SOME APPLICATIONS OF THE WEIL REPRESENTATION

By
DAVID KAZHDAN

§1. The Weil representation in the local case

Let F be a field with char F# 2, V = F** be a finite-dimensional vector space and
1 be a nondegenerate skew-symmetric bilinear form on V. We will denote by
Sp(V, Q) or simply Sp the algebraic group of linear transformations v — v* of V
preserving ().

Let N be the following central extension of V (as an algebraic group):

N ={(v,t),v € V,t € F}
with the composition law:
(v, ) - (v2, 1) = (01 + vz, 1+ 1+ Q(vy, V2).
We have a natural action n — n® of Sp on N:
g: (v, t)— (v41).

Suppose now that k is a local field, and ¢: F*— C* is a nontrivial additive
character. Let F;, V,C V be maximal isotropic subspaces such that V, N V,= {0}.
Then V =V, V,. The restrictions of the natural imbedding i: /" — N, i(v)=
(v,0) to V, and V, are homomorphisms and so we can consider V,, V, as subgroups
of N. It is clear that they generate N. Now we define the unitary representation p of
N in the space e V) by describing its restrictions to V,, V;:

(p (01, 0)f) (07} = f(v1 + v1), (p (02, 0)f ) (0Y) = Y(p (v, v:2))f (v}),

vLEV, v,EV,
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It is not hard to check that p is really a representation of N in W and

p(0,t) =y (H)ld.
It is well known ([6]) that every irreducible unitary representation

p':N—AutW

such that p'(0,¢)= ¢(¢)E, ¥t € k, is equivalent to p.

It follows that for every g € Sp the representation p“(n)d;‘ p(n®)is equivalent to
p- So for every g there exists a unitary operator A(g): W — W such that

A(glp(n)=p(n*)A(g).

p isirreducible. Therefore A (g) is uniquely defined up to a constant and we obtain
a projective representation A:Sp— Aut P(W). A can be realized as a usual
representation only if k = C. If k # C, then ([6]) there exists an honest representa-
tion T: %—»Aut W of the two-sheeted covering p: §{)—> Sp such that

r(§)p(n)=p(n*)r(g) forall nEN, gESp, g=p(§).

This representation T we will call the Weil representation.

We denote by W, C W the subspace of smooth vectors, i.e., in the case when F is
non-archimedean then W,={w € W|Stabw is an open subgroup in Sp}; for
archimedean F, W, = {w € W |Vw’'E W, the function ¢w_w'(g)§'(w, 7(g)w") on §B
is smooth}. In our realization W = L*(V,), W,={Space of Schwartz-Bruhat
functions on V} ([6]).

The element (—Id) € Sp is in the center of Sp. The subspaces W', W CW of
even and odd functions on V, are eigensubspaces of r(—1d), and therefore are
invariant under p(Sp). We denote Wi = W>N W,.

Lemma 1. The restrictions v~ to W~ and W~ are irreducible.
Proof. Let us consider two subgroups L,, L, CSp:

L .= {8 ESPI Vi=V, Vi= 1V,

L,={geSp|Vt=V,glV,=1d,g|V/V,=1d}.
It is well known ([6]) that there exists a natural isomorphism

a:L,— GL(V)), B: L,— {quadratic forms on V,}
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and

) (1)) (v) = ety detal)y P flalyv),  (p()f)(v) = $(B()())f(v)

(e(1) is a complex number, ;¢i=1)for all LE€L,, L€ L.. v,EV, fE W. The
lemma follows immediately from this result.'

Suppose now that k is a non-archimedean local field, and denote by € CF the
ring of integers. Let A, C V, be a compact open €-submodule, let A;C V; be the
annihilator of A, i.e.,

A:={v € Valg(Uv, 1)) =1 for YA EAL

and let A=A @ A:CV. We let N\CN denote the subgroup generated by i(A))
and i(A,) in N. and let K, CSp denote the stabilizer of A C V. It is well known that
K. is a maximal subgroup in Sp, i.e.. for every K,CH CSp, either H =K, or
H = Sp.

Lemma 2. a) The covering p: §EJ — Sp splits over K, i.e., there exists a section
jiKi— §f>

b) The subspace W¥~C W of vectors which are invariant under 7o j(K.,) is one
dimensional and lies in W'

Proof. a) Let us denote by f, € W the characteristic function of A,. It is clear
that f, is invariant under p(N,) and, moreover, W*®~ = C fo. The subgroup Ka
normalizes N.. Therefore, A (k) preserves W*™» for every k € K,, and we can
choose the operator Ao(k)C A (k) such that Ao(k)fo= fo. It is now clear that the
map k — Ay(k) gives us an honest representation of K.

Let K, be p (KL C§f>. We denoteby M C K the commutator subgroup of Ka.

Sublemma 2. The projection p induces an isomorphism p,: M — K, and
T(m)= Ao(p(m)) for all m € M.

Proof of sublemma. Itis well known that the commutator subgroup of K,
is all of K,, and therefore p is surjective. On the other hand, we proved that for
every K € K., (k) preserves W*™ and acts as a scalar on it. So, for every m € M,
r(m) acts trivially on W** and therefore is equal to As(p(m)). So p is injective.
The sublemma is proved.

Part a) of the lemma is proved: we can simply write j = p,'. To prove Part b) we
shall need the following two obvious facts.

' If k is a non-archimedean field W3 are algebraically irreducible.
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Let K,=L,NK,, K,=L,NK,. Then

() W ={f€ W|SuppfCAi). (See (¥).)

(ii) If Supp f C#A, then 3K}CL,, K}2 K, such that f€ W*2,
Now let f be some element in W*+. Then, f € W*:(andsosupp f CA,)and f € W™
(and so f as a function on A, is invariant under @-linear automorphisms of A,).
Therefore there exists ¢ € C such that supp(f—cfo)CawA,. By construction
(f — cfo) € W¥~and, by (ii), (f — cfo) € W¥2. So the stabilizer H of C (f — cf,) in Sp is
strictly larger than K., and therefore is equal to all of Sp. But this is possible only
when f = cf,. It is clear that f,€ W'. So Lemma 2 is proved.

§2. The global case

Suppose now that k is a global field, Char k # 2. For every valuation p on k we
denote by k, the corresponding local field (archimedean valuations will often be
denoted «), and we let A denote the ring of adeles over k. For every group G over k
we will let G, denote its group of adelic points.

Now let (V,{1) be a 2n-dimension vector space over k with a nondegenerate
bilinear skew-form (). As before, we shall consider the groups N and Sp and
isotropic subspaces V,, V.CV. Let W, be L*(V,,), let W,, be the subspace of
Schwartz—Bruhat functions. We can define as before the unitary representation
pa: Na— Aut W, and the projective representation A:Sp.— Aut P(W,). It is
known that A induces a representation TI§E)A—> Aut W, of the two-sheeted
coverings of Spa. This representation preserves Wo,.

Lemma 3. The covering pA:g\f)AaSpA splits over Spk, and there exists a
non-zero functional Ao on W,, which is invariant under 7(Sp.).

Proof. It is easy to see that every functional A € (W,,)’ invariant under p(Nx)
is proportional to Ag: f— Z,ev, f(v). The group Sp. normalizes Ni, and therefore
A (v) preserves C A, for all y € Sp«. So we can choose the operator Ay(y)CA(y)
such that As(y)Ao = Ao. Now we can finish with the same arguments as in Lemma 2.

Let II be the set of all valuations p on k, and let B be the set of all sequences
b =(b,), p €Il of £1 in which there is only a finite number of — 1. Forevery b € B
we denote by W* C W, the subspace of functions f on V,, such that f((—1),v)=
b.f(v) for all v € V,,. Here (— 1), is the idele which is the image of — 1 under the
natural imbedding k} < A*.

The following fact is an easy consequence of Lemmas 1 and 2.

Lemma 4. Forevery b € B the subspace W* C W, is invariant under n(S;Q.
Moreover, the restriction 7y of T4 to W* is an irreducible representation of §fu which is
equivalent to the restricted tensor product ®,cu W, where Wy is the corresponding
representations of S;,w
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def

Let W(: = W. n W()A.
Lemma 5. The restriction of Ao to W is trivial iff b has an odd number of — 1.

Proof. Let Z = Center §f>A =Il,en Z/2Z. We have a natural imbedding Z CA*
and therefore a natural action of Z on V,, W, and (W,)". Every element b C B can
be considered as a character of Z.

We have to prove that

f b(z)(zA0) =0 ¢ b has an odd number of — 1.
z

But this is obvious.
Let p,---,pr be a set of valuations on k, 7, the Weil representations
Tt Spx,, = Aut Wy, N, C(W,,)o non-zero subspaces. Let

N= Np‘ ®- . .®Np, "9%.) (Wp)OC(WA)()-

Proposition 1. The restriction of Ao on N is not zero.

Proof. For simplicity we suppose that for every i, 1 =i =1 there exists a
number bj, = =1 such that the intersection N, N W is not zero. We will apply
the proposition only in this case. Fix now b = (b,) € B with even numbers of (— 1)
and such that b, = bj. Let N* be the intersection N N Wo.

We know that the restriction of A, to W3¢ is non-zero. We shall show that the
restriction of A, to N* is non-zero. As N* is §f)kp invariant for every p €Il - {p:}
this result follows immediately from:

Lemma 6. Let p be a valuation on k and M be a non-zero subspace of W3
invariant under 7(§ka). Then the restriction of Ao to M is non-zero.'

Proof of lemma. Let us consider the map from W; to the space L of
smooth functions on Sp, \§f)A

o(w)(g) = Ao(T(g)W).

§f)A naturally acts on L by right shifts, and ¢, is a morphism of representations.
We know that ¢,# 0, and that the representation of Sp. in W} is irreducible.

' We consider %kp as a subgroup of §;A.
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Hence, ¢, is an imbedding, and ¢@(M)#0. M is T(S:Ekp) invariant, and so
L, = ¢o(M) is a non-zero subspace of [. invariant under right shifts by (§ka). If the
restriction Ay to V were zero, then for every function ¢ € L, we would have
¢(€)=0, where € is the image of the the unit in §f)A. Lyis (é\p;(k,,)) invariant, so the
restriction of any ¢ € L, to the orbit Q1 = é(gf)kp) is zero. But it follows from the
strong approximation theorem [2] that Q is dense in Spk\%A. So ¢ =0. This
contradiction proves the lemma and the proposition.

§3. The unitary subgroup

Let k be a field (chark # 2), let K be a quadratic extension, V be a finite
dimensional K-vector space, and let Q be a nondegenerate Hermitian form on V.
Let i # 0 be some element in K such that Trk,.i = 0. If we consider V as a k-vector
space (by restriction of scalars), then we can write Q in the form Q =
Re Q +iIm Q, where Re Q and Im Q are bilinear forms on V. Re Q will be a
symmetric and Im Q a symplectic nondegenerate form. Let us denote by Uq (or
simply U) the unitary group of K-automorphisms of V preserving Q, and by Spo
(or simply Sp) the group of k-automorphisms of V preserving Im Q. By definition,
we can consider U as a subgroup in Sp.

Let U, denote the center of U. It consists of the scalar transformations v — Av,
for all A € K* with Nx,(A)=1. We shall also consider the subgroup SU CU of
unimodular transformations in U.

Let kK now be a local field.

Lemma 7. The restriction on the covering p: §f)(2n, k)— Sp(2n, k) splits over
SU.

Proof. If k = C there is nothing to prove. If k =R and K = C we can apply
topological arguments. It is enough to prove that the image of the fundamental
group 7,(SU) under the embedding a: SU — Sp(2n, R) is zero. Let the Hermitian
form Q have type (s,t) (s+t=n). Then the group SU is contractible on
U(s)x U(t), Sp(2n,R) on U(s+1t) and the embedding a corresponds to the
natural embedding &: U(s) < U(t)— U(s + t). It is clear that a(S(U(s) x U(t))) C
SU(n). As SU(n) is simply connected the lemma is proved in this case.

Now suppose that k is a non-archimedean field. The following remarks were told
me by Han Sah.

1) Suppose that V = V, @ V. and Q = Q,P Q-. If the lemma is true for (V. Q)
it is true also for (Vy, Q,). Indeed, we know [6] that the metaplectic covering
%(V.)—» Sp(V\) can be obtained by the restriction of the covering
%(V)—» Sp(V). So if the restriction of the latter to SUo(V) splits then the
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restriction of the former one to SUo,(V)) also splits. So, it is enough to prove the
lemma in the case when Q is quasi-split.

2) The lemma is true when dimxV =2 ([5]). .

Consider now the case when Q is quasi-split. Denote by p: SU — SU the
restriction of p to SU,. SU is the continuous central extension of the semi-simple
group. For every simple root A of SU we denote by SL.(2, k ), the subgroup of SU
generated by the root subgroups E, and E_,. It follows from 2) that the restriction
of p to SL(2,k). splits. So p also splits. The lemma is proved.

As SU is the commutator subgroup of U it follows from Lemma 7 that the
commutator subgroup of p '(U) is isomorphic to SU (the projection p induces the
isomorphism). So we will consider SU as the subgroup in §l;(2n, k).

Now let k =R and Q have type (s, 1).

As p splits over SU(s, t), there exists a unique section j: SU(s, t)— §B(2n, R).
and we shall henceforth consider SU (s, t) as a subgroup in §f)(2n, R). Let us denote
by C the preimage p"(Ul)Cé\ﬁ(Zn, R). L.et @ € C be a nontrivial element in
p~'(e), we know that C is connected for even n and isomorphic to U, x {1, a} for
odd n. For simplicity, we fix the additive character ¢ on R (which we need in order
to define 1) as ¥ (x) = exp(ix).

We let €~ denote the set of characters x on C such that y(a)= —-1.

For every y € C let W, CW be the subspace of vectors w € W such that
T(c)w = x(c)w for all ¢ € C. It is clear that W, is invariant under the restriction of
7 to SU(s, t). The corresponding representation of SU(s, t) in W, will be denoted
by p,. For every I €Z we denote by x; the following character on C: y,(u)=
u't 01 and we will write W, instead of W,,. We consider U, as a subgroup in C*.
If n is even, then y; is a character of the connected component of I in C. and we
extend it to all of C by xi(a)= —1. If n is odd, then y, is a correctly defined
character on C and y,(a)= —1.

Proposition 2. a) W=@, W,

b) If (s, t)=(n,0) then W,# 0 iff | = 0 with | € Z non-negative, for u € U,. The
representation T, of SU(n) in W, is irreducible and isomorphic to the [-th symmetric
power of the standard representation of SU.

c) If (s,t)=(0,n) then W, #0 iff x = x-1 for some non-negative | €Z. The
representation of SU(n) in W_, is dual to the representation in W,

d) Ifs - t#0, then W,# 0 forall | € Z, and the representation 7, 0f SU (s, t) in W, is
irreducible.

e) If (s,t)=(n—1,1), then the representation of SU(n—1,1) in W, has the
following two properties:

1) The restriction of T, to the maximal compact subgroup U(n — 1) SU(n - 1. 1)
contains the representation St det, where St is the standard (n — 1)-dimensional
representation of U(n — 1), and det is the one-dimensional representation u v det u.
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1) Let (7). be the corresponding representation of the universal enveloping

algebra A of the Lie algebra SU(n ~ 1,1), and let A€ A be the Casimir operalor.

Then (1,),(A)=0.
f) Inthe same case 7 is tempered iff | = 1 — n. In this case it is in the discrete series.

g) If s,t >1 then 7, is not in the discrete series for any x.

Proof. To prove the proposition we take the Bargmann-Fock realization of
the Weil representation ([4]). As our field is real we shall consider the correspond-

ing representation of the Lie algebra g of Sp(2Zn,R).
Let © be the space of all holomorphic f: C™ — C such that

[ 1r@praz <=

o
where |z ' = 27| z;]* and dz is Lebesgue measure on C™. Then O is a Hilbert space
with inner product

(fg)=m " j f(2)g (@) "*"dz.

We can consider g as a space of quadratic forms on p,,- -, pa, 41, *, g» Where
the commutator is Poisson brackets. Then we can write the representation 7, by

T ( ):_l( 2 ‘Zi—z—a—+z —8)
* papl 2 8Zaﬁzb aazb baza alb ab | >

T 4( )=1< i —zi+ _(9__Z )
W\Pallo) =5\ a2 920 ““azs | oz, of)

2
3
d Zam—+t 2 2. Za2y + 8 ) (see [4]).

i
= —= +
7+(qedp) 2 (62,, 3z, 0z, 3z,

Let us consider the subspace U., G (s +t = n) generated by

=b=s and s<a=b

§a.b d;( DPaD» + qaqs fOr a

and
Nad = PaPp — Qo for a=s<b.

It is clear that U,, is the subalgebra of g corresponding to the imbedding

U(s, )= Sp(2n,R).
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Now it is easy to verify the propositions a)-e). The statements f), g) are proved in
[4].

Next let k be any local non-archimedean field and K its quadratic extension, Q a
nondegenerate Hermitian form on V and let U, be the corresponding unitary
group. We can also define the subgroups U,, SU CU, and the corresponding
subgroups C, SU C U = p~'(U) CSp..

As before, for every character x € C we consider the subspace W, CW of
w € W such that 7(c)w = x(¢)w, c € C. W, is invariant under 7(U).

Now let k be an absolutely real number field, K its purely imaginary quadratic
extension, Q a Hermitian form on a finite dimension K-vector space V. For every
valuation p on k we denote by SU,, the corresponding unitary group (if K splits in
p then SU, = GL(n, k,)).

Let i be the natural imbedding i: Uy <> Sp(2n, k) and ix the corresponding
imbedding ix; Uo(A)—>Sp(2n,A). Let Uy(A) (or simply U,) be the preimage
p '(Uo(A)) in the two-shected covering p: §§A—> Spa (we will write Sp, and Sp.
instead of Sp(2n,A) and Sp(2n, k)). We consider Up(k) (or simply U.) as a
subgroup of U.. As we proved p splits over SU, and we can consider SU, as a
subgroup in Spa.

The restriction of the Weil representation 7 to U, (and to all subgroups) will also
be denoted by 7.

Let =, - -+, %, be the set of all infinite valuations of k. Forevery i, 1 =i =rlet ],
be a number such that W, # {0}. (We consider W, as the subspace in W..) (See
Proposition 2.) We denote by L the space of smooth functions on SU\SU..

Proposition 3. There exists an SU,-invariant subspace L, CL, L # {0} such
that the corresponding representation of 1li., SU., (by right shifts) in L, is a multiple

of QW..

Let us denote by ¢,: (Wa)y— L the map ¢.(w)(u) = Ao(t(u)w) and denote by L,
the image of N. It follows from Proposition 1 that L, # {0}. As ¢, commutes with
SU. then Proposition 3 is proved.

Let x be a character on U,,\U,.. We will denote by ¢, the map from W, to the
space Ly of smooth functions on SU\SU.

ex(w)(u)= f (x(@)A(T(uu)g)du,.

Ui x\Ura

We will denote by L, the image of ¢,.

" The integral makes sense because U,,\U,. is compact.
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It is clear that L, is SU, invariant subspace in L.. It follows from some
unpublished results of Howe that L, are irreducible subspaces in L..
From Proposition 3 we obtain easily

Corollary. Let [, -+, 1, be integers such that W, # {0}, then there exists a
character xy on U, ,\U, such that
a) for every i, 1 =i =r the restriction of x on U, ., is equal to i,

b) L,#{0}.

K is purely imaginary, and therefore U, ., is compact for every infinite place =;
of k.

§4. Cohomology of discrete subgroups in SU(n —1,1)

Let us now consider the case when k # Q the form Q has a type (n — 1, 1) in one
infinite place, say =,, and is definite in all others. For the simplicity of notations we
suppose that Q is positive in all these places.

We can consider SU, as an algebraic group. The group of real points SU, (R) is
isomorphic to the product Il,z,5, SU., = SU(n —1,1)x SU(n)" . The group of
integer points P, is a discrete subgroup in SUy,(R) which we can consider as a
subgroup in SU(n - 1,1). The quotient space I'\SU(n — 1, 1) is compact (because
0., and consequently Q is anisotropic).

Theorem 1. There exists a congruence subgroup P, CI" such that H'(I',R) # 0.

Proof. We apply Proposition 3 in the case when [, =1, [ =0,2=2i=r As
SU,\SU, is compact we obtain the SU, invariant subspace L,C L*(SU.\SU.),
L, # {0} such that the corresponding representation of SU(n —1)x SU(n)""in L,
is multiple of 7, @ (Id)""". Let C be an open subgroup in @i, U, such that the
space of L§ of C-invariant vectors # 0. Denote by I' the intersection I'=
SU, NSUG(R) x C. It follows from the strong approximation theorem [2] that
(L) = {space of smooth functions on NSU(R)} and L§ is non-zero subspace of
L€ As every element in L{ is invariant under U(n)" ' we can consider L§ as a
SU(n — 1, 1) invariant subspace of L*(I'\SU (n — 1, 1))." From the properties of L, it
follows that the representation of SU(n —1,1) in L§ is a multiple of . Now the
theorem follows from Proposition 2e) and [3].

' We consider I simultaneously as a subgroup in SU., SU(R) and SU(n - 1,1)= SU..,
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85. Some examples

Now let K be as in §4, [K: Q] = 3 and Q has type (n — 1, 1) in two points =, %,
and positive in all others. If we apply Proposition 3 in the case /,>1~n and
IL=1—n, ] =0 for i >2 then by the same arguments as before we obtain

Theorem 2. There exists a discrete subgroup I' CSU(n—-1,1)xSU(n-1)
and VCL*T\(SU(n—-1,1)xSU(n~1,1)) such that 1) the quotient space is
compact, 2) the projection of I on every component is dense, 3) V is SU(n—1,1) X
SU(n —1,1) invariant subspace, 4) V is irreducible; V = V,Q V, where V, and V,
are irreducible representations of SU(n — 1, 1), 5) V, is not tempered and V- is in the
discrete series.

Now we consider the case when dim V = 3 and Q is isotropic (so quasi-split). Let
x be a character such that L, #0.

Theorem 3. a) L, CL*SU\SU,).

b) If xa = x: for [ <0 then L, is a cuspidal subspace.

c) For every 1 =0 there exists a character y on U, \U, . such that xx= i and
L, # {0} and is not in the space of cuspidal forms.

In our case, this is equivalent to the form

OX,Y,Z;X,,Y,Z)=XZ,+ZX,+ YY,

where X, Y, Z are coordinates corresponding to a basis I, l,, 5E V and  is the
automorphism of K over k. The split torus T of U is isomorphic to the
multiplicative group. It acts on V in the following way: L, > tl,,L—> L, L—>t"'l;
where f is a natural parameter on T. The unipotent subgroup N C SU is isomorphic

0y
01 -8
00 1

where B8 € K and Re y = — N(B)/2 in the basis (I\, I, ;). Let « €K, a#0, be an
element such that @ = — . Then (I, L, Is, al;, al,, al;) is a basis of V over k. Let
M, M’ C V be the subspaces generated by (I, al, I,) and (Is, als, al;). It is clear that
they are isotropic subspaces for Im Q. So we can realize W, as the space of
Schwartz-Bruhat functions S(M.) on M,, and we can easily describe the action of

to the group of matrices
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7(T) and 7(N) on W,. In particular, if (ai, a;, a;) are coordinates in M,
corresponding to the basis (I, al,, [5), then

(r(e)(a, ana)=t"e(™", a,t 'a, as), teT,

(T(l 0 1) ‘p) (@ an @) = b <£a_fiﬂén) o(a, az, ay),

)

0 1 C a
0 0 1

for y EK, y = —y where ko= a’€ k,

) (T((l) f _f}%/z) <P)(a|,ag,a3)
0 0 1

= y(Bg(ay, a:, a;))¢ (a, — Re Bas, a, — koRe Bas, as)

where B, is a quadratic form which is easy to write explicitly. We will use the
following fact:

3) B,(0,0,1)=0.

Now let w € W, be a function on M. From (1) it follows that |¢.(t)|=
[ Ao(T(t)w)| < C... On the other hand we know ([1]) that we can write SU, as the
product of SU, and a Siegel domain S = T - N°T,C, where T, is the subset in Ta
consisting of ¢t with || > r,, N’ C N, is the set of elements with 8], |y[=1,and C
is the compactum. The right invariant measure on § is dndt - dc/|t[’. So

J; |@u(u)du = f lww(u)lzduéC.’.ff—:<x.

SUR\SU4 u€Es

Now we have to determine when L, CL? is cuspidal.
For this we have to understand when

f x(u)r(u) j T(n)Acdndu, # 0.

Uix\Ura Ni\Na

From the formulas (2) and (3) it follows that Ay = JTnona T(n)Aodn is the following
functional on S(M.a):
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(@)= 2 ¢(0,0,a).

aEk

M, = K.+ A, and therefore S(M,) = S(K.)Q S(A). This decomposition agrees
with the actions of U, on S(K.) and S(A) (the sections come from the decomposi-
tion V=V, @V, where V,=(,,1), V.=(l,), which is invariant under U)).
Moreover, An =8 @ Ao, where 8(¢)) = ¢i(0) for ¢, € S(Ki) and A(p,) =
Z.exp2(a) for ¢, € S(A). It is clear that § is invariant under the action of U,. So
Theorem 3 now follows from Lemma 6 and Proposition 1.

Remark. To prove that L # 0 and is not cuspidal for a character x on U, \U\a,
it clearly suffices to check that A, is not zero in the case when dim V = 1.

Corollary. There exists a subgroup T'CSU(2,1) and a subspace L3 C
L*T\SU(2,1)) such that

1) L is SU-invariant, and the corresponding representation of SU in L, is
irreducible and does not lie in the principal series.

2) L is not cuspidal.

Moreover, we may choose I to be in a congruence subgroup of I',. Here Iy is the
group of all matrices in SL(3, Q(i)) which preserve the Hermitian form Z,Z;+
Z,Z,+2,Z, on C.

Proof. We take k =Q, K =Q(i), xx = x» | Z 0. Let x be a character on U,
which satisfies the conditions of Theorem 3.

Let L, be the corresponding subspace in L*(SUg\SU.). Let C be an open
compact subgroup in [I,e._» V, such that L # 0. Moreover, we suppose that there
exists ¢ (1) # 0.

The space L, is invariant under the action of SUg = SU(2, 1), and is isomorphic
as SU(2, 1)-module to nm, where n € Z, and m, is the representation of SU(2,1)
corresponding to x.. As I =.~3, m is in the discrete series. Let L,CL, be an
irreducible SU(2, 1)-submodule which contains a function ¢ such that ¢(I)#0.
Then F'=p '(C)N Uy, CUp=SU(2,1) and L= {restriction of L} to UgCU,}
satisfies the conditions of the Corollary.

I want to thank Professor Sternberg, who showed me the preprint [4] which
helped me very essentially, Professor Sah and Professor Howe, for very helpful
discussions, and Professor Koblitz, who helped me to write this article.
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