T, O. 

This is because, for s ~ A(K,): 

and so: 

1 
((. s)) = 2,.~+k-, O<=j<mk 

m k 

n = l  k = t  I = 0  

= 47r ~ ok+,, _~ _--< 47r 
= ] = 0  -r 

whence (Proposition 4 part (a)): s ~ e(TK). 

w A iemma on Hausdorff measure 

LEMMA 5. Suppose that K C N  and p :[0,1]--*[0,~], p( t )~O as t ~O and 

p(2 t )=  Mp(t)  for t >0 .  

Then, if AK, = lim.~| IKnW-ll, 

m K p  ~ - ~  = Hp (A(K)) =< A~,,. 

In particular, the Hausdorff dimension of A(K) is 1 - ITmm,~ (1/ n ) [ K O [1, n ] [. 

PROOF. For n =>1, a~ =(co, , . . . ,oJ , )E{0,1}",  let 

o'(oJ)= s =  = ~- r ,ek=0,1ande ,=%for l - - - -< j - - - -<n  

[ ~,~ok ~,  o)k, 1 ]  

(sets of this form are called dyadic intervals) and let 

IL  = {cr(~) : to E {0, 1} ", o'(a~) n A(K) / ~}. 

From the definition of A(K), we see that 

II,  = { ~ ( ~ ) : ~  E{0,1} ~, o~k = 0 f o r  k E K ,  1_- < k _-< n}, 

and hence that [II. [= 2 "-tKnt''"ll. Thus 

Ho(A(K)) <-- lirn p ( 1 )  2"-IK'~w"l' = a~:,o 
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Suppose Hp (A(K)) = H < ~. Let  e > 0, then for every n ~ 1 there are open 

intervals I1, I 2 , " ' , h , ' "  such that A ( K ) c _ O k h ,  E~=,O(II,,I)<H+e and 

I 1/2"+1, where I l l  denotes the length of L 

Now A(K) is clearly compact and so 3 N  such that 

N 

A(K) C_ U I~. 
k=l 

For any interval I C [0, 1) there exist dyadic intervals o-~, o-2 so that I C_ m U or~ 

and 1II < [O-ll = ]or2]_-< 2111. 

From this we deduce that there is a finite collection II of dyadic intervals so 

that A(K) C_ U . ~ n  or, [ tr [ _-< 1/2" and Z ~ n  p (1 or 1) < 2M(H + e). 
Now, if or and or' are dyadic intervals and ]tr'l_-<[or[ then 

either or'_Cor or o r ' f q o r = ~ .  

Thus, II can be chosen to be disjoint. 

Next we set 

1 
A(or) = log2 ~-~ ( ~  (Oe(O)l, "" ", (.On)) ~--" n ) .  

Let min{A (o') : o" EI I}  = qn ---- n and max{A (o-) : or E H} = qn + rn (r _-> 0). If r = 0 

then A (or) = q Vor E I I  and 

II = IIq -- {or(oJ) : oJ E {0, 1} q, ~ok = 0 Vk E K}. 

So 

In general, rn => 1 and we next show that there is a q'=> q so that 

p(l l) p(l l). o.Enq, 

This is done in stages by showing that there is a collection of disjoint dyadic 

intervals II' so that 

A(K) C U or, qn'=>qn and rrp--<rn-1. 
~rEIl' 

Writing oJ(or)=co where o '=or(oJ) ,  and h(cr)=A(~o(or))  write W =  

{m(cr) : o" E II}. For every oJ E W, oJ = (o91, o)2,. �9 oJq, oJq+l, . . . ,  oJq+,) where 

0 =  v =<rn. Write co =(0,11) where O = 0 ( o J ) = ( ~ , . . . ; o J q )  and 
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n = n ( ~ o )  = [ (~oq+l, �9 � 9  o),+v) 
if 

[ if u=O.  

(We are introducing the conventions (o ,  0 ) =  o ,  A ( ~ ) =  0 and {0, 1} ~ = {0}.) 

Clearly 

{O(o,) : o, ~II} =IL. 

For 0 E IIq set P, = {lq(~o): 0 ( o J ) =  0}. Since II is a disjoint collection, either 

0 ~ II and Po = ~ or )t (~)  > 0 for every 11 C Po, 

Now, 

u = U  
OEHq 

Moreover, for every 0 E l-Iq, 

{o-(O, n):  n e eo}. 

U o-_Z U 
c, EFl o'El'Ir +, 

o(~o(~))=o e(,, ,(=))=e 

In other words, for every 0 G I I q  

0". 

U ~r(~)_D{e E{0,1}":  ek = 0  whenever q + k  GK}.  
~EPe 

This shows that for every 01E IIr 

We have that 

U U o'(0, n)_~ U o-DA(K). 
O~Hq "qEPoI o'EI'Iq +r 

Choose 00 G IIq so that q+A('l'l) ~eeooP(1/2 ) is minimal. Set 

II' = {(0, n ) :  O G IIq, n E P ~ .  

Then from the above: 

A(K) C U (r and ~_fi, p ( [ o - I ) = e ~ , ~ ~  P ( ~ )  =<~-fip(l(rl) 
o'Ell' 0 

by the choice of 0o. If Poo = {~} (~r(Oo) E II) then II' = IIq and rn, = O. If not, then 

qn' => qn + 1, but qrt, + rtv - qn + rn yielding r•, <_- rri - 1. 
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A m a x i m u m  of rn such stages will show that  there  is a q ' ~  n with 

p (~q,) 2q'-'rntl'q'" <= 2 M ( g  + e ). 

But for  every  e > 0 and n _-> 1 there  is such a q' ~ n and so A~,o <= 2MH. 
We have  shown that  AK, o < oo iff H < ~ and in this case A~:.o/2M <- H <= AK, o. 
For  p,  ( t)  = t ~, we have  that  Ho, (A(K))  > 0 iff AK, o. > 0 iff 

lim((1 - a)n - ] K  f-I [1 ,n ] l )  > - ~ ,  

whence  the Hausdor f f  d imens ion  of A ( K )  is 

sup{a : Hoo(A(K))> 0} = sup{a : lira. ((1 - a)n - ] K  fq [1,n]l)> -o~} 

_ _ 1  
= 1 - 1 i r a -  I g  n [1, n]] .  

n ~  n 

[] 

We are  now in a posi t ion to present  

w Examples 

EXAMPLE 1. G iven  p(t)$ O, p(t)/t '~ oo there  is a tower  over  the adding 

machine ,  T, so that  

0 < Ho (e (T)) 

(this example  is interest ing when  p(t) is small,  and p(t)/t ~ oo slowly). 

T o  const ruct  such an example ,  we find nk, m k =  1, nk+l > nk + m k  + k and set 

K =  (.J [n~,nk +mk]MN, K1 = U [nk, nk +mk + k ] M N  
k = l  k = l  

and T = TK. We will have that  A(K~) C e(TK) and so it will suffice to choose  nk, 

m~ so that  Ho (A(K1))> 0, or, equivalent ly  ( L e m m a  5): 

.-~lim 0 ( 1 )  2"-IKlnD'nll > 0. 

To get this, we will have  

[gLn[1, nlI~n-n(n) 

where  R(n)  = logl/p(1/2"). 

for  every  n > 1 
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Since p(t ) / t  ~ as t ~ ,  n - R ( n )  ~ as n ~', so this la t ter  condi t ion is equivalent  

to 

k + k ( k  + 1) _ 
m, - IK ,  N [1, nk + m k  + k l l - -  < n~ +ink + k  - R ( n k  +ink + k )  

i=1 2 

or  
k--1 

~, m , < - - n k - R ( n k + m k + k )  - k ( k - 1 )  for  every  k. 
i=1 2 

T o  construct  sequences  nk, ink, nk+l > nk + mk + k satisfying this choose  ml,  

nl arbitrari ly.  Since n - R ( n )  increases,  there  is an n2 _-> nl + ml + 1 so that  

ml N n z -  R ( n 2 ) -  3. 

Now R ( n ) ~  and n - R ( n ) ~  as n ] '  so O N R ( n + l ) - R ( n ) < - _ l .  H e n c e  

R (n2 + 3 ) -  R (ns) N 3, and set t ing m2 = 1, we have  

m~<= n 2 - R ( n s +  ms+ 1 ) + ( R ( n s +  ms+ 1 ) - R ( n ~ ) ) - 3  

--< n2 - R (n2 + m2 + 1) - 1. 

Next ,  suppose  n l . . . n k - ~ ,  m l " " m k - 1  have  been  constructed.  Choose  nk > 

nk-1 + mk-i + k so that  

k--I 
~'~ ml < nk - R ( n k ) - 2 k -  k ( k  - 1) 
1~1 2 

As be fo re  R(nk  + 2 k ) - R ( n k ) N 2 k  so sett ing m k =  k, we obta in  that  

k I 

mj <= nk - R (nk + mk + k)  + (R (nk + mk + k)  - R (nk)) - 2k  - k (k - 1) 
I=1 2 

<- nk - R ( nk +ink + k ) - k ~ 
- 2 

The  set  K = U~=l  [nk, nk + mk] having the requi red  p roper t i es  is thus con- 

s t ructed inductively.  

EXAMPLE 2. G i v e n  ot E (0, 1) there  is a tower  T over  the adding mach ine  so 

that  an (T)>> n ~ (which implies  by Propos i t ion  3 that  T is 1/n ~-conservative) and 

the Hausdor f f  d imens ion  of e ( T )  is ( 1 - a ) .  

Again,  to construct  the example ,  we will find nk, mk, nk .~>  nk + rnk + k 

defining K and KI as before  and sett ing T = T~. T o  get the requi red  p roper t i es  

for  TK, we will a r range  

[ K n [ 1 ,  n ] [ > - a n - 1  f o r a , ( T ) > > n  ~ 
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and 

li--m I K, n [1, n][=< a for Hausdorff dimension of e (T) at least (1 - a) .  
n ~ n 

It follows from a, (T)~> n ~ that T is 1/n ~-conservative, whence by Theorem 1, 

the Hausdorff dimension of e(T) is at most 1 -  a. 

To get nk, mk with the required properties, set nk = k  3 and m k =  

[a (3k 2 + 3k + 1)] + 1. Then: 

ak3<=[K N[1, k3ll<ak3 + k, 

and it is easily checked that [K N [1, n][ = an  for n => 1. 

Next, we see that 

[g,N[1,  k3+mk + k ] [ = ] g  A[1,(k +l)3][+ k(k  +l)  
2 

< a (k + 1) 3 + (k + 1)k 
= 2 

<=a(k3+mk + k ) + M ( k 3 + m k  +k)  2/3 ( s o m e M < o o )  

and it is easily checked that 

IK1 n [1, n]] <- an + Mn 2/3. 

This completes the construction of Example 2. 

We now discuss possibilities to improve Theorem 2. As mentioned before, if 

: [0, 1] ~ (0, oo) is convex, ~ (x) 1' ~ as x J, 0 or x 1' 1, and E C [0, 1] is measur- 

able, then ~ - c a p e  > 0 implies that H1/~(E)> 0. The author knows of no 

ergodic non-singular transformation of a separable measure space T with 

H~/~(e(T))>O and T ff(n)-conservative. It will follow from our concluding 

proposition that no dyadic tower over the adding machine of form TK can have 

this property when q~"(x) is regularly varying near zero with index 3, E 

( - 3 ,  - 2 ] ,  and q~(x) = ~ ( 1 - x ) .  

PROPOSITION 6. Let c, J,O, E~=~ck = C ( n ) ~ ' ~  and p(x)~l /C([1/x]) .  Let 

K C_ N and let TK be the dyadic tower over the adding machine with growth 

sequence/3(n) = 2 k~") where {k(n)} = K. 

If  H~(e(TK)) > 0 then TK is c,-dissipative. 
(In case ~ is convex, ~(x)  = ~(1 - x) and ~"(x ) ~ L (x )/ x TM as x ~ 0 where L (x ) 

is slowly varying and 2 <= 3, < 3, one has that: 

1 
(o(n) ~ c, - - -  L(1/n) 

- -  n 3 _  3, 
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whence it follows that 

r  ~ const C([1/x]) asx $ 0.) 

PROOF. First, note that there are integers nk _-> 1 and mk -> 0 (k E N) such 

that nk+~>m +ink +3;  m, nk +ink E K ,  K C_ U~=t[nk, nk +ink] __a K~ and also 

such that if n E K  and for some k, nk <- n < nk +mk - 1 then either n + 1 E K ,  

or n + 2 E K .  
Next, by Proposition 3, TK is c.-dissipative iff Z~=~ (c. - C.+l)T ~"~ < o0. Here  

cK(n) = I K tq [1,log n]l and it follows that TK is c.-dissipative iff 

S(K) < 
n E K  

We will show that, when Hp(e(TK))>O, S(Ki)<oo.  This suffices because 

S ( K )  <- S(K1) (as K C_ K,). 

Set /(2 = U~=I [nk, nk + mk + 2]. Then 

IK~ n 11, n~ +mk][ =IK, n [1, nk + mk]l +2(k  - 1 ) .  

Set f o r q = > l :  

Aq=  s =  = ~ - E [ 0 , 1 ] : e . = 0 , 1 a n d f o r e v e r y k _ - > q :  

Enk+l 

By Proposition 4(b), if s E e ( r~)  then 

e 2mzns ) 1 

n ~ K  

and so for some q: (((2"s)))< 1/2 5 for every n > nq, n E K. It follows from the 

construction of K~ and 1(2 that this entails (((2"s))) < 1/2 3 for n >- nq, n ~ K2 and 

this in turn implies that s E Aq. 

Hence e(TK) C_ Uq=l Aq and if lip (e(TK)) > 0 then, for some q --> 1: H o (Aq) > 

0. 

For n _-> 1 let H, denote the collection of dyadic intervals of length 1/2" which 

intersect Aq. Since lip (Aq)> 0, we have that inf,_>~ p(1/2")IrI ,  ]>  0. Now 

[l-l,k+m , [ _-< 2"' +"k IK:~tl,-,+,-,lI+,q+k 

Whence (taking logarithms) there is a constant M < oo such that 
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Thus: 

But: 

and n o w  

I K2 f-I [1, nk + rn~]l ~ n, + m~ + k + log2p (1/2 "k§ + M 

= nk + mk + k - log2 C(2  "§ + M. 

IK, n [1, n~ +m~]l = IK~ n [1, n~ + m d l - 2 k  +2  

=< nk + rnk - k - log2 C(2  "~+"~) + M + 2. 

m k 

S ( K 1 ) =  E ~', c2"~*"21x'nt""~+"Jl 
k = l  n = 0  

rt l  k m k 

E r = E r247 
n = 0  r l ~ 0  

which  m e a n s  S(K1) < ~. 

m k 

2M+2 E . + .  k n+m 
n = O  

<= M' /2  ~ 

[]  
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