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ABSTRACT 

T h e  tensor  categories wi th  fusion rules of  self-duali ty for abel ian  groups  

are modeled  on the  representa t ions  of extraspecial  2-groups.  We classify 

the  embedd ings  of those  categories into the  category of vector  spaces,  by 

which the  categories are realized as the  representa t ions  of Hopf  algebras.  

Introduct ion  

In order to distinguish the dihedral group Ds and the quaternion group Qs 

by their categories of representations, Yamagami and the author studied in [3] 

semisimple tensor categories over a field k having the simple object set A U {m}, 

where A is a finite abelian group and m is another object, and having the fusion 

rule 

a | b ~- ab, 

a |  m |  

m|  ~ a  
aEA 

for a, b E A. Instances are the categories of representations of the two kinds of ex- 

traspecial 2-groups and the 8-dimensional Hopf algebra/Is of Kac and Paljutkin. 

The classification in [3] tells us that those tensor categories are parameterized 

by pairs (X, T) of nondegenerate symmetric bicharacters (bimultiplicative maps) 

X: A • A ---> k • and square roots ~- E k of ]A1-1. We will denote the corresponding 

category by C ( A, X, T ) . 
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We are concerned with the question when C(A, X, T) can be realized as the cat- 

egory H-mod of representations of a Hopf algebra H, and in how many different 

ways. The answer will produce examples of Hopf algebra deformations of ex- 

traspecial 2-groups and also nonisomorphic Hopf algebras having the isomorphic 

categories of representations. 

By Tannaka theory, to give a tensor category equivalence g(A, X, T) ~ H-mod 

with H a Hopf algebra is the same thing as to give a tensor functor from 

g(A, X, T) to the category of vector spaces ]2 ([4]). Moreover, given two equiva- 

lences g(A, X, T) --~ H-mod and C(A, X, T) ~-- H~-mod, the Hopf algebras H and 

H ~ are isomorphic if and only if the two corresponding functors g(A, X, T) --+ 

differ only by an automorphism of C(A, X, T). Thus our problem may be formu- 

lated as follows: Classify tensor functors C(A, X, ~') --+ ~ up to automorphisms of 

g(A,x,T) .  

Our main result gives a one-to-one correspondence between isomorphism 

classes of tensor functors and group theoretic invariants: pairs (a, #) of invo- 

lutive automorphisms a of A and quadratic forms # on certain subquotients of 

A accompanied with a (Theorem 3.5). 

Using this, we settle the problem in the case where A has an odd order and 

the case where A is an elementary abelian 2-group. When IA[ is odd, there exists 

a tensor functor C(A, X, T) ~ "V if and only if IA[ is a square, T > 0, and X is 

hyperbolic in a sense as in the theory of quadratic forms. And if it exists, it is 

unique up to automorphisms of g(A, X, T) (Proposition 4.2). The corresponding 

Hopf algebra is explicitly described. 

When A is an elementary abelian 2-group, there exist several tensor func- 

tors C(A, X, T) ~ ~ which are inequivalent under the automorphism group of 

g(A,x ,T  ). For instance, if [A[ = 22r, X is alternating, and T > 0, then the 

number of inequivalent tensor functors is [r/2] + 1 (Proposition 5.5). Just as 

the extraspecial 2-groups are central products of Ds and Qs, the Hopf algebras 

arising in the case where A is 2-elementary are composed of four Hopf algebras: 

the 8-dimensional algebras Ds, Qs , / I s  and a 16-dimensional one. 

In Section 1 we recall the definition of g(A, X, T) and determine its automor- 

phism group. In Section 2 we collect some preparatory material. The main result 

is proved in Section 3. The two special cases are dealt with in Sections 4 and 5. 

We work over an algebraically closed field k of characteristic zero. All vector 

spaces are finite dimensional. For a finite abelian group A, denote X(A) = 
Hom(A, k • ), the dual of A. A bicharacter X: A x A ~ k x is said to be alternating 

if x(a, a) = 1 for all a E A. 
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1. T h e  t e n s o r  c a t e g o r y  C(A, X,T) 

A tensor category is a monoidal category C in which Hom-sets are k-vector spaces, 

the operations of compositions and tensor products for morphisms are k-linear, 

and finite direct sums exist. The monoidal structure of C.is specified by the tensor 

product functor @: C x C --+ C, the unit object I, the associativity isomorphisms 

ax,y,z: (X | Y) | Z --+ X | (Y | Z), and the unit isomorphisms 1x: I | X ~ X, 
r z :  X | I --+ X ([2]). A tensor functor C --+ C' between tensor categories C and 

C' consists of a k-linear functor F: C --+ C', isomorphisms tx,y: F(X) @ F(Y) --+ 
F(X  | Y) for all X, Y E C and an isomorphism u: I --+ F(I )  such that  tx,y are 

natural in X, Y and the following diagrams are commutative. 

(F1) 

(F(X) | F(Y)) | F(Z) 

tx,y@l ~ 

F(X | Y) | F(Z) 

tX@Y,Z I 

F((X | Y) | Z) 

aF(X),F(Y),F(Z)) 

F(ax,y,z) 

F(X) | (F(Y) | F(Z)) 

~ l| z 

F(X) | F(Y | Z) 

~ tx,Y| 

F(X @ (Y | Z)) 

(F2) 

I | F(X) .| F(I) | F(X) 

F(X) < F ( I |  
FOx) 

(F3) 

F(X) | I 1| > F(X) | F(I) 

rF(x) ~ 1 fx'l 

F(X) ~ F(X | I) 
F(rx) 

If F is an equivalence, the tensor functor (F, f, u) is called a tensor equivalence. 

For two tensor functors (F,t,u),(F',t',u'): C -~ C', a morphism (F,t,u) --+ 
(F  ~, t ~, u ~) is a natural transformation q: F --+ F '  making the following diagrams 

commute. 

F(X) | F(Y) ax| F'(X) | F'(Y) I " ) F(I) 

F(X  | Y) > F'(X | Y) I ) F'(I) 
qx| ~l 
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Hence we have the notion of isomorphisms between tensor functors. 

The set of isomorphism classes of tensor equivalences C --+ C is a group under 

composition, which we denote by Aut C. 

Now we recall from [3] the definition of the tensor category C(A, X, T) associated 

with a finite abelian group A, a nondegenerate symmetric bicharacter X: A x A --+ 

k x, and a square root r E k of IA1-1. Make the disjoint union S = A U {m} 

of A and a one-point set {m}. Objects are finite direct sums of elements of S. 

Hom-spaces are given by 

klx if X = Y, 
H o m ( X , Y ) =  0 i f X C Y ,  

for X, Y E S. Tensor products of elements of S are given by 

a| a |  m |  m |  
aEA 

for a,b E A, and the unit object is 1. The associativity isomorphisms ax,g,z: 
(X @ Y) | Z --+ X | (Y | Z) for X, Y, Z E S are given by 

aa,b,c = labc: abe  ~ abe  

aa,b ,m = am,a,b  = l m :  m --~ m 

aa,m,b =- x(a, b)lm: m ~ m 

a~,,~,,~ = am,m,~ = ~[~ lb: l~b - -~ (~b  
bEA bEA bEA 

am,a,m = t~x(a,b)lb: t~b--~ ~ b  
bEA bEA bEA 

am,.~,m = (Tg(a,b)--llm)~,b: l ~ m  --+ ( ~ m  
bEA aEA 

for a,b,c E A. The unit isomorphisms Ix: I |  --+ X, rx:  X |  --+ X for X E S 
are identity maps. 

Our object is to classify tensor functors from C(A, X, T) to the category of 

vector spaces 12. Before going into the task, let us first determine the group 

Aut C(A, X, T). 

Let Aut(A, X) denote the group of automorphisms of the pair (A, X), that  

is, automorphisms of A preserving X. We have an obvious homomorphism 

Aut(A, X) --* Aut C(A, X, T). 
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PROPOSITION 1: The map Aut(A, X) -+ AutC(A, X, T) is an isomorphism. 

Proof: Let (F, t, u) be a tensor self-equivalence of C(A, X, T). Clearly F(a) E A 
for all a E A and F(m) = m. Let f:  A--+ A be the map a ~+ F(a). f is a 

group automorphism. In view of (F1) for (X ,Y ,Z)  = (a,m,b), one sees that  f 

preserves X. Thus f E Aut(A, X). The map (F, t, u) ~ f yields a homomorphism 

Aut C(A, X, T) -+ Aut(A, X), which is a right inverse to the map in question. 

It remains to show that if f = id, then (F, t, u) is isomorphic to the identity 

functor. In this case we can write 

ta,b = O(a, b)lab, 

t . , .~  = r  

tm,~ = r  

t m , m = ( ~ w ( a ) l a ,  

U -~ ~11, 

for a,b E A with O(a,b),r E k • Commutativity of (F1) for 

(Z, Y, Z) = (m, a, m), (a, b, m), (a, m, m), and that of (F2) for X = m amount 

to the equations 

r 1 6 2  0 = 0 r  w r  Xr 

where 0 is the coboundary operator. Put c = w(1)r Define an isomorphism 

of functors q: F --+ id by q~ = r for a E A and qm = v/-cl.~. Then one 

verifies that q is an isomorphism of tensor functors (F, t, u) -+ id. | 

2. P re l imina r i e s  

In this section we collect some auxiliary definitions and properties concerning 

(1) involutions of matrix algebras, (2) strongly A-graded algebras, (3) the Schur 

multiplier of an abelian group, (4) quadratic forms over F2, and (5) symmetric 

bilinear forms over F2. Most of them are standard and well-known. 

(1) INVOLUTIONS OF MATRIX ALGEBRAS. 

Let V be a k-vector space and R = End V. Let f:  R --> R be an algebra anti- 

automorphism. If f2 = 1, f is called an involution. We begin with an elementary 

fact: 
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PROPOSITION 2.1: There is a nonzero bilinear form 7: V x V --+ k, unique up to 

scalar, such that 

7(x(v), v') = 7(v, f(x)(v')) 

for a11 x E R, v, v I E V. And  7 is nondegenerate. I f  f2 = 1, then 7 is either 

symmetric or alternating. 

Proof: Define f ' :  End V --+ End V* by f ' ( x )  = f(x)*,  where �9 stands for 

the dual. This is an algebra automorphism, hence there exists an isomorphism 

g: V ~ V* such that f ' ( x )  = gxg -1. Such g is unique up to scalar. Let 

7(v, v') = (g(v), v'). Then 

~(~(~), ~') : ( g (~ (~ ) ) ,  v')  : ( f ' ( x ) ( g ( ~ ) ) ,  v')  : (g(~) ,  f ( ~ ) ( v ' ) )  = 7(v ,  f ( ~ ) ( ~ ' ) ) .  

Assume f2 = 1. If 7 T denotes the transpose of 7, i.e., 7T(v, V') = 7(v', v), then 

~/T (x(v),  v') = 7(v', x(v) ) -= 7(v',  f f (x)(v) ) -= 7 ( f  (x)(v'),  v) = 7T (v, f (X)(V') ). 

Thus 7 T h a s  the same property as 7. Hence 7 T = L'~ with 0 ~ c E k. Clearly 

c = + l .  | 

Suppose f2 = 1. 

Definition 2.2: 

LEMMA 2 .3 :  

+1 
s g n ( f ) - -  - 1  

if 7 is symmetric, 

if 7 is alternating. 

t race(f:  R --+ R) -- sgn(f) dim V. 

Proof" If q, is symmetric, we can take an orthonormal basis { e l , . . . ,  en} of 

V. With identification R = M,~(k), f is just the transpose x ~ x T. Hence 

t race(f)  -- n. 
If "r is alternating, we can take a basis {e l , . . .  ,e2m} of V for which 3' is given 

by the matrix 

Then f ( x )  = J - l x T J .  If we write 

X 3 X4 ' 

J - l x T  J = - x ~  x~ " 

It follows that  t race(f)  = - 2 m .  | 
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(2) STRONGLY A-GRADED ALGEBRAS. 

Let A be a finite abelian group. A strongly graded A-algebra is a k-algebra 

R with decomposition R = (~aEA Ra such that dimR~ = 1, R~Rb -- R~b for all 

a, b E A, and 1 E R1. Take 0 r x~ E R~ for each a E A. Then 

XaX b -~- ~(a, b)Xab 

with ((a,b) E k x, and (: A x A -+ k x is a 2-cocycle. Another choice of a 
X t basis { ~}~eA yields a 2-cocycle (t cohomologous to {. Conversely, any 2-eocycle 

determines a strongly A-graded algebra. Thus we have a bijection between the 

set of isomorphism classes of strongly A-graded algebras and the Schur multiplier 
H2(A, kX). 

The following is known. 

PROPOSITION 2.4: Any strongly A-graded algebra is semisimple. 

Proof: A strongly A-graded algebra is a quotient of the group algebra of a finite 

central extension of A. I 

The commutator form of a strongly A-graded algebra R is the function a: 

A x A ~ k x defined by 

zy = a(a,b)yx f o r x E R ~ , y E R b .  

This is multiplicative in each variable and alternating. If ~ is as above, then 

a(a, b) = ~(a, b) 
~(b,a)" 

The center Z(R) of R is the sum of R~ for a E A such that a(a ,A) = 1. 

Thus Z(R) = k if and only if the form a is nondegenerate. By virtue of the 

semisimplicity, we know 

PROPOSITION 2.5: A strongly A-graded a/gebra is simple if and only/f i ts  com- 
mutator form is nondegenerate. 

(3) T H E  SCHUR MULTIPLIER OF AN ABELIAN GROUP. 

For a finite abelian group A let us denote 

X2(A) = (bicharacters A x A --+ kX}, 

X2(A) = (symmetric bicharacters of A}, 

X 2 (A) --- (alternating bicharacters of A}, 
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and 

Z2(A) = {2-cocyles A • A ~ kX}, 

B2(A) = {2-coboundaries A • A ~ kX}, 

H2(A) = Z2(A)/B2(A). 

We have X2(A) C Z2(A). And the map alt: Z2(A) -+ X~(A) is defined by 

~(a,b) f o r ~ e Z 2 ( A )  ' a, b e A .  alt(~)(a, b) = ~(b, a) 

The following is known. 

PROPOSITION 2.6: The inclusion X2(A) C Z2(A) and the map alt:  Z2(A) -~ 
X2(A) induce isomorphisms 

X2(A)/X~(A) ~ H2(A) "~ X~(A) 

Proof: That  alt(~) E X~(A) if ~ C Z2(A) follows from that alt(~) is the com- 

mutator form of the strongly A-graded algebra associated with ~. And clearly 

alt(~) = 1 if ~ E B2(A), so alt induces the map H2(A) -~ X~(A). If ~ E Z2(A) 

and alt(~) = 1, then the central extension of A defined by ~ is abelian. But k x be- 

ing a divisible group, every abelian extension of A by k • splits. So ~ is a cobound- 

dry. Thus H2(A) --+ X~(A) is injective. This shows also X~(A) C B2(A), hence 

the map X2(A)/X28(A) -+ H2(A) is defined. 

Finally, that  the map alt:X2(A)/X~(A) --~ X~(A) is an isomorphism can be 

seen by decomposing A into a direct sum of cyclic groups and using the fact that  

X~(A) -- 1 and X2(A) = X~(A) if A is cyclic. | 

(4) QUADRATIC FORMS OVER F 2. 

Let F = F2, the field with two elements. 

Definition 2.7: A quadratic form on an F-vector space V is a map q: V -4 F 

such that  the map b: (x, y) ~ q(x) + q(y) - q(x + y) is a bilinear form on V. We 

say q is nondegenerate if b is. 

As b is alternating, its nondegeneracy implies that dim V is even. The standard 

definition of the nondegeneracy of q is different from ours, but both coincide when 

V is even dimensional. 

The following classification of quadratic forms is well-known ([1]). 
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PROPOSITION 2.8: Let dim V = 2m > 0. The set of nondegenerate quadratic 

forms on V is divided into two orbits under the action ofAut  V. With coordinates 

Xl , . . .  , X2rn, representatives of the orbits are given by 

m 

q ( x l , . ,  x2m) = x2 -1  i 
i=1 

and 

q ( X l , . .  . ,  X2rn) = ~_~ Z 2 i - l X 2 i  -t- X 2 "k X 2. 
i=1 

Definition 2.9: We define the signature of a nondegenerate quadratic form q to 

be 
+1 if q belongs to the first orbit, 

sgn(q) = - 1  if q belongs to the second orbit. 

When V = 0, we set sgn(q) = +1 for the zero form q. 

The following will be used in Section 3. 

LEMMA 2.10: Let q: V --+ F be a nondegenerate quadratic form. Then 

E ( - 1 ) q ( v )  = v ~ s g n ( q ) "  
vEV 

Proo~ Follows from 

E ( - 1 ) z Y - : l + l - b l - l = + 2 '  
x,y=0,1 

E (-1)xY+x2+Y2 = 1 -  1 -  1 - 1 = - 2 .  
x,y=0,1 

(5) SYMMETRIC BILINEAR FORMS OVER ~2" 

Here we concern ourselves with symmetric bilinear forms on vector spaces over 

the two-element field F = F2. The results will be used in Section 5. 

Let S be the category whose objects are pairs (V, b) of F-vector spaces V 

and nondegenerate symmetric bilinear forms b: V x V --+ F,  and morphisms are 

isomorphisms in an obvious sense. Direct sums of objects are defined in the usual 

way. Two special objects are 

L = (F,(1)), H = (F2, (O 1 10)), 

where we express bilinear forms by matrices. 

The following classification will be known. 
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PROPOSITION 2.11: Every object M of S is isomorphic to H ~ ~ L k with r > O, 

k = O, 1, 2 uniquely determined by M. 

Proof: Let (V, b) �9 S. 

by the matrix 

Suppose first that b is alternating. Then b is expressed 

(o 
- I t  0 ' 

where Ir is the identity matrix of degree r. Hence (V, b) ~ H r. 

Suppose next that  b is not alternating. Then q: v ~ b(v, v) is a nonzero linear 

form V -~ F.  Let Vo = Ker q. Then b is alternating on Vo. Let W be the radical 

of b[Vo: 

W = {x �9 Vo[ b(x, Vo) = 0} = Vo A Vo 1. 

As dim(V/Vo) = 1, we have d imV~ -- 1, hence either d im W  -- 0 or 1. If W -- 0, 

then b[Vo is nondegenerate alternating and V = Vo $ Vo I .  Thus 

(V,b) ~- Hr e L 

with r = �89 dimVo. 

Assume W = Fw ~ O. Take a complement 111 of W in Vo. Then b{V1 is 

nondegenerate and Y = 1/1 @ 1,'11. Take v �9 V~ \ W so that  V~ = (w, v}. Then 

b(w,w)=O,  b ( w , v ) r  b ( v , v ) r  

Thus b{V~ can be expressed by the matrix 

(o1 
But this is similar t o / 2 ,  because 

Thus (V~,b)  ~- L 2. Hence (V,b) ~- H r @ L 2 with r -- �89 Vo - 1). 

COROLLARY 2.12: L 3 ~- H @ L. 

COROLLARY 2.13: Let M , M '  E S. 

(i) M @ H ~ - M ' @ H  ~ M ~ - M  '. 
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(ii) M @ M - ~  M~ ~ M ' ==v M ~- M '. 

Proof: (i) Clear from the classification. (ii) Since 

M ~ H r ===> M 2 =H~ 2r, 

M ~= H r @ L ~ M 2 --~ H 2r @ L 2, 

M =~ H ~ @ L 2 ~ M 2 ="~ H 2r+1 ~ L 2, 

M can be recovered from M 2. | 

39 

3. Class i f ica t ion  o f  t e n s o r  f u n c t o r s  

In this section we classify tensor functors C(A, X, T) --+ V by means of group 

theoretic invariants. We firstly interpret tensor functors in terms of simple A- 

graded algebras R and involutions f :  R --+ R. Then we relate R and f to 

involutions a: A --+ A and quadratic forms # on certain subquotients of A. 

Let F: C(A, )~, T) -+ 12 be a tensor functor with structure maps 

t x , y :  F ( X )  | F ( Y )  -7+ F ( X  | Y) ,  u: k -% F(1). 

Put  F(a) = R~ for a E A and F(m)  = M.  The equalities 

a | b = ab, 

a @ m = m ,  

m @ a = m ,  

r n |  = ~ a  
aEA 

in C(A, X, T) combined with t x , y  give rise to isomorphisms 

(il) Ra | Rb "~ Rab x | y ~-~ xy,  

(i2) R~ | M ~- M x | w ~ x.w, 

(i3) M | R~ ~- M w | x ~ w.x,  

(i4) M |  w|  
aEA 

in V, where the maps are denoted as in the right sides. 
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Commutativity of (F1) for X, ]I, Z E A U {m} amounts to the following: 

(1) x(yz) --- (xy)z for x ERa ,  y 6 Rb, z E R~, 

(2) x.(y.w) = (xy).w for x E R~, y E Rb, w E M, 

(3) x.(w.y) =- x(a,b)(x.w).y for x E Ra, y E Rb, w E M, 

(4) w.(z.y) = (w.x).y for x ERa ,  y E Rb, w E M, 

(5) x[w, W']b = Ix.w, W']ab for x E R~, w, w' E M, 

(6) [w, x.w']b = x(a, b)[w.x, W']b for x 6 Ra, w, w' E M, 

(7) [w, w'.x]b~ = [w, W']bX for x E R,~, w, w' E M,  

(8) w.[w',w"]a=7"~-~x(a,b)-l[w,w']b.w '' forw, w' ,w" e M .  
bEA 

Put  1 = u(1) 6 R1. Then commutativity of (F2) and (F3) for X E A U (m} 

amounts to the following: 

(9) l x = x  f o r x 6 R ~ ,  

(10) 1 . w = w  f o r w E M ,  

(11) x l = x  f o r x E R a ,  

(12) w . l = w  f o r w E M .  

Conversely, vector spaces R~ for all a E A and M together with isomor- 

phisms (il)-(i4) and u: k --~ R1 satisfying (1)-(12) give rise to a tensor functor 

C(A, X, T) ---+ 1;. Isomorphism classes of tensor functors C(A, X, ~-) -~ Y are thus 
in one-to-one correspondence with isomorphism classes of such data (R~, M , . . .  ). 

Now (1), (9), (11) mean that R = ( ~ e A  R~ is an associative algebra with 
multiplication (x, y) ~-~ xy and identity 1 E R1. (2), (10) (resp. (4), (12)) mean 

that M is a left (resp. right) R-module with action (x, w) ~ x.w (resp. (w, x) 

w.x). (il) tells us that R is a strongly A-graded algebra (Section 2 (2)). In 

particular R is semisimple (Proposition 2.4). 
(5) (resp. (7)) says that the isomorphism of (i4) is left (resp. right) R-linear. 

It follows that R is simple and M is the unique simple left (resp. right) R- 

module. Indeed, put d -- d imM. If $1 , . . . ,  Sr are the simple left R-modules and 
d~ = dim Si, then d 2 = d imR = ~-~i d2. The isomorphism M | M ~ R being left 

linear, M must contain all Si, hence d >_ ~id~.  Then we have r = 1 and d = d l .  
We have also I A] = d i r e r  = d 2. As T21 A] = 1, we may write ~- = cd -1 with 

c - - •  
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By (5), [ - , - ] a  is determined by [ - , - ]1  as 

IT,  W']a = 

for any 0 # x ERa.  Similarly by (7) 

= 

Put [w,w']l = 7(w,w' ) l  with 7(w,w' )  E k. Then 

(13) 7(x.w, w') = 7(w, w'.x) 

for any x E R, w, w' E M. 

Conversely, if we are given a pairing 7: M • M -+ k with this property, we can 

define [ - , - ] ~  by 

[W,W']a = 7 (X- - I .w ,w ' )x  = 7(W, Wt.X-1)X, 0 # X e na,  

which satisfy both (5) and (7). 

As R is simple, the two-sided R-linear map M |  --+ R: w |  ~ ~ (IT, w%)~ 

is bijective if it is nonzero. Thus, under the assumption of (5), (7), and the 

simplicity of R, the bijectivity of the map is equivalent to the nondegeneracy of 

the pairing 7, or even to the nontriviality of 7. 

Next we look at (6). Let w = y.v with 0 # y E Rb, v E M.  Then 

x w']b  = y[v,  

x(a, b)[w.x, w']b = Ix(a, b)(y.v).x, w']b = [y.(v.x), w'lb = y[v.x, w']l. 

Hence (6) reduces to the property 

(14) 7(w, x.w') = 7(w.x,  w') 

for all w, w ~ E M and x E R. 

Next consider (8). Write w" = u.x with 0 # x E R~. Then 

w.[w',w"]o = w.[w' ,uhx = (w.[w',uh).x, 

while 

x(a, b) -1 [w, w']b.w" = x(a, b) -1 IT, Wt]b.(~.x) = ([W, Wt]b.'lZ).X. 
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So it suffices to consider (8) only for a = 1: 

(i5) ~o.[~', ~"11 = ~ ~ [ ~ ,  ~']b.~". 
b 

Put  r = y~b[W,W']b.W 't. By (2) and (5), we have 

r ~', ~") = x.r ~', w"). 

As M is a simple R-module, the maps r  w', w"): M ~ M must be scalar for 

all w',w" E M. By taking the traces of both sides of (15) relative to the variable 

w, (15) is equivalent to the identity 

dv(w', w") = T trace(C(--, w', w") ). 

For each b E A, take 0 r x E Rb. Then 

[~, w']b.~" = .y(~o, ~'.~-~ )z.w", 

SO 

t race([- ,  w']b.w": W ~ W) = 7(x.w", w'.x -1) = 7(w", w') 

by (13). Hence 

trace(C(-,  w', w " ) ) =  IAIT(w '', w'). 

Thus (8) is equivalent to 

dT(w' , w") = "rJAJT(w", w'), 

or 

(i6) ~(~',w") = ~ ( ~ " , ~ ' ) .  

It remains to consider (3). As R is a simple ring and M is a simple left (resp. 

right) R-module, the module action gives an algebra isomorphism (resp. anti- 

isomorphism) R ~ End M. So we have an algebra anti-automorphism f:  R -+ R 

such thaf 
~.x = / ( x ) . w  

for w E M, x E R. Then (3) is rewritten as 

xf(y).w = x(a, b)f(y)x.w 
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for x E R~, y E Rb, w E M .  Hence 

(17) xf(y)  = x(a, b)f(y)x. 

(13) is then rewritten as 

(18) "/(x.w, w')  = ",/(w, f (x) .w') .  

Thus ~, is a pairing which the anti-automorphism f of the simple ring R induces 

on the simple left R-module M, as in Proposition 2.1. 

(14) is rewritten as 
= w ' ) .  

Combined with (18) and the nondegeneracy of 7, this amounts to the identity 

f2 = 1. 

Then by Definition 2.2 we have the invariant sgn(f) = =1=1 so that  

3'(w', w) = sgn(f)"y(w, w'). 

Comparing with (16), one has sgn(f) = e. 

Summarizing above, with a tensor functor F: t:(A, X,T) ~ V we associate 

a pair (R, f)  of a simple strongly A-graded algebra R and an involutive anti- 

automorphism f of R such that 

x f ( y )  = x ( a , b ) f ( y ) x  f o r x E R ~ , y E R b  

and 

sgn(f) = e. 

Conversely, suppose given such a pair (R, f) .  Choose a simple left R-module M, 
with action denoted as (x, w) ~ x .w.  Proposition 2.1 tells us that  there exists a 

nondegenerate pairing 7: M x M --+ k, unique up to scalar, such that  

7(x .w,  w')  = 7(w, f ( x ) .w ' ) .  

Then setting 

w.x  = f ( x ) . w ,  

[w,w'],~ = 7 ( w , w . x - 1 ) x  with 0 ~ x ERa,  

we obtain (Ra, M , . . .  ) satisfying (1)-(12) and (il)-(i4), hence a tensor functor 

C(A, X, T) -4 1). This establishes 
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PROPOSITION 3.1: There is a bijection between isomorphism c/asses of tensor 

functors F and isomorphism classes of pairs (R, f ) .  

Let us analyze (R, f ) .  Take 0 r xa �9 R~ for each a �9 A and write 

xoxb = ~(a, b)x.b 

with ~(a, b) �9 h • Then ~ is a 2-cocycle. Put  

a(a, b) - ~(a, b) 
~(b,a) 

so that  

yx = a(a, b)xy 

for all x E R a ,  y E Rb. The map a: A • A ~ k • is an alternating form on 

A, and as R is simple, a is nondegenerate (Proposition 2.5). The form X is 

nondegenerate as well, so there exists an automorphism a: A ~ A such that  

~(a,  b) = ~(a,  o(b)) 

for all a, b E A. 

By the nondegeneracy of a,  we have 

Rc = {z �9 R I xz  = ~(a,c)zx for all x �9 Ra, a �9 A} 

for any c �9 A. Hence (17) means that  

f (y)  �9 R~(b) i f y � 9  

So we may write f(x~) = v(a)x~(a) with v(a) �9 k • Then 

: (xoxb)  = f (~(a ,  b)xob) = ~(a, b).(ab)x~(ob), 

f(xb)f(Xa) = l./(a)Xa(b)P(a)Xa(a) =- v(a)ly(b)~(o'(b), o'(a))Xa(b)a(a). 

Hence, that  f is an anti-automorphism means that  

. (a)~(b)  ~(a, b) 
y(ab) ~(a(b), a(a)) 

Also 
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Hence f2  = 1 means  tha t  

45 

v ( a ) p ( a ( a ) ) = l ,  a 2 = 1 .  

Final ly  by L e m m a  2.3 

s g n ( f ) d  = t race ( f :  R --+ R) -- 
aEA s.t. 
~(~)=~ 

~(a). 

Hence the condit ion sgn ( f )  = e is expressed as 

v(a)  = ~d. 
aEA s.t. 
~(~)=~ 

If  we choose another  basis (x~ = r of R with r  E k x, then  the 

corresponding ~', v ~ are given by 

( ' ( a , b ) -  r162 v ' ( a ) -  r  v(a)  
r r 

Any 2-cocycle ~ whose an t i - symmetr iza t ion  a is nondegenera te  conversely 

defines a s imple s t rongly A-graded algebra. Thus  we obta in  

PROPOSITION 3.2: Let ]A] = d 2, T = ed -1 with d E N, e -~ +1.  Let  X: A x A --4 

k x be a nondegenerate symmetric bicharacter. Then isomorphism classes of 

tensor functors C( A, X, T) ~ V are in one-to-one correspondence with equivalence 

c/asses of triples (a, ~, v) consisting of a~ involutive automorphism a: A -+ A, a 
2-cocycle ~: A x A --+ k x , and a m a p  ~: A --+ k x satisfying 

where 

x(a, b) = ~(a, o(b)), 
v(a),(b) ~(a, b) 

.(~b) ~(o(b),o(~))' 
~(a)~(o(a)) = 1, 

Z = 
aEA s.t. 
~(~)=a 

c~(a, b) - ~(a, b) 
~(b,a)" 
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Here two triples (a, ~, v), (a', ~', v') are said to be equivalent if or = a' and there 

exists a map r A --4 k • such that 

r162 . . . .  v'(a) = r v(a). 
~'(a,b) - ~ eta, o), r  

Let J(A,  X, T) be the set of such triples (a,~, v), and J(A,  X, T) the quotient 

set of J(A,  X, T) under the above equivalence relation. 

Let us consider in general a situation where X is a nondegenerate symmetric 

bicharacter of A and a is an involutive automorphism of A such that  a = Xo (1 x a) 

is alternating. (o stands for the composition of maps.) Then X = c~ o (1 x a). 

Also by transposing, ~ - i  = X o (a x 1). Hence 

(19) a o  (a x a) = a -1. 

Pu t  

A~ = {aa(a)[ a e A}, 

A ~ = {a e A t a(a) = a}. 

Then A~ < A a _ A and Aa/Aa has exponent 2. 

Also A~ = A ~, where _L is taken with respect to X. Indeed, for any a, b E A, 

x(aa(a), b) = x(a, b)x(a(a), b) 

= x(a ,  b)x(b, 

= x(a, b)x(a, a(b)) -1 

= x ( a ,  

Hence, by the nondegeneracy of X, we have 

b E A~ ~ ba(b) - 1 = 1  ." :. b e A a. 

It follows that  X induces a nondegenerate pairing 

~: A~/A~ • A~/A~ ~ k • 

As x = a on A ~, :~ is alternating. In particular, the rank of the elementary 

abelian 2-group A~/A~ must be even. We may write [A~/A~I = ~2, d �9 1~ so 

that  d = ]A,,]d. 
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Suppose given a triple (a, ~, u) E J(A, X, T). Then a = X o (1 • a) = alt(r is 

alternating, so the above constructions can apply. 

The condition 

u(a)u(a(a)) = 1 for all a e A 

m a y b e  replaced by 

ulA~ = 1, 

because 
u(aa(a) ) = u(a)u(a(a) ) ~(a2 (a), a(a) ) _ u(a)u(a(a) ). 

~(a,a(a)) 

On A a we have 

u(a)u(b) _ ~(a, b) = a(a, b) =- x(a, b). 
v(ab) r 

In particular u]A" is constant on each coset of A~, hence v]A ~ factors through a 

map 9: Aa /Aa --9 k x . And the condition 

E u(a)=ed  
aEA a 

may be rephrased as 

v ( a ) = e d .  
aE A a / A a  

We may regard A"/A,,  as a vector space over F2. That  )~ is an alternating 

form on A"/A,,  and the equation 

o( b) - 

imply that  ~(1) = 1 and O(a) = +1. Regarding {-4-1} as F2, we may say ~ is 

a quadratic form on A'7/A,, (Definition 2.7). So the invariant sgn(P) is defined 

(Definition 2.9). By Lemma 2.10, the equation 

aEA~" /A~, 

is rephrased as 

sgn(p) = e. 
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In summary,  J(A, X, T) consists of (a, ~, u) such that  

a E Aut(A),  a 2 = 1, 

~: A x A --+ k • is a 2-cocycle, 

X o (1 x a) = alt(~), 

v: A -~ k x , 

O u -  r 
U o (o x ~) '  

vlA~ = 1, 

sgn(O) = e, 

where 0 is the coboundary  operator ,  ~T denotes the transpose of ~, i.e., ~T (a, b) = 

~(b, a), and alt(~) = ~/~T. Triples (a, ~, u) and (a, ~', v') are equivalent if there 

exists a map  r A --+ k x such tha t  

~' = ~ 0r 
(~ 0 Or" 

Note also tha t  in this case v = u I on A *, hence 0 = 0~. 

Now let J'(A,  X, T) be the set of pairs (a, #) such tha t  

a 6 Aut(A),  a 2 = 1, 

X o (1 x a)  is al ternat ing (so we can speak of A~, A ~, ~), 

#: A~'/A~, -~ k • , 

O# = :~ (so # is a quadrat ic  form and we can speak of sgn(#)),  

sgn(#) = e. 

The  preceding discussion shows tha t  (a, ~, u) ~ (a, O) yields a map 

J(A, X, "r) ~ J '(A,  X, T). 

PROPOSITION 3.3: This map is bijective. 

Proof: Injectivity: Firs t ly we observe tha t  if (a, ~, v) E J(A,  X, ~') and r A --+ k • 

is a map,  then (a, ~', v') given by 

( = ~ 0 r  v ' = v  ~ 
r  
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belongs to J(A, X, T) (and is equivalent to (a, r u)). Indeed, alt(~) = alt(~'), and 

Ov, = Ov O r 0r 
o (o • o) 

Cr o (o • ~) 0r  o (o • o) 
,~. 0r 

( r  0r  o (,7 x o) 

r o (~ x ~)' 

and viA" = v'l Ar so ~ = ~'. Thus (a,r E J(A,x,~-). 
Now suppose (a, ~, v), (a, ~', #) E J(A, X, T) and ~ = P'. We have 

alt(r = X o (1 x a) = alt(r 

but alt: H2(A) -+ X2(A) is an isomorphism (Proposition 2.6), so ~,~' are co- 

homologous. Replacing (a, ~, v) by an equivalent triple (a, ~0r Vco-~a), we may 

assume ~ - ~.  Then 

Ov = ~ = Or', ~r o (~ x ,~) 

hence v'/v E X(A) = Hom(A, kX). As ~ = P', v'/v is trivial on A ~'. Now by 

Lemma 3.4 below, we can find r e X(A) such that 

(~ /]r 

~o~r- v" 

Hence 

r162  = r = ( ,  VC-~a = v'. 

/ 

Thus (a, ~, v), (a, r # )  are equivalent. 

Surjectivity: Let (a, #) E J'(A, X, T). Put  a = X o (1 x a). By Proposition 2.6, 
we can take ~ E X2(A) such that alt(~) = a. Then 

Cr o (o x o) e X~(A), 

because 

~ ) = a l t ( ~ ) . ( a l t ( ~ ) o ( a x a ) ) = a . ( a o ( a x a ) ) = l  alt ~ T o ( a x a )  
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by (19). Therefore, by Proposition 2.6 again, there exists a map v': A --+ k x such 

that  

,~r 0 (17 X 0)" 

Then over A ~ x A ~ we have 

OQL/ !  - -  
d r 

- ~ = z = 2 o ( ~  • ~ )  = o ( , ~  o ~-) ,  

where zr: A ~ --+ A ~ / A ~  is the projection. Hence 

- -  �9 X ( A ~ ) .  
v'lA ~ 

Extend this to r �9 X ( A )  and set v = v ' r  Then 

O v  = O r '  - 
~r o (o x o) 

and v iA  ~ = # o zr. So (a, ~, v) �9 J ( A ,  X, T) and ~ = #. | 

LEMMA 3.4 :  

where _k is taken relative to the canonical pairing A x X (A)  --+ k x . 

Proof'. Let a*: X ( A )  -~ X ( A )  be the dual of a. Let a / i d  denote the endomor- 

phism a ~-~ a ( a ) / a  and a* / id  the similar one for X ( A ) .  Then 

A ~ = Ker ~ = Im 

Taking _k, we have the required identity. | 

Combining Propositions 3.2 and 3.3, we obtain 

THEOREM 3.5: Let  ]AI = d 2, T = ed -1 with d E N, e = +1. Let  X: A x A --+ k • 

be a nondegenerate  symmetr ic  bicharacter. Then isomorphism c/asses of  tensor 

functors C( A,  X, T) --+ V are in one-to-one correspondence with pairs ( a, #) such 

that  

a E A u t ( A ) ,  a 2 = 1 ,  

X o (1 x a) is alternating, 

#: A~ /A~ ~ k x is a map,  

O# = 2, 

s g ~ ( ~ )  = ~, 
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where 

A~ = {aa(a)l a �9 A}, 

A ~ = {a �9 A I a(a) = a}, 

2: Ar  x A~/A~ -+ k • is the pairing induced from X, and sgn(#) is the 

signature of the quadratic form #. 

4. Case  w h e r e  IAI is o d d  

When IAI is odd, we can complete the classification of tensor functors C(A, X, ~') 

--+ Y. As before, let HA I = d 2, d E N, ~" = ed -1. Let (a, #) be a pair of Theorem 

3.5. We have A~/A~ = 1. The only quadratic form on A a / A ,  is the zero map, 

which has signature +1 by definition. So if e = -1 ,  there does not exist a pair 

If e -- + l ,  it is enough to take care of only a. Since IAI is odd and a :  = id, we 

have the decomposition 

A = A + x A _ ,  

A+ = {a e AI a(a) = a} = A ~, 

A_ = {a �9 AI a(a) = a- l } .  

That  X is symmetric and X o (1 x a) is alternating implies 

x(A+,A+)  = ~ ( A _ , A _ )  = 1. 

Conversely, if we are given a decomposition A = B0 x B1 such that  X is trivial 

on both B0 and B1, then we have the involution a: (bo, bl) ~-~ (b0, bl  1) of A 

and X o (1 x a) is alternating. Thus involutions in question are in one-to-one 

correspondence with such decompositions A = B0 x B1. By Theorem 3.5 we 

obtain 

PROPOSITION 4.1: (i) Ire =--1 ,  there exists no tensor functor C(A, X, ~') --~ V. 

(ii) Ire = 1, isomorphism c/asses of tensor functors C(A, X, T) --4 V correspond 

bijectively to pairs (Bo, B1) of subgroups of A such that 

A = B 0 x B 1 ,  x(Bo, B o ) = x ( B 1 , B 1 ) = I .  

Let (Bo, B1) be as above. Then X induces an isomorphism of B1 onto the dual 

X(Bo) .  Thus the pair (A, X) is isomorphic to (Bo x X(Bo) ,w) ,  where 

w((b, ~), (b', 13')) = 13(b~)~'(b). 
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We will say such X is hyperbolic. 

If (B~), B~) is another pair with the same property, then A ~ Bo xX(Bo)  -~ Box 

Bo and A ~ B~ x B~. It follows that Bo ~ B~. And B1 ~ X(Bo)  ~- X(B~)  ~ B E. 
The isomorphisms Bi --+ B~ thus obtained induce the automorphism 

A = B0 x B1 --+ B~ x B~ : A, 

which obviously preserves X. We conclude that if X is hyperbolic, the group 

Aut(A, X) acts transitively on the set of pairs (Bo, B1) of the preceding proposi- 

tion. Thus we have the following. 

PROPOSITION 4.2: Suppose e = 1. There exists a tensor functor C(A, X, T) -4 )2 
i f  and only i f  x is hyperbolic. In this case the group Aut C( A, X, ~') acts transitively 
on the set of  isomorphism classes o f  tensor functors C(A, X, T) -+ )2. 

By the theory of Tannakian categories ([4]), a tensor functor F: C(A, X, ~') -~ )2 
determines a Hopf algebra H so that F factors as the composite of a tensor 

equivalence C(A, X, T) ~-- H-mod and the forgetful functor H-mod -+ )2, where 

H-mod is the category of finite dimensional H-modules. (C(A, X, T) is rigid as 

shown in [3].) Let us describe explicitly the Hopf algebra H in the case of the 

preceding proposition. 

We assume e = 1 and (A, X) is hyperbolic. Specifically we take 

A = B x X ( B ) ,  

X: ( (b, fl), (b', t3') ) ,+ (b,13') (b', fl) , 

a: (b,/~) ~ (b,/3-1), 

/ t - - l ,  

where ( - , - )  is the canonical pairing between B and X ( B ) .  
We will keep the notation in Section 3. We have XO (1 • a): ((b, fl), (b ' ,~) )  ~-4 

(b, fl~)-i(bt,fl),  so we can take the 2-cocycle ~ to be 

~: ((b, fl), (b',t3')) ~-+ (b',fl). 

Then 

so we can take v to be 

{ r  o (~ x ~) = x, 

v: (b, fl) ~-4 (b, fl) -1. 
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Hence the A-graded algebra R is given by 

R = ( ~  R(b,~), 
bEB,~EX(B) 

with relations 

R(b,~) = kxbxz  

XbXb, = Xb, Xb, Xf~X~, = X~,X#, X~Xb = (fl, b)XbXf~, 

and the involution f is given by 

f(Xb) = Xb, f(x/3) : Xf~-,. 

As the simple left R-module M, we take M = ~ b e B  kvb with action 

Xb.Vb, = Vbb', Z~.Vb, = (j3, b')vb,. 

The pairing 7 on M is given by 

"~(Vb, Vc) = ~bc,1 

so that  the isomorphism M | M --+ R is given by 

with inverse 

1 E(/~,c)_lVbc_~ ~Vc. 
XbX~ ~ ~ cEB 

We have thus specified the isomorphisms (il)-(i4) of Section 3, which determine 

a tensor functor F: C(A, X, T) ---r V. 

Now we describe the Hopf algebra H for F.  We let H = I-LeA End R~ > End M 

as an algebra. The spaces Ra for a ~ A and M are simple left H-modules. Let 

f~ E H for a E A be the central idempotent in the factor End Ra -~ k, and let 

eb,b, E H for b, b ~ E B be the matrix units in the factor End M relative to the 

basis {Vb} of M, i.e., eb,b,(Vb,,) = 5b,,b,,Vb. 

The comultiplication A: H --+ H | H is determined by the requirement that 

the isomorphisms (il)-(i4) are H-linear. For example, f(b,~) acts on R as the 

projection onto R(b,/3). Translating this via the isomorphism M | M -~ R, one 

finds that  f(b,~) acts on M | M as 

1 Z (~b,c'd' (]~, d'd-1)Vbd -x | "Od. Vc, | Vs ~ ~ d 
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This tells us that  the End M | End M-component of A(f(b,Z)) is given by 

1 
IB I Z (8, d-ld')ebd-l,bd '-1 | ed,d,. 

d,d~ E B 

Working with the other isomorphisms likewise, one finds that the comultiplication 

A of H is given by 

, 1 
A(f(b,~) ) :- Z f(bb'-',~/3'-') | f(b',~ ) + - ~  ~ (J3, d-ld')ebd-~,bd '-~ | 

(b',f~')EA d,dr EB 

i ( e d , d , )  = ~ -1  , ((~,d d )f(b,~) | eb-ld,b-ld , + (Z, d d ' - l ) e b - l d , b - ' d  , | f(b,~)) . 
(b,f~)eA 

5. Case where  A is an e lementary  abelian 2-group 

For the case where IAI is even, we give a complete classification of tensor functors 

C(A, X, T) --+ 1; only when A is an elementary abelian 2-group. 

Here elementary abelian 2-groups are regarded as vector spaces over the field 

F = F2. Let $ be the category whose objects are pairs (A, X) of F-vector 

spaces A and nondegenerate symmetric bilinear forms X on A, and morphisms 

are isomorphisms in an obvious sense. Let T be the category whose objects are 

triples (A, X, a) of F-vector spaces A, nondegenerate symmetric bilinear forms 

X on A, and involutions a E Aut(A) such that X o (1 x a) are alternating, and 

whose morphisms are isomorphisms in an obvious sense. Direct sums of objects 

are defined componentwise. 

For (A, X) E S, we have the object (A ~ A, X @ X, T) E T, where T: (a, b) 

(b, a). The automorphism (a, b) ~ (a, a + b) of A @ A yields the isomorphism 

in 7", where the third component of the right side stands for the automorphism 

(a, b) ~ (a + b, b). If X is alternating, we have also the object (A, X, id) E T. 

Conversely, let (A, X, a) E T. Let A`" _< A`" _< A be as in Section 3. Let 

p(a) = a(a) - a. Then p2 = 0 and Aa = Im p, A`" = Ker p. Hence p induces an 

isomorphism/5: A/A" ~ A`'. As A a = A~, the form X induces nondegenerate 

pairings 

:~: A`" x A/A" --+ F, 

~: A`'/A`" x A`'/A`" ~ F, 
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and 2 is alternating. Since both X o (1 x a) and X are symmetric, we have 

x(a, p(b)) = x(b, p(a)). Let 

Xo- = X o (1 x/5-1): A,, x Ao- -4 F 

so that  X~,(a,p(b)) = x(a,b) for a E A~, b E A. Then 

X~(p(a), p(b)) = X(p(a), b) = X(p(b), a) = X~(p(b), p(a)), 

so Xa is symmetric. 

Thus we have functors P1, P2: T --+ S taking (A, X, a) to (A~, X~), (A~/A~, X), 
respectively. 

PROPOSITION 5.1: Every object (A, X, a) E T is isomorphic to 

(A1 @) A1, Xi @ Xl, T) @ (A2, X2, id) 

with (A i , x l ) , (A2 ,x2 )  E $ and X2 alternating. The isomorphism classes of 
(A i ,x i )  and (A2,x2) are uniquely determined. 

Proof." The uniqueness follows from that the functors Pi,  P2 take the object 

(Ai @ Ai, Xl @ Xi, T) @ (A2, X2, id) 

to (Ai, Xi), (A2, X2), respectively. 

Let (A, X, a) E T. Then a = X o (1 x a) is a nondegenerate alternating form 

on A and a(A~,A~) = 0 and A ~ = {a E A[ a(a, Aa) = 0}. By Lemma5 .2  

below, there exists A3 <_ A such that A = A ~ �9 A3 and a(A3,A3) = O. Put  

A2 = (A~ + A3) -L -- A ~ M A~ (_L is taken relative to X). Then A ~ = Aa ~ A2. 

Indeed, 

and 

A,, M A" A A~ = A,, M A~- = (A") -L A A3 -L = (A ~ + A3) -L = A -L = 0 

dim A~/A2 = dim(A~ + A3)/A~ = dim Aa = dim A / A  ~ = dim A~. 

Thus A -- A~ ~ A2 �9 A3. 

The map p induces an isomorphism A3 -~ Aa. We have x(a, b) -- x~(a, p(b)) 
for a E Aa, b E A3. As a(A3,A3) -- O, we have x(a,a(b)) = i for a,b E A3, hence 

x(a, b) = x(a, p(b)) = X~(p(a), p(b)). 
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Let X2 be the restriction of X to A2. The isomorphism 

A = A~ @ A2 �9 A3 ~ A~ @ A~ ~ A2 

( a l , a 2 , a 3 )  ~ ( a l , p ( a 3 ) , a 2 )  

yields a desired isomorphism 

( A , x , a ) ~ _ ( A , , @ A ~ , (  0 
X~ 

Xa 1) 
1 ) @ (A2,x2, id). 

LEMMA 5.2: Let V be a vector space over F, a: V x V --~ F a nondegenerate 

Mternating form, and U a subspace of V such that a(U, U) = O. Then there 

exists a subspace W of V such that a(W, W) = 0 and V = U • @ W. 

Proof: We will inductively construct vectors u l , . . . ,  uk in U and Wl, . . . ,  wk in V 

such that a(u~,wj) = ~ij and a(wj,wj,) = 0 for all 1 < i , j , j '  <_ k. If k = dimU, 

then W = (wl , . . . ,wk)  is a required subspace. Suppose we have found such 

vectors for k < dimU. Then (u l , . . . ,uk)  ~ U. Take w E (Ul, . . . ,uk) • \ U  • 

Take u E U such that a(u, w) = 1. Put 

k 

j = l  

k 

j = l  

Then 

a(wk+l,wj) =0,a(uk+l ,wj )  = 0  for 1 < j  <k ,  and 

a(uk+l, w +l) = 1. 

Thus u l , . . . ,  Uk+l;wl,. . . ,  wk+l have the required property. | 

PROPOSITION 5.3: The isomorphism class of an object (A, X, a) in 7- is detected 

by rank(a - 1) and the isomorphism class of (A, X) in S. 

Proof: Take an isomorphism 

(A, X, a) ~- (A1 @ A1, X1 @ X1, T) @ (A2, X2, id). 

It is enough to show that the isomorphism classes of (A1, X1), (A2, X2) are deter- 

mined from (A, X) and r a n k ( a -  1). Clearly dimA and r a n k ( a -  1) determine 
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d imAl ,  dimA2. Since X2 is a nondegenerate alternating form, (A2,x2) is iso- 

morphic to the direct sum H s with s = �89 dim A2 in the notation of Section 2 (5). 

Hence 
(A , x )  ~- (A1,x1) 2 @ H  s. 

By Corollary 2.13, the isomorphism class of (A1, X1) is uniquely determined from 

that of (A, X). | 

Let (A, X) E S. The group Aut(A, X) acts on the set J ' (A,  X, T). The orbit set 

J ' (A ,  X, T ) / A u t ( A ,  X) is described as follows. 

PROPOSITION 5.4: Let dimA = 2r. The map (a,#) ~ r - rank(a - 1) gives an 

injection 

J ' ( A , x , T ) /  A u t ( A , x  ) -~ 7, 

with image 

{k E [0, r]] k - -  r m o d 2 }  

{k e [1,r][ k - r m o d 2 }  

[0, r - 1] 

[1, r - 1] 

i f  X is alternating and e = 1, 

i f  x is alternating and e --= - 1 ,  

i f  x is not alternating and e = 1, 

i f  x is not alternating and e = - 1 .  

Proof: Injectivity: Let (a, #), (a', #') E J ' (A,  X, r) and suppose rank(a - 1) = 

rank(a '  - 1). By the preceding proposition, (A ,x , a )  -~ (A, X,a').  So we may 

assume a = a'. Then #, #' are quadratic forms on A~/A~ having the same asso- 

ciated bilinear form :~ and the same signature e. Hence they are conjugate under 

the group Aut(  A~' / A~, , ~(). Now the natural map Aut(A, X, a) --~ Aut (  A~ / A~ , y() 

is surjective, as seen from the isomorphism of the preceding proposition. Hence 

(a, tt), (a, #') are conjugate under Aut(A, X, a). 

Image: Suppose X is alternating. Then (A, X) ~ Hr.  For any integers kl, k2 _~ 

0 with r = 2kl + k2 let (AI,X1) = H k', (A2, x2) = H k2 and set 

( A', X', a') = ( A1 ~ A1, X1 @ X1, T)  @ (A2, X2, id). 

Then (A', X') ~ (A, X) and r - rank(a '  - 1) = k2. Unless e = - 1  and k2 = 0, we 

can take a quadratic form #' on A2 having the associated bilinear form X2 and 

the signature e. Thus we have (a ' ,# ' )  E J ' (A ' , x ' , ' r ) .  Hence such k2 is in the 

image of the map. The converse inclusion is similarly shown. 

Next, suppose X is not alternating. Then (A, X) -~ Hr-1  @ L2 by Proposition 

2.11. For integers kl, k2 >_ 0 such that 2kl + k2 = r -  1 (resp. 2kl d- 1 + k2 -- r -  1) 
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consider the above (A ' , x ' , a  ~) with (A1,x1) = H kl �9 L (resp. H kl @ L 2) and 

(A2, X2) = Hk~. Then (A', X') ~ (A, X) and r - rank(a' - 1) = k2. Similarly to 

the above, k2 is in the image unless e = - 1  and k2 = 0. | 

By Theorem 3.5 and Proposition 1 we obtain the following. 

PROPOSITION 5.5: The number of orbits of  isomorphism c/asses of tensor 

functors C(A, X, T) -~ V under the action of AutC(A,  X, ~') is given by 

[ 1+1 
r 

r - 1  

if  X is aIternating and e = 1, 

if X is alternating and e = -1 ,  

if x is not alternating and e = 1, 

if X is not alternating and e =- -1 .  

In the rest of this section we describe Hopf algebras arising from tensor functors 

C(A, X, "r) --+ )2. Firstly we make a reduction to the indecomposable case. We 

have a natural notion of direct sums for 5-tuples (A, X, ~', a, it) with (a, it) E 

J'(A,  X, •): 

(A, X, T, a, it) (9 (A', ~(', T', a',  it') = (A", X", T", a", #"), 

where 

A" = A x A', 

X": ((a, a'), (b, b')) ,-+ x(a, b)x'(a', b'), 

T II  ~ TT  I, 

0 Ir ~ O" X a I , 

it": (a, a') 

If F: C(A, X, T) ~ V and F' :  C(A', X', T') ~ ~) are tensor functors respectively 

corresponding to (a, it) and (a r, it'), then the tensor functor F'~: C(A' ,  X' ,  V~) --+ 

]; defined by 

F ' ( ( a ,  a')) = F(a) | F'(a'), 

F"(m) = F(m)  | F'(m) 

corresponds to (a", #"). Let F and F '  yield equivalences C(A, X, T) ~ H-mod 
and C(A ~, X ~, T ~) ~-- H~-mod with H and H '  Hopf algebras, respectively. Let 



Vol. 118, 2 0 0 0  REPRESENTATIONS OF TENSOR CATEGORIES 59 

H" be the factor algebra of H | H ~ determined by the simple H | H~-modules 

F(a) | F(a') for all a e A, a' E A' and F(m) | F'(m). As direct sums of those 

simple modules are closed under tensor products, H '1 is a Hopf algebra. Then 

F" yields an equivalence C(A", X", ~'") ~- H"-mod. 
By Propositions 5.1 and 5.3, any object (A, X, ~, a, #) with A an elementary 

abelian 2-group is a direct sum of the following four objects: 

l O O  1 o o o  ,0), 
(F4' 0 0 0 ' §  1 0 0 

0 0 1 0 1 0 

(F2, (01 10), +~,id,  q+), 

where the quadratic forms q+, q_ on F 2 are given in coordinates by 

2 2 q + = x l x 2 ,  q_ = x  l+x~. - t -x lx2 .  

Thus we may confine ourselves to describing Hopf algebras for the tensor fune- 

tors corresponding to the above four objects. The last three were already treated 
in [3]. They correspond to the Hopf algebra/Is of Kac and Paljutkin, the dihe- 

dral group Ds, and the quaternion group Qs, respectively. So we consider here 
only the first. Switching back to the multiplicative notation, we let 

A = B x B ,  

x: ((a, b), b')) b'), 
1 

a: (a, b) ~ (b, a), 

~- -1 ,  

where B is the Klein 4-group and w: B x B  --+ {:El} C k • is the unique alternating 

form on B. 
The A-graded algebra R is given by 

R =  ~ R(a,b), R(a,b ) ~ kxayb 
a,bEB 
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with relations 

x,~xa, = Xaa, , YbYb' = Ybb' , x~yb = to(a, b)ybx,~. 

The involution f interchanges x~ and ya. The simple left R-module M is given 

by 

with action 

M = ( ~  k V b  

b6B 

Xa.Yb = Vab, ya.Vb = to(a, b)vb. 

The isomorphism M | M -4 R is given by 

Vc | Vd ~ ~ w(ac, bd)xayb 
a,bEB 

with inverse 
1 

Xayb ~ ~ Z w(ac, bd)vc | Vd. 
c.~d 

Thus we obtain the isomorphisms in (il)-(i4), which determine a tensor functor 

F: C(A, X, T) -4 V. 

Let H be the Hopf algebra for F. Then H = I-Lea End R,  x End M as an 

algebra. Let fa E H be the idempotent in the factor End Ra ~- k and let eb,b, E H 

be the matrix units in the factor End M relative to the basis {vb} of M. Similarly 

to the end of Section 4, one sees that the comultiplication A of H is given by 

= S ( o , , b , ) |  
(a',b')EA 

1 
+ .,(ac, bd)to(a ',bd')ec,c, | 

c,c',d,d~EB 

A(ed,d,) : Z (to(b, dd')f(~,,b) | ead,ad' -~-o.)(a, ddt)ebd,bd, | f(~,b)). 
(a,b)eA 
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