
S O M E  A P P L I C A T I O N S  O F  T H E  W E I L  R E P R E S E N T A T I O N  

By 

D A V I D  K A Z H D A N  

w T h e  W e i l  r e p r e s e n t a t i o n  in t h e  l o c a l  c a s e  

Let F be a field with char F ~  2, V = F 2" be a finite-dimensional vector space and 

1) be a nondegenerate  skew-symmetric bilinear form on V. We will denote by 

Sp(V, II)  or simply Sp the algebraic group of linear transformations v ~ v s of V 

preserving [l. 

Let N be the following central extension of V (as an algebraic group): 

N = { ( v , t ) , v e  V, t E F }  

with the composition law: 

(vl, tl). (v2, t2) = (th + vz, t, + t2 + ll(v~, v2). 

We have a natural action n ~ n '  of Sp on N: 

g: (v, t)---~ (v ~, t). 

Suppose now that k is a local field, and ~: F*---~ C* is a nontrivial additive 

character. Let F,, V2 C V be maximal isotropic subspaces such that V, A V2 = {0}. 

Then V =  V~O V2. The  restrictions of the natural imbedding i" "/--*N, i (v)  = 

(v, 0) to V, and V2 are homomorphisms and so we can consider V1, V2 as subgroups 

of N. It is clear that they generate N. Now we define the unitary representation p of 

N in the space W '~=f L2(V,) by describing its restrictions to V,, V2: 

(p (v , ,  o) f ) (v ' : )  = f ( v ,  + v':), (p(w_, o)f)(v~ = 6(p(v ' : ,  ~_,))f(v':), 

v , ~  V,, v2E I/'2. 
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It is not hard to check that p is really a representation of N in 

p(O, t) = ~0(t)Id. 

It is well known ([6]) that every irreducible unitary representation 

W and 

p' :  N--* Aut W 

such that p'(0, t) = @(t)E, Vt E k, is equivalent to p. 

It follows that for every g E Sp the representation p~(n) Zf p(n s) is equivalent to 

p. So for every g there exists a unitary operator  A(g) :  W---~ W such that 

A ( g ) p ( n )  = p(n" )A(g) .  

O is irreducible. Therefore  A (g) is uniquely defined up to a constant and we obtain 

a projective representation A : S p - - * A u t P ( W ) .  A can be realized as a usual 

representation only if k = C. If k ~ C, then ([6]) there exists an honest representa- 

tion ~-: Sp---, Aut  W of the two-sheeted covering p:  Sp--> Sp such that 

r (g)p(n)  = p(ng)r(~,) for all n E N, g ~ Sp, g = p(~).  

This representat ion r we will call the Weil representation. 

We denote by W0 C W the subspace of smooth vectors, i.e., in the case when F is 

non-archimedean then Wo={w ~ W l S t a b w  is an open subgroup in Sp}; for 

archimedean F, W0 {w E W[Vw G W, the function r = (w,T(g)w on Sp 

is smooth}. In our realization W =  L~(V,), W0={Space of Schwartz-Bruhat  

functions on V~} ([6]). 

The e lement  ( -  Id) E Sp is in the center of Sp. The subspaces W ' ,  W C W of 

even and odd functions on V, are eigensubspaces of r ( - I d ) ,  and therefore are 

invariant under p(Sp). We denote W~ = W- 'N W0. 

L e m m a  1. The restrictions r" to W* and W- are irreducible. 

P r o o f .  Let us consider two subgroups L,, L2 C Sp: 

Lt = {g E Sp] V, g = V,, V~ = V2}, 

/-.2-- {g e S p t  Vr = V , , g l  V, = Id, g l  V/V, = [d}. 

It is well known ([6]) that there exists a natural isomorphism 

a : L, ~ GL (V,), /3 : L2 ~ {quadratic forms on V,} 
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and 

(*)(p(I , ) f ) (vt)  = , ' ( l , ) ,det  ex(I,)l"/~-f(a(l,)v,), (p(l,)f)(z:,) = ~(fl(/_,)(v,))f(v,) 

(e(l,) is a complex number,  lel  = I) for all I, E L , ,  I, E L : .  ~?,E V,, f ~  W. The 

lemma follows immediately from this result. '  

Suppose now that k is a non-archimedean local field, and denote by C C F  the 

ring of integers. Let A, C V~ be a compact  open t?-submodule, let A,_ C V2 be the 

annihilator of .,~,,, i.e., 

A~---{vE V21tk(fl(v,A)) =1  for VACA~}, 

and let A = A , ~  A_~C V. We let N~ C N  denote the subgroup generated by i(A,) 

and i(A2) in N, and let K~ CSp denote the stabilizer of A C V. It is well known that 

K ,  is a maximal subgroup in Sp, i.e., for every K,  C H C S p ,  either H =  K ,  or 

H =  Sp. 

L e m m a  2. a) The covering p: Sp ~ Sp splits over K^, i.e., there exists a section 

/'" K~ ---, Sp. 

b) The subspace W K~ C W of vectors which are invariant under r o/,(K 0 is one 

dimensional and lies in W '  

P r o o f .  a) Let us denote  by f0~  W the characteristic function of AI. It is clear 

that ]',, is invariant under p (N  0 and, moreover ,  W pr = Cfo. The subgroup KA 

normalizes N~. Therefore ,  A (k)  preserves W "oN )̂ for every k E KA, and we can 

choose the opera tor  Ao(k )C  A (k)  such that Ao(k)[o = [o. It is now clear that the 

map k --~ A~(k) gives us an honest representat ion of K^. 

Let/(,~ he p -~(KA) CSp. We denote by M C/~ the commuta tor  subgroup of/'(A. 

S u b l e m m a  2. The pro/,ection p induces an isomorphism po: M--* KA and 

r(m ) = Ao(p(m))  for all m E M. 

P r o o f  of  s u b l e m m a .  It is well known that the commuta tor  subgroup of KA 
is all of KA, and therefore p is surjective. On the other hand, we proved that for 

e v e r y / (  ~ / ( ~ ,  r(/r preserves W "cN'~ and acts as a scalar on it. So, for every m ~  M, 

r ( m )  acts trivially on W pc~^~ and therefore is equal to Ao(p(m)).  So p is injective. 

The sublemma is proved. 

Part a) of the lemma is proved: we can simply write/, = po' .  To  prove Part b) we 

shall need the following two obvious facts. 

* If k is a non-archimedean field W~, are algebraically irreducible. 
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Let K~ = L~ A K~, K2 = L2rq KA. Then 

(i) W p ( r ' ' = { f ~  WISuppfCA1}.  (See (*).) 

(ii) If S u p p f C z r A ,  then 3 K ~ C L : ,  K ~ K 2  such that f E  W K~. 

Now let f be some element in W g.'. Then, f E W K-' (and so s u p p f  CA~) and f E W g' 

(and so f as a function on A~ is invariant under ~-Iinear automorphisms of A~). 

Therefore there exists c E C  such that supp( f -c f , , )CzrA~.  By construction 

(f - cfo) ~ W K~ and, by (ii), (f  - cfo) E W K~. So the stabilizer H of C (f - cfo) in Sp is 

strictly larger than K, ,  and therefore is equal to all of Sp. But this is possible only 

when f = cfo. It is clear that f0 E W' .  So Lemma 2 is proved. 

w T h e  g l o b a l  case  

Suppose now that k is a global field, Char k ~ 2. For every valuation p on k we 

denote by kp the corresponding local field (archimedean valuations will often be 

denoted o0), and we let A denote the ring of adeles over k. For every group G over k 

we will let GA denote  its group of adelic points. 

Now let (V,I-I) be a 2n-dimension vector space over k with a nondegenerate 

bilinear skew-form fl. As before, we shall consider the groups N and Sp and 

isotropic subspaces V~, V~. C V. Let WA be L2(VIA), let W0A be the subspace of 

Schwartz-Bruhat functions. We can define as before the unitary representation 

p, :NA--~Aut WA and the projective representation A:SpA----~AutP(WA). It is 

known that A induces a representation r:  SpA--* Aut WA of the two-sheeted 

coverings of SpA. This representation preserves WoA. 

L e m m a  3. The covering pA:SpA---~SpA splits over Sp~, and there exists a 

non-zero functional )to on Wo, which is invariant under r(Spk). 

P r o o f .  It is easy to see that every functional A E (W0,)' invariant under p(Nk) 

is proportional to A0: f---~ Eo~vkf(v). The group Sp~ normalizes Nk, and therefore 

A(3~) preserves C A0 for all 3' E Spk. So we can choose the operator  Ao(3,) CA (3,) 

such that Ao(3,)Ao = A0. Now we can finish with the same arguments as in Lemma 2. 

Let I1 be the set of all valuations p on k, and let B be the set of all sequences 

b = (bp), p E 11 of -- 1 in which there is only a finite number of - 1. For every b E B 

we denote by W b C WA the subspace of functions f on V,, such that f ( ( -  1)pv) = 

b,f(v) for all v ~ VI,. Here ( -  1)p is the idele which is the image of - 1 under the 

natural imbedding k ~'-* A*. 

The following fact is an easy consequence of Lemmas 1 and 2. 

L e m m a  4. For every b E B the subspace W b C WA is invariant under 7"n(Spx). 
Moreover, the restriction rb of r ,  to W b is an irreducible representation of SpA which is 

equivalent to the restricted tensor product Qp~.  W~,, where W~, is the corresponding 

representations of  Spk,. 
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b dc f  w b  
Let Wo = A Wo,. 

L e m m a  5.  The restriction of  Ao to Wb is trivial iff b has an odd number of  - 1. 

P r o o f .  Let Z = Cente r  SpA = IIp~ti Z/2Z. We have a natural  imbedding Z CA* 

and therefore  a natural  action of Z on V,, Wo and (Wo)'. Every  e lement  b C B  can 

be considered as a character  of  Z. 

We have to prove that 

f b(z)(zAo) = 0 r  b has an odd number  of - 1. 

Z 

But this is obvious.  

Let p , , . . . , p~  be a set of valuat ions on k, %, the Weil  

%,: Sp~,--~ Aut  Wp,, Np, C(Wp,)o non-zero  subspaces.  Let 

representa t ions  

N=N, , |174  | (W,)oC(W.)o. 
n-{pi} 

P r o p o s i t i o n  1. The restriction of A0 on N is not zero. 

P r o o f .  For  simplicity we suppose that for every i, 1 = i_<-l there exists a 

number  o _ b~ , -  +-- 1 such that the intersection Np, N W is not zero.  We  will apply 

the proposi t ion only in this case. Fix now b = (bp)E B with even numbers  of  ( -  1) 

and such that bp, = b~ Let N b be the intersection N N W~. 

We know that the restriction of )to to Wo b is non-zero.  We  shall show that the 

restriction of )to to N b is non-zero.  As N b is Spkp invariant for every p E I I  - {p~} 

this result follows immediate ly  from: 

L e m m a  6.  Let p be a valuation on k and M be a non-zero subspace o]' Who 

invariant under z(S'pkp). Then the restriction o[ Ao to M is non-zero.* 

P r o o f  o f  l e m m a .  Let us consider  the map from W~ to the space L of 

smooth  functions on Spk\Sp .  

r  = Ao(~'(g)w). 

SpA naturally acts on L by right shifts, and ~0o is a morph ism of representat ions.  

We know that ~ o #  0, and that the representa t ion  of S"p, in W~ is irreducible. 

' We consider Sp~p as a subgroup of SpA. 
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Hence, q~0 is an imbedding, and q~o(M)r M is r(Sp~,) invariant, and so 

L,, = q~0(M) is a non-zero subspace of L invariant under right shifts by (Spk,). If the 

restriction A0 to V were zero, then for every function q~ E Lo we would have 

,#(~) = 0, where g is the image of the the unit in SpA. L,, is (Sp(kp)) invariant, so the 

restriction of any q~ E L,, to the orbit 1~ = g'(Spk,) is zero. But it follows from the 

strong approximation theorem [2] that D. is dense in Sp,\Sp,,. So ,~-=0. This 

contradiction proves the lemma and the proposition. 

w The unitary subgroup 

Let k be a field (char k / 2 ) ,  let K be a quadratic extension, V be a finite 

dimensional K-vec to r  space, and let O be a nondegenerate  Hermit ian form on V. 

Let i,~ 0 be some element  in K such that TrK/ki = 0. If we consider V as a k-vector  

space (by restriction of scalars), then we can write O in the form O = 

R e O + i l m C ) ,  where R e O  and ImC) are bilinear forms on V. R e O  will be a 

symmetric and Im O a symplectic nondegenerate  form. Let us denote  by Uo (or 

simply U) the unitary group of K-au tomorphisms  of V preserving O, and by Spo 

(or simply Sp) the group of k-au tomorphisms of V preserving Im O. By definition, 

we can consider U as a subgroup in Sp. 

Let U, denote the center of U. It consists of the scalar transformations v ~ Av, 

for all A C K* with NK/k(A) = 1. We shall also consider the subgroup SU C U of 

unimodular t ransformations in U. 

Let k now be a local field. 

L e m m a  7. The restriction on the covering p: Sp(2n, k ) ~  Sp(2n, k) splits over 

SU. 

Proof. If k = C  there is nothing l o p r o v e .  If k = R a n d  K = C  we can apply 

topological arguments.  It is enough to prove that the image of the fundamental 

group 7r.(SU) under the embedding a :  SU --, Sp(2n, R) is zero. Let the Hermitian 

form O have type (s, t)  (s + t = n). Then the group SU is contractible on 

U(s)X U(t), Sp(2n, R) on U(s + t) and the embedding a corresponds to the 

natural embedding &: U(s) x U(t)--, U(s + t). It is clear that &(S(U(s)  x U(t))) C 

SU(n). As SU(n)  is simply connected the lemma is proved in this case. 

Now suppose that k is a non-archimedean field. The following remarks were told 

me by Hart Sah. 

1) Suppose that V = V , O  V, and O = O , O  O.-. If the lemma is true for (V, O) 

it is true also for (V~, O,). Indeed, we know [6] that the metaplectic covering 

Sp(VI)---~Sp(V,) can be obtained by the restriction of the covering 

Sp(V)- -~Sp(V) .  So if the restriction of the latter to SUo(V)  splits then the 
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restriction of the former  one to SUo,(V,) also splits. So, it is enough to prove the 

lemma in the case when O is quasi-split. 

2) The lemma is true when dim~V = 2 ([5]). 

Consider now the case when O is quasi-split. Denote by /5:SU---~SU the 

restriction of p to SUo. SU is the continuous central extension of the semi-simple 

group. For every simple root A of SU we denote by SI.(2. k),  the subgroup of SU 

generated by the root subgroups E~ and E_~. It follows from 2) that the restriction 

of/~ to SL(2, k) ,  splits. So ,6 also splits. The lemma is proved. 

As SU is the commuta to r  subgroup of U it follows from Lemma 7 that the 

commuta tor  subgroup of p t(U) is isomorphic to SU (the projection p induces the 

isomorphism). So we will consider SU as the subgroup in SP(2n, k). 

Now let k = R and (2 have type (s,t).  

As p splits over SU(s, t), there exists a unique section j:  SU(s, t)'-~ Sp(2n, R), 

and we shall henceforth consider SU(s, t) as a subgroup in Sp(2n, R). Let us denote 

by C the preimage p- ' (UOCSp(2n,  R ). I.et a ~ C be a nontrivial element in 

p-~(e), we know that C is connected for even n and isomorphic to U~ • {1,a} for 

odd n. For simplicity, we fix the additive character ~0 on R (which we need in order 

to define ~') as O ( x ) =  exp(ix).  

We let 6'- denote  the set of characters X on C such that X ( a ) =  - 1. 

For every x E C -  let W~ C W  be the subspace of vectors w C  W such that 

r (c)w = X(C)W for all c E C. It is clear that W,, is invariant under the restriction of 

-r to SU(s, t). The corresponding representation of SU(s, t) in W,~ will be denoted 

by p,,. For every l E Z  we denote by X~ the following character on C:X~(u)=  

ul~, ,~.tl, and we will write W~ instead of W~,. Wc consider U, as a subgroup in C*. 

If n is even, then X~ is a character of the connected component  of 1 in C. and we 

extend it to all of C by X~(a)= - 1. If n is odd, then X~ is a correctly defined 

character on C and g~(o~)= - 1. 

P r o p o s i t i o n  2.  a) W = @)~z W,,,. 

b) If (s, t) = (n, O) then W~,~ 0 iff I >= 0 with l E Z non-negative, for u E U,. The 

representation rt of SU (n ) in W~, is irreducible and isomorphic to the l-th symmetric 

power of the standard representation of SU. 

c) If ( s , t )=(O,n)  then W ~ O  iff X=X_ ,  for some non-negative I E Z .  The 

representation of SU(n)  in W-t is dual to the representation in W~. 

d) l f  s �9 t~  O, then W~ ~ 0 for all I ~ Z, and the representation T~ of SU(s, t) in W~ is 

irreducible. 

e) If ( s , t ) = ( n - l , 1 ) ,  then the representation of S U ( n - l , 1 )  in W, has the 

following two properties: 

I) The restriction o f t ,  to the maximal compact subgroup U(n - 1) '~  SU(n - 1.1) 

contains the representation St (~de t ,  where St is the standard (n - 1)-dimensional 

representation of U(n - 1), and det is the one-dimensional representation u ~ det u. 
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II) Let ( r , ) ,  be the corresponding representation of the universal enveloping 

algebra A of the Lie algebra S U ( n  - 1, 1), and let A E A be the Casimir operator. 

Then (r,),(di) = O. 

f) In the same case T~ is tempered iff I <= 1 - n. In this case it is in the discrete series. 

g) If s, t > 1 then T~ is not in the discrete series for any X. 

P r o o f .  To prove the proposition we take the Bargmann-Fock realization of 

the Weil representation ([4]). As our field is real we shall consider the correspond- 

ing representation of the Lie algebra 9 of Sp(2n, R). 

Let O be the space of all holomorphic f :  C '~ ~ C such that 

: ] f ( z )121- '* f~dz  < oc 

C ~ 

where I z ]2 = .E~, I zi 12 and dz is Lebesgue measure on C'L Then O is a Hilbert space 

with inner product 

(f, g) = rr m f f ( z ) g ( z ) l - ' : d z .  

We can consider g as a space of quadratic forms on p~,. -.-, p~, q , , - . . ,  q, where 

the commutator  is Poisson brackets. Then we can write the representation r ,  by 

and 

r,(pap,)  = - ~ zb 

1 
r *(Poqb ) = -~ ( O z ~ z  b 

) - - - -  Za ~ Z  Z - -  Zb ~ Z a  3F ZaZb - -  ~ab , 

) J L  + zb - ZOZ  - - -  Z,~ a Z b  

i ( 02 , q  
+ zo zb ~ + z~z~ + 8~b) (see [4]). __L+ 

r,(q~qb) = - ~  \c~zac~zb Ozb 

Let us consider the subspace U,., ~ (s + t = n) generated by 

dcf 
~o.b=popb+qoqb for a = b  < s  and s < a  < b  

rto.b=p~p~-q~q~ for a = s < b .  

It is clear that Us., is the subalgebra of g corresponding to the imbedding 

U (s, t )'--* Sp(2n, R). 
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Now it is easy to verify the propositions a)-e). The statements f), g) are proved in 

[41. 
Next let k be any local non-archimedean field and K its quadratic extension, Q a 

nondegenerate Hermitian form on V and let Uo be the corresponding unitary 

group. We can also define the subgroups UI, SU C Uo and the corresponding 

subgroups C, SU C 0 = p - ' ( U ) C  S'-"pk. 

As before, for every character x E C" we consider the subspace W~ C W of 

w E W such that r ( c )w  = X(c)w, c E C. W~ is invariant under r (U) .  

Now let k be an absolutely real number field, K its purely imaginary quadratic 

extension, O a Hermitian form on a finite dimension K-vector space V. For every 

valuation p on k we denote by SUkp the corresponding unitary group (if K splits in 

p then SUk~ = GL(n,  k~)). 

Let i be the natural imbedding i" Uo~--~Sp(2n, k) and i ,  the corresponding 

imbedding i,,; Uo(A)---.Sp(2n, A). Let Uo(A! (or simply 0,,) be the preimage 

p-~(Uo(A)) in the two-sheeted covering p: Sp,,--~ Sp, (we will write SpA and Sp~ 

instead of Sp(2n, A) and Sp(2n, k)). We consider Uo(k) (or simply U,) as a 

subgroup of 0 , .  As we proved p splits over SU, and we can consider SUA as a 

subgroup in SpA. 

The restriction of the Well representation r to /.?,, (and to all subgroups) will also 

be denoted by r. 

Let 0%, �9 �9 0c~ be the set of all infinite valuations of k. For every i, 1 -< i _-< r let l, 

be a number such that W~,# {0}. (We consider W~. as the subspace in W~,.) (See 

Proposition 2.) We denote by L the space of smooth functions on SUk\SU,. 

Proposition 3. There exists an SUA-invariant subspace Lo CL, L # {0} such 
that the corresponding representation o[ Ill., SU=. (by right shi[ts) in Lo is a multiple 

of | 

Let us denote by ~o,: (W,,),,--, L the map ~o.(w)(u) -~ ko(z(u)w) and denote by Lo 

the image of N. It follows from Proposition 1 that Lo#  {0}. As ~0, commutes with 

SU,, then Proposition 3 is proved. 

Let )( be a character on Ul.k\U,.,,. We will denote by ~ the map from Wo.,, to the 

space Lu of smooth functions on SUk\SU,, 

f t ,p~(w)(u) = (x(a,)Xo(~(u,u)g)dC,, .  
U i  k \Ut , t~  

We will denote by L~ the image of 9~. 

" The integral makes sense because U,.~\U~.A is compact. 
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It is clear that  L,, is SU~ invar iant  subspace  in L,. It follows f rom some 

unpubl ished results  of H o w e  that L~ are irreducible subspaces  in L.. 

F rom Proposi t ion  3 we obtain easily 

Corol lary.  Let l t , " ' , l ,  be integers such that W~,~ {0}, then there exists a 

character g on U,.k \ U,.A such that 

a) for every i, 1 =<= i <= r the restriction of 9r on U,.~, is equal to X~,, 

b) L~ / {0}. 

K is purely imaginary ,  and therefore  U~.~, is compac t  for  every  infinite place ~, 

of k. 

w C o h o m o l o g y  of discrete  subgroups  in S U ( n -  1, 1) 

Let us now cons ider  the case when k / Q  the form O has a type (n - 1, 1) in one 

infinite place, say ~z, and is definite in all others.  For the simplicity of nota t ions  we 

suppose  that O is posit ive in all these places. 

We can consider  SUo as an algebraic  group.  The  g roup  of real points  SUo(R)  is 

i somorphic  to the product  II,~,~rSU~. = S U ( n -  1 , 1 ) x S U ( n ) '  '. The  group  of 

integer points  P,, is a discrete subg roup  in SUo(R) which we can consider  as a 

subgroup  in SU(n  - 1, 1). The  quot ient  space  F,,\SU(n - 1, 1) is compac t  (because 

O ~  and consequen t ly  O is anisotropic) .  

Theorem 1. Thereex is t sacongruencesubgroupP, ,Cl ' suchthatH' (F ,R)~O.  

Proof.  We apply  Proposi t ion 3 in the case when l , =  1, L = 0 ,  2=<i=<r.  As 

SUk\SUA is compac t  we obtain the SUA invariant  subspace  L0C L2(SUk\SU,),  

L, ,~  {0} such that  the cor responding  represen ta t ion  of SU(n  - 1) • SU(n) ' - '  in Lo 

is mult iple of r , @ ( I d ) ' - ' .  Let C be an open subgroup  in @,_1~,~ Up such that the 

space of L o c of C- invar ian t  vectors  ~ 0 .  Deno t e  by F the intersect ion I ' =  

SUk 0 SUo(R)•  C. It follows f rom the s t rong approx imat ion  theo rem [2] that 

(L c) = {space of smoo th  functions on F\SU(R)}  and L0 c is non-zero  subspace  of 

L c. As every  e l emen t  in L,  c is invar iant  under  U(n)  r~ we can consider  L~ as a 

SU(n  - 1, 1) invar iant  subspace  of L2(F\SU(n - 1, 1))." F rom the proper t ies  of L,, it 

follows that  the represen ta t ion  of SU(n  - 1, 1) in L~ is a mult iple  of r,. Now the 

t heo rem follows f rom Proposi t ion 2e) and [3]. 

' We consider I" simultaneously as a subgroup in SUA, SU(R) and SU(n - I, I)= SU~,. 



WF.II. REPRESENTATION 245 

w S o m e  e x a m p l e s  

Now let K be as in w [ K : Q ]  ~ 3 and Q has type ( n -  1, 1) in two points  ~, ,  ~2 

and positive in all others .  If we apply Proposi t ion  3 in the case l, > 1 - n  and 

12 ~ 1 - n, l, = 0 for  i > 2  then by the s ame  a rgumen t s  as before  we obtain  

T h e o r e m  2. There exists a discrete subgroup F C S U ( n  - 1, 1) • S U ( n  - 1) 

and V C L 2 ( F \ ( S U ( n -  1, 1)• S U ( n -  1, 1)) such that 1) the quotient space is 

compact,  2) the projection of  F on every component  is dense, 3) V is S U ( n  - 1, 1) • 

S U ( n  - 1, 1) invariant subspace, 4) V is irreducible ; V = V1 ~ V2 where Va and V2 

are irreducible representations of  S U ( n  - l, 1), 5) V~ is not tempered and V2 is in the 

discrete series. 

Now we consider  the case when dim V = 3 and Q is isotropic (so quasi-split).  Let  

X be a charac te r  such that  L~ P 0. 

T h e o r e m  3.  a) L,  CL2(SUk\SUA) .  

b) I f  XR = X, for 1 < 0 then L~ is a cuspidal  subspace. 

c) For every l >= 0 there exists a character X on Uk \U,,A such that X* = X~ and 

L, # {0} and is not in the space of  cuspidal  forms. 

In our  case, this is equivalent  to the fo rm 

O(X, Y , z ; x , ,  Y,, z , )  = x2 ,  + z.~, + Y?, 

where  X, Y, Z are coord ina tes  cor responding  to a basis 1,, 12, 13 E V and - is the 

a u t o m o r p h i s m  of K over  k. The  split torus T of U is i somorphic  to the 

mult ipl icat ive group.  It acts on V in the following way: It ''-~ tlt, 12-'-~ 12, 13 ----~ t-'13 

where  t is a na tura l  p a r a m e t e r  on T. The  un ipo ten t  subgroup  N C S U  is i somorphic  

to the group  of matr ices  

(i 1 ')01 
w h e r e / 3  E K and R e y  = - N ( [ 3 ) / 2  in the basis (1,,12,13). Let a E K, a ~ 0 ,  be  an 

e l emen t  such that  & = - a. Then  (l,, 12, 13, oil1, al2, a13) is a basis of V over  k. Let  

M, M '  C V be the subspaces  genera ted  by (l,, al, ,  12) and (13, al3, a12). It is clear that  

they are isotropic subspaces  for  Im Q. So we can realize WA as the space of 

Schwar t z -Bruha t  funct ions  S(MA) on MA, and we can easily descr ibe  the action of 
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7-(T) and 7-(N) on 

corresponding to the basis (l,, al,, l,_), then 

(1) 

W,. In particular,  if (al, a~,a3) a r e  coordinates  in M .  

(7-(t)~o)(a,,a2, as)=Itl- 'g~(t- ' ,a, , t- 'a2,  a3), t E  T, 

(a,,a2, a3)= ~b ((a~ + ka~ ~o(a, , :c;~ 7- I q~ 

\ \0 0 

for 7 E K ,  3 '=  - Y  where  ko=a 2 E k ,  

(2) 

t/z, a3), 

_ ~ ( a , , a : , a s )  

\ \o o 

-- +(Be (a,, a:, a~))~ (a, - Re/3a~, a~ - ko Re/3a~, a~) 

where Be is a quadrat ic  form which is easy to write explicitly. We will use the 

following fact: 

(3) Be(0, 0, 1) -= 0. 

Now let w E IV, be a function on MA. From (1) it follows that I~o.(t)l = 

IA0(7-(t)w)l < Cw,. On the o ther  hand we know ([1]) that we can write SU,  as the 

product  of SUk and a Siegel domain S = T .  N~ where  T,o is the subset in T,, 

consisting of t with I t I > ro, N" C NA is the set of e lements  with [/3 I, 13' [ =< 1, and C 

is the compac tum.  The  right invariant measure  on S is dndt .  dc/Itl s. So 

r 3 �9 

S U k  \ S U A  u E S  r 0 

Now we have to de te rmine  when L~ C L  2 is cuspidal. 

For  this we have to unders tand when 

f x(u)7-(u) f 7-(n)Aodndu,~O. 
UI.k\O].A Nk\NA 

dcf 
From the formulas  (2) and (3) it follows that AN = f.,~xN, r(n)Aodn is the following 

functional  on S(MA): 
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E 
a ~ k  

M ,  -- KA + A, and therefore S(M,)--- S ( K A ) ~  S(A). This decomposit ion agrees 

with the actions of U, on S (K , )  and S(A) (the sections come from the decomposi-  

tion V = V,@ V2, where V, = ( l , , l  0, V2 = (12), which is invariant under Ut). 

Moreover,  AN=~5@A~, where ~ 5 ( ~ , ) = ~ ( 0 ) f o r  ~o~ES(K,) and A~,(q~2) = 

Eoek r for ~r S(A). It is clear that c5 is invariant under the action of Ut. So 

Theorem 3 now follows from Lemma 6 and Proposition 1. 

R e m a r k .  To prove that L # 0 and is not cuspidal for a character X on U~ \ U, , ,  

it clearly suffices to check that A'~ is not zero in the case when dim V = 1. 

C o r o l l a r y .  There exists a subgroup F C S U ( 2 , 1 )  and a subspace L~ 

L Z(F\SU(2, 1)) such that 

1) L ~ is SU-invariant, and the corresponding representation of SU in L~ is 

irreducible and does not lie in the principal series. 

2) L~ is not cuspidal. 

Moreover,  we may choose F to be in a congruence subgroup of Fo. Here  Fo is the 

group of all matrices in SL(3, Q(i)) which preserve the Hermit ian form Z . Z 3 +  

Z3Z, + Z2Z2 on C ~. 

P r o o f .  We take k = Q, K = Q(i), )t'a = x,, 1 => 0. Let )t' be a character  on U~., 

which satisfies the conditions of Theorem 3. 

Let L~ be the corresponding subspace in L2(SUo\SUA). Let C be an open 

compact  subgroup in Flp . . . .  Vp such that L~ # 0. Moreover,  we supposx that there 

exists q~ (l) # 0. 

The space L~ is invariant under the action of SU~ = SU(2, 1), and is isomorphic 

as SU(2, 1)-module to nTn, where n ~ Z, and 7n is the representat ion of SU(2, 1) 

corresponding to )0. As l = , -  3, r is in the discrete series. Let L~CL~' ~ be an 

irreducible SU(2, 1)-submodule which contains a function q~ such that ~0(l)#0.  

Then F = p I(C) A Uo C UR = SU(2, 1) and o _  L ~ -  {restriction of L x to U~ C 0 ,}  

satisfies the conditions of the Corollary. 

I want to thank Professor Sternberg, who showed me the preprint  [4] which 

helped me very essentially, Professor Sah and Professor Howe,  for very helpful 

discussions, and Professor Koblitz, who helped me to write this article. 
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