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OF ELLIPTIC EQUATIONSI:
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§1. Introduction

This paper deals with the asymptotic behavior of solutions of second-order
partial differential equations in n = 2 independent variables. We are specifically
concerned with the oscillation (= sup— inf) of global C? solutions of equations
(resp. inequalities) of the form

(1.1) divA(x,u,u.)= B(x,u,u,.) (resp. = B(x, u, u,)).

Here A is a given C' vector function of the variables (x,u, u.), B is a given
continuous scalar function of the same variables, and u, denotes the gradient of the
dependent variable u = u(x)=u(xy, -, x.).

The structure of (1.1) is determined by the functions A(x,s,p) and B(x,s,p)
which we take to be defined on R”" X R X R". We assume, for simplicity, in this
section that A and B satisfy

[A(x,s,p)|=M(x)|p "™,
(1.2) (A(x,s,p),pyzm(x)|pl
B(x,s,p)Zf(x)—g@)|p|"" —c(x)|s|® —h(x)Ip],

for some @ = n, B >0, and for all (x, s, p) ER” X RxR". Here (-, - ) and | - | denote,
respectively, the usual inner product and norm on R"; all functions that appear are
locally integrable and non-negative and m(x)>0. Moreover, we assume that
c+(g*/m*EL',h/im €L”, f#£0if g+ c + h#0, and — again, for simplicity in
this introductory section — that sup M*“"/m <.

It should be remarked here that the Euler-Lagrange equations of various (not
necessarily regular) multiple integral variational problems are of the form (1.1)
where A and B satisfy conditions which take the general form of (1.2) (cf. Serrin
[21]). In particular, the structural conditions imposed above include, when & = n =
2, the second-order linear elliptic equation in divergence form
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(1.3) da"(x)odu+bou+cu=f=0 (ZOif [b]+|c|#0)

if, say, m(x)|[p=a’(x)pp S uom (x)|pP V(. p) ER'XR . 0<m EL", p =1,
and |b|*+|c|eL".

Actually, our results are valid under weaker conditions which are discussed in
detail in §82, 3 below. In particular, in §2 we define for f € L., an extended real
number P(f) that measures the “positivity” of f and is such that P(f)= + »if f =0
a.e. (cf. Definition 2.3). In (1.2) it suffices to assume that P(f) >0 in place of f = 0.
Moreover, the number P(f) turns out to be of crucial importance for a precise
understanding of the asymptotic behavior of global solutions of (1.1). In addition,
we are able to handle the case @ <n — but under different conditions on
M*“""/m than that imposed above.

The investigation of the local behavior of solutions of (1.1) under conditions
similar to (1.2) was initiated by Serrin {22-25] and continued by Trudinger [28]. The
asymptotic behavior at infinity of solutions of div A(x, u, u.) =0 was treated by
Serrin in [24]. Our results cover the case div A(x, u, u,) = 0 but are often of a less
specific nature. As special cases of the conclusions obtained below, we record here
the following theorems (in which we assume that A and B satisfy conditions (1.2)
and set oscu =supu —infu):

Theorem 1.1. Letg=c =0 in (1.2) and set H =sup(h/m). If u is a global
nonconstant solution of (1.1) then oscu = (1/H)P(f) (where a/0 = +w if a >0)
even if {x :f(x) <0} is not assumed to be empty.

Corollary 1.1. Let A and B be as in Theorem 1.1. If P(f)= +» (e.g.. f=0)
then every bounded global solution of divA = B is a constant.

Theorem 1.2. Let g=c=h=0 in (1.2) and suppose that f"€ L' and
P(f) > 0. If uis a global solution of div A = B such that sup u < then u = constant
even if {x:f(x) <0} is not assumed to be empty.

Theorem 1.3. There exists a positive extended-real number y, such that every
nonconstant global solution of (1.1)~(1.2) satisfies sup|u|Z yo. Ifc =0 in (1.2) then
there exists a positive extended-real number vy, such that every nonconstant global
solution of (1.1)-(1.2) satisfies osc u = y,. The values of yo and y, may be given
explicitly in terms of the coefficients in (1.2). Finally, yo=v,= +> if g =c =0.

It should be observed that each of the theorems above gives a generalization of
Liouville’s theorem for subharmonic functions on R”. Liouville’s theorem, in this
form, fails to be true if @ < n in (1.2) (cf. §6 below) and this explains the restriction
a = n. However, some corresponding results can be obtained even for a <n
(which includes the case of linear elliptic equations in n = 3 variables) and some of
these are treated in §3 below and also in a companion paper [13].

We remark that Liouville-type theorems for general linear and nonlinear elliptic
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equations have been treated by many people. Explicit mention should be made of
the work of Bernstein [1], Bers-Nirenberg [2], Bohn-Jackson [3], Finn-Gilbarg [5],
Gilbarg-Serrin [7], Ivanov [11], Moser [16], Peletier-Serrin [17], Redheffer [19],
Serrin [25], Tavgelidze [26] and the survey article of Gilbarg [6]. Also, after the
work described here was completed, there appeared the paper [14] of Meier. Meier
obtains, among other results, the special case of Theorem 1.1 in which &« = n =2,
f=0,and m and M are constant — but for weak solutions. Although we assume
(for simplicity) that u € C7, all our results are also valid for weak solutions. In this
more general situation the proofs would follow the methods of this paper together
with those of the author’s earlier paper [12]. Meier’s methods are similar. We also
mention that Meier obtains (for m and M constant) a Liouville theorem for
solutions of divA = B on R" for B satisfying more restrictive conditions than (1.2)
(but without the restriction a 2 n) by means of Trudinger’s Harnack inequality
[27]. He remarks that this extends an earlier result of Hildebrandt and Widman [8].

The plan of the paper is as follows: The definition of P(f) and some preliminary
material is given in §2, the statement of the main results is given in §3, and proofs
are given in §4. Some auxiliary applications (to the geometry of graphs over R’ and
to nonlinear equations with only linear solutions of slow growth) are given in §5.
The sixth section is devoted to a number of examples that shed some light on the
need for the various hypotheses made in §3 and the sharpness of the estimates that
we obtain.

§2. Preliminaries

This section introduces some new concepts that play a fundamental role in the
asymptotic behavior of solutions of elliptic equations.

We begin by letting Dp (R") denote the C'-diffeomorphisms of R" that have
uniformly bounded differentials along with their inverses:

Dy (R") = {¢ € C-DIER") | sup (I |+ e ') <o}

for some norm ||| on R".

Let B(p;r) denote the ball of radius r centered at p €R" and let B(r)= B(0;r).
For each C'-diffeomorphism ¢ of R" the family of sets {¢ (B(p;r))},»o covers R"
and may be thought of as centered at ¢ (p).

Definition 2.1. A pseudo-spherical exhaustion of R" is a family of sets of the
form {eB(r)}-o=E, for some ¢ &Dgz(R"). Moreover, we set
Exh™ =4{E, : ¢ € Ds(R")}, and when ¢ is fixed we set K(r)=a¢ (B(r)).

Remark. It is clear that Exh™ contains every exhaustion of the form
{¢ (B(p, r)}o for ¢ € Dg(R"), p €R" In particular, Exh*’ contains the spherical
exhaustions {B(p;r)}.-e, p ER".
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Definition 2.2. If f € L,..(R") then a decomposition of f is an ordered pair
{g, h} of a.e. non-negative, locally integrable functions g and h such that f = g — h.
The canonical decomposition of f is the ordered pair {f*, f '} where f* = max (0, f)
and f~ = max (0, —f).

For any decomposition {g, h} of f we have g=f" and h = f".
Definition 2.3. (a)Forf € L., ¢ € Ds(R")and a decomposition {g, h} of f,
linlinflog[ j g/ f h] if h#0 ae.

Kt K(r)

P(f; ¢3{8 h}) =

+ if h =0 a.e.

where K(r)= ¢(B(0;r)). Note that log[f«¢) g/[xe h] is defined for sufficiently
large values of r if h#0.

(b) Po(f; @) =ws P(f5 05{f ", f D).

(©) P(f; ¢)=acsupin P(f; ¢;{g h}).

(d) P(f)=aet SUp,enurn P(f; @)

(€) Po(f) = aes SUPyenpmn Polf; @)

For later reference we record some elementary facts and examples:

Proposition 2.1. For any pseudo-spherical exhaustion E, and functions f, f,
and f, € L. we have:

(@) Po(f;¢)>0 iff P(f; ¢)>0.

(b) If Po(f; ) >0 then Po(f; )= P(f, ¢).

(c) If 0# A ER then P(Af,9)= (sgn A)P(f, ¢).

(dY If P(fi;0)>0 and P(f,; ) >0 then

P(fi+ fo0)Z min{P(fi; ¢), P(f; ¢)}.

Proof. (a) Let {g, h} be a decomposition of f and set I*(r) = [k, f*, J'(r) =
fxng and J(r)= fxeyh. Then J*(r)=I"(r)+ A(r) with A(r)= 0. It suffices to
prove that P(f,¢)>0=> Py(f;¢)>0 and so we assume that
lim sup, . (J (r)/J*(r)) <1 (f =0 trivially implying that Po(f; ¢)>0). Since

T EN=I ()+AEI(N)+AFE)=T /T 1-(A/A+I)+(A/A +T)

and (A/A +I")(r) has a convergent subsequence for any sequence r, —> @, it is a
simple matter to conclude that lim sup,..(I (r)/I*(r)) <1, i.e. Ps(f,¢)>0.

(b) 1t suffices to prove that P(f; ¢ )= Po(f; ¢ ) if Po(f; ¢)>0, and so it suffices to
show that for any decomposition {g, h} of f we have P(f; ¢;{g, h}) = Po(f; ¢) if
Py(f; ¢)>0. This last inequality follows from the form of (J*/J7)—(I"/I") as in
part (a) above.
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(c) is obvious.
(d) Consider the particular decomposition {g = fi + f3,h = fi + f3} of fi + fo. It
follows from (a) and (b) that
Po(fi+ f50)Z P(fi+ [ v {8 };}) it P(fi+F;e;:18 H})>0~

Thus it suffices to prove that. P(fi + fo; @ ;{g, h}) = min (Po(f:, ¢ ), Po(f2; ¢ )) >0 for
the decomposition {g, & }. This last inequality, in turn, follows from the inequality

. In+15 _ ( I . £>
(2.1) lm'stup T4 [2=max lim sup I lim sup )

where I7(r) =[x f; dx. The inequality (2.1) follows easily from the identity

L+l __Ii (£>+ I3 (&)
IT+I; I+ \IN) Li+I13\I3)"

Proposition 2.2. IffE€ L. and f~ € L' then P(f)> 0 iff f satisfies either of
the following two conditions:

(a) f=0 ae.

(b) fefdx >0.

Proof. If P(f)>0 then P(f; @)= Po(f; ¢)>0 for some ¢ € Dg(R") (cf. Pro-
position 2.1 (a), (b)). If K(r) = ¢(B(r)) we then have either f =0 a.e. or

([ [ il 1/ [0 fr/ [

i.e. [rnf > 0. The converse is immediate.

Remark. For a given f € L. it sometimes actually occurs that P(f; ¢) =0 for
some ¢ € Dp(R") while P(f)>0. For example, the function f(x,y)=
(sgn x)exp(x?) in R’ clearly has Py(f, ¢ ) = 0 when ¢ = identity. On the other hand,
it is not difficult to check that for ¢ (x,y) = ¢.(x,¥)=(x + a, y), a ER, we have
Py(f; ¢.)= £ according as *a > 0. It follows from Proposition 2.1 that
P(f,identity) = 0 while P(f; ¢.) = = according as *a > 0.

We conclude this section with a technical lemma which will be required a number

of times in the sequel:

Lemma 2.1. Let ¥:R" X(a,b)—[0,%) be such that ¥(-,A) is measurable
on R" for each A €E(a,b), —©v=a<b=w», and let ¥V.(A)=inf, ¥(x,A) and
W, (A) =sup: ¥(x,A) <. Assume that X, € (a, b) such that lim,_,, ¥(x,A)=1
for all x eR".
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(@) If P(f;¢)>0 and lim,_,, ¥, (A)=1=Ilim,_,, ¥, (A) then Ic E(a. b) and
te>0 such that

f Y(x, c)f(x)dx =0 for all t = t,
K(t)
where K(t) = ¢(B(t)).
®) Iff L', P(f;¢)>0, and lim,_,,W.(A)=1 then 3c €(a.b) and t,>0
such that

j Y(x, c)f(x)dx 2.0 forallt =z 1,

K(1)

where K(t) = ¢ (B(1)).

Proof. (a) Given 0 <e¢ <1 we have

f‘P(x,z\)f(x)dxé f W (M) (x)dx ~ f W, (A)f (x)dx

K() K(t) Kt}

=Z(l-¢) f ff(x)dx —(1+¢) f f(x)dx
K@) K(t)
for all A sufficiently close to Ao Since P(f;¢)>0 we have Pu(f;¢)>0 and
liminf (ki f Ik f)=L>1 or f =0. In either case,
A=)k f —(A+&)fxwf =0 for all t Zsomet, if £ is sufficiently small.
(b) Since f~€ L' we have

j Wix,A)f(x)dx = f W(x,A)f(x)dx — V¥, (A) f f (x)dx.

K(t) K(t)

If f* € L' then W(x, A)f"(x) is integrable for all A sufficiently close to A,. Thus by
Lebesgue’s convergence theorem, [ W(x,¢')f (x)dx — fo-f(x)dx Z0 if ¢’ is
sufficiently close to A, since P(f; ¢ ) > 0. Consequently, 3 a neighborhood N of A,
and t,> 0 such that [« ¥(x,¢)f (x)dx — ¥ (c) e f(x)dx =0 for all c € N and
t Z t,. On the other hand, if f*Z L' let A, > A,. By Fatou’s lemma

ff+dx=°°§lim f Y(x, A)f " (x)dx.

Hence 3¢’ such that fg= ¥(x,¢')f(x)dx — ¥, (c')fof (x)dx = 0 and consequently
3c € (a,b) and ¢, >0 with the desired properties.
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§3. Statement of results

In this section we consider various aspects of the asymptotic and oscillatory
behavior of global solutions of equations (resp. inequalities) of the form

3.1 divA(x,u,u.)= B(x,u,u.) (resp. = B(x, u, u.))

where u :R" — R, u, is the gradient of 4, and x € R". We will always require that
A(x,u, u.) and B(x, u, u,) are measurable. Since we will assume (for simplicity)
throughout this paper that all solutions are of class C?, it suffices to have A(x, s, p)
and B(x, s, p) measurable in x and continuous in s and p. (However, our results
would not be affected if we only assumed that u was of class H2(R") — with a as
below — and a weak solution of (3.1), i.e.

f A(x, u, u)ox + B(x, u, u)pdx =0 Vo € Co(R").
&
The proofs for this more general formulation would use the same estimates as
below, but the differential inequalities we derive below would be replaced by
difference equations obtained by choosing appropriate test functions ¢ — cf. [12].)
Using (-, -) and | - | to denote, respectively, the usual inner product and norm in
R” we now introduce the following

Definition 3.1. (1) Let @ > 1 be a real number and I a subinterval of R. The
vector field A : R" X R X R" — R" satisfies condition A (a, I) if there exist positive
measurable functions m =m; and M =M; on R", and an increasing positive
function F = F; on [0, %) such that:

(@) m (x)|p]" =(A(x,5,p).p) V(x5 p)ER XIXR",

() A, s, )l =M, (x)|p]*™" V(x,5,p)ER"XIXR",

1 M7 (x) [_dr -
() S;I"P [(ller1)“’*")’("“”F1(lxl). m;(x) ]<°° and frF(r)_ e

(2) A is a-regular on R" if it satisfies condition A (e, I) with I =R.

(3) A is left a-regular on R" if it satisfies condition A (a, I) for every interval I of
the form I = (— o, N), N >0. In this case we write m, = mn, etc.

(4) A is finitely a-regular on R" if it satisfies condition A (a, I) for every interval
I of the form I =[— N,N], N>0. In this case we write m; = mn, M; = M.

Remarks. (1) Clearly, a-regular = left a-regular = finitely a-regular.

(2) Useful candidates for F:(1,0)—(0,0) are F(r)=logr, F(r)=
log r -loglog(e + r), etc.

(3) In condition A (a, I) we must have M;(x)—0 as |x|—> if o <n. In fact,
(M im)zMVY“™ so we must have M/“ "(x)=constant-
F(lx )/ +|x])"™ and
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x x

f(me;““"”)%('T)g %«o with 6 = (n — a)/(a — 1)>0.

1 1

On the other hand, if @ = n condition A («, I') allows m; to approach zero and M,
to tend to infinity.

To describe the behavior of B we introduce (for a fixed real number « > 1, a
fixed set of real numbers 8 =.{B,}/- with 0=8,=--- =8, <a, and a fixed
continuous function ¢ : R— R with ¢/(0) = 0) the following

Definition 3.2, (1) For an interval I CR, the function B:R" XRxR" =R
satisfies condition B(a, I, B, , A) if A satisfies A (a, I) and 3 locally integrable
functions f, g =0, hj; 20 (j=1,---,q9), and h;(x)=0 such that:

(@) B(x,s,p)Z fi(x)— g(x)p(u)— - by [p|® —hi|p|* for all (x,5,p)ER" X
I xXR"

(b) supw-hi(x)/m;(x) <o (with m, as in condition A'(e, I)).

(c) 3¢ = ¢; € Ds(R") such that

Q) P(fi;¢:1)>0 (cf. §2),

(i) Hmsup,..{Sxw[hidm 1" [k fi} <= (for each j=1,---,q), and

(iii) limsup[fx,m 8/fxn f7] <o, where K; (1) = ¢ (B(2)).

Here we assume f, #0 if either g, or some h,, is #0.

(2) If A is a-regular and B satisfies condition B(a, I, 8, ¢, A) for some choice
of 8 and  when I =R then divA = B is a-regular.

(3) divA = B is strongly a-regular if it is «a-regular with the choice ¢ = 0.

(4) div A = B is finitely a-regular if A is finitely «-regular and, for some fixed
choice of B’ and ¢, B satisfies condition B(a, I, 8, yr; A) for each I of the form
I'=[-N,N], N>0. (In this case we write, when I =[— N,N], fi = fx, etc.)

Remarks. (1) A discussion of the natural occurrence of conditions such as
those imposed on A and B above can be found in Serrin’s papers [21] and [23].

(2) Observe that if h,, € L »" (for j=1,---,q), h; is constant and g, € L'
while P(f;) >0 and m, (x)>const >0, then the conditions in Definition 3.2 [parts
1b(ii)-(iii)] are satisfied.

(3) The local structure of solutions of equations divA = B, with A and B
satisfying conditions similar to those above, has been studied, for example, by
Serrin [21-24] and Trudinger [27]. We are interested in the behavior near « of
global solutions of div A 2 B, and the conditions imposed here are slightly weaker
than those imposed on A in Serrin’s study [22] of solutions of divA =0 in a
neighborhood of infinity.

Since the conditions imposed above are complicated by their generality it is well
to consider some explicit examples of some interest. We, therefore, note the
following
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Example. Let the vector b(x) = (b'(x), b*(x)) and the function c(x) satisfy
fre|b[P <> and fe2|c|dx <w. Let the matrix (a”(x, s, p)) satisfy 0<A(x)|p|’=
a’(x,s,p)pp; and [la’(x,s,p)= A(x) <o V(x5 p#0) where ||| denotes some
matrix norm. If

1 A’(x)

(3.2) su [( ) ]<00, P(f)>0
R2p log(1+|x1])/ A(x) ¢

(eg. f=0) and f#0 then da”(x,u, u)du+b'(x)du +c(x)u = f(x) (where

d; = 3/dx;) is a 2-regular inequality. If ¢ =0 it is even strongly 2-regular.

With these preliminaries out of the way we can now list our main results. We first
consider theorems of Liouville-type for global solutions u that satisfy growth
restrictions only from above:

Theorem 3.1’. Let A be left a-regular on R". If u is a global solution of
divA(x,u,u,) =0 on R" with supe-u < then u = constant.

This theorem, which generalizes the classical Liouville theorem for solutions of
Au = 0on R’ is — in turn — a special case of each of the following two theorems:

Theorem 3.2. Suppose that for each N>0 3 a non-negative
P(fx)>0, and B(x,5,p)Z fn(x) V(x,5,p) ER" X (—, N} XR". Let A be left a-
regular on R" and let u be a global solution of divA(x,u, u.)= B(x, u, u.). If
supu <« then u = constant.

Theorem 3.2. Suppose that for each N>0 3 a locally
locally integrable function hn(x) such that B(x,s,p)= — hu(x)|p|® for
V(x,s,p)ER" X (~o, N]XR" Let A be left a-regular on R" and such that
suprrhn(x)/mn(x) =g Hny <% for all N>0. If u is a global solution of
div A(x, u,u. )= B(x, u, u.) such that supg-u < then u = constant.

If the conditions on A and B in Theorem 3.2 are made more restrictive then the
conditions on u may be weakened as in

Theorem 3.3. Let A be wa-regular in R" with a 2 n, and assume that
supe-M " /m < oo, Suppose that B(x,s,p)= —h(x)|p|* for some non-negative
function h € L™ that satisfies H = supe-h (x)/m (x) <o and let u be a global solution
of divA(x,u,u.)=ZB(x,u,u;). If « = n and limsup,..u/log F(r)<(a—-1)/H
(with 1/0 = + ) for some positive, increasing function F satisfying [T dr[rF(r)= + @
then u =constant. If @ > n and limsup,..u/logr <(a —n)/H (with 1/0 = + =)
then u = constant.

Remarks. (1) After the work described here was completed, there appeared
the paper [14] of M. Meier which contains (among other results) a special case of
Theorem 3.2. Meier assumes that m(x)= const >0, h(x)=const<w,anda = n =
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2, and he concludes that a weak solution u is constant if sup u <. As remarked
above, our results are also valid for weak solutions although we do not give the
proof here.

(2) Note that if A is, say, a-regular and sup M *"“ "/m < then m(x)= M(x) =
constant < and so supr-h (x)/m(x) <o = h € L. This explains the change in
the hypotheses concerning h(x) between Theorems 3.2 and 3.3.

We now turn to restrictions on the oscillation of global solutions that are
bounded from both sides. Before stating our results, we remark that the relation of
the theorems below to the classical theory, say for Au =0 on R’, is clarified by
reformulating a version of Liouville’s theorem for subharmonic functions as
follows: If u is a global solution of Au = f = 0 on R® then either osc u = oscillation
of u (=4ssupu —infu) is infinite or u =constant (in which case we must have
f =0). We generalize this (and at the same time, explain how the fine structure of f
plays a role) in the following analogues of Theorems 3.1 and 3.2:

Theorem 3.4. Let A be finitely a-regular on R" and suppose that for each
N >0 3 locally integrable functions hx(Z0) and fx such that: P(fv)>0, Hy =
supe- hn (X)/mn(x) <o and B(x,s,p)Z fn(x)—ha(x)|p|* for all
(x,,p)ER"X[— N,N|xXR" If uis a global solution of div A(x, u, u.)= B(x, u, u,)
then

either u =constant or suplu'ésupmin{ ! P(fN),N}.
N 2H\

Corollary 3.4.1. Suppose that for each N >0 3fy € L, such that P(fu)>0
and B(x,s,p) = fn(x) forall (x,s,p)ER" X[~ N,N|xR" If A is finitely a-regular
on R" then any nonconstant global solution of div A = B has infinite oscillation.

As another consequence of Theorem 3.4 we have

Corollary 3.4.2. Let A be a-regular on R" and suppose that for V(x,s,p) B
satisfies B(x,s,p)Z f(x)—h(x)|p|* with f€ L., P(f)>0 and H = supe-h/m <
o, If u is a global solution of div A (x, u, u.)= B(x, u, u,) then either u = constant or
oscu = (1/H)P(f) (with a/0 = + »). Thus, if P(f) = + © (e.g. f = 0) every bounded
solution is a constant.

Moreover, we have the following general results — the proofs of which may be
reduced to that of Theorem 3.4.

Theorem 3.5. If the differential inequality divA(x,u,u.)= B(x,u,u.) is
finitely a-regular on R", then 3 an explicit positive extended-real number vy, =
vo(A, B) with the following property: If u is a global solution of divA = B and
sup|u| <y, then u = constant.

Theorem 3.6. If the differential inequality divA(x,u,u.)= B(x,u,u.) is
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strongly «a-regular on R” then 3 an explicit positive extended-real number v, =
vi(A, B) with the following property: If u is a global solution of divA = B and
osc u < vy, then u = constant.

Corollary 3.6.1. Let divA(x,u,u,)= B(x, u, u,) be strongly a-regular on R",
and suppose that C :R"XRXR"—> R satisfies C(x,s,p)= —k(x)|p|**® where
8 >0 and supk(x)/m(x)<o. Given w >0, 3 an explicit positive extended-real
number y. with the following property : If u is nonconstant, bounded global solution of
divA(x,u,u )= B(x,u,u. )+ C(x.u,u,) with sup|lu.|=w then oscu =y,
Moreover, y-(A. B, C)= v(A, B).

Since the case of linear elliptic equations is of special interest, it is worthwhile to
record some of the previous results, as well as some new ones, for linear equations
in two variables. For this purpose we introduce the inequality

(3.3) da"(x, u, u)du+b'(x)odu+c(x)u = f(x)

where the coefficients are assumed, for simplicity, to satisfy the following general
conditions (GC):

(a) 3 positive functions A (x)= A(x) such that:

() Ax)lpl'=a"(xsppp, =AX)|p[ ¥(x,s5p)ER*XRXR’,

(ii) sup A*(x)/m (x) <= (or more generally: sup -, A*(x)/A (x) = (r) satisfies
Jidrim(r) = +x);

() P(f)>0, and f#0 if [b]"+|c|#0;

() 3¢ € Ds(R") such that P(f,¢)>0 and, with ¢ (B(t))= K(t), Q,(b)=uer
Im)fxef]<%, and R, (¢)=uslimsupi=[fxw|c|/[xof] <

lim sup,—«[(f x| b
o, We set

E = exp(- P(f)),
3.4) Q = sup{Q, (b): ¢ satisfies P(f; ¢ ) > 0},
R = sup{R, (¢): ¢ satisfies P(f; ¢ ) > 0}.

We then have

Theorem 3.7. If the coefficients a”, b', ¢, and f in inequality (3.3) satisfy
conditions (GC) above, then every bounded, nonconstant global solution of the
inequality (3.3) satisfies

___[1-E (1-E) ( 4 )}
sup|u|= vo whereyg—mm{zR " 30 In (37 F

and E, P and Q are as in (3.4).

The proof of this result gives the following sharpened version if b =0:
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Corollary 3.7.1. Let (a”) and f be as in Theorem 3.7. If u is a global solution
of
da(x,u, u)ou+c(x)uzf

then supe:|u|=1/R where R is as in (3.4).

Theorem 3.8. Let the matrix (a") and the vector function b(x)=
(b'(x), b*(x)) satisfy the condition (GC), and let f € L. satisfy P(f) # 0 and f#0.
Let E and Q be defined as are E and Q, after first replacing f with [sgn P(f)] - f. If u is
a global solution of

dia’(x, u,u)ou + b'au=f

on R, then

oscu = where vy, satisfies [ln( ps

71 Y1 fi 3+ E
Moreover, if E <1/e we may take y,Z (4/Q)(1/e — E). Thus if E=0 (i.e
P(f)= =) we may take y, = 4/Qe.

If it is not necessary to control terms of the form b'd;u, then we can obtain similar
results even if the matrix is allowed to be more degenerate:

Theorem 3.9. Suppose that the trace of the non-negative 2X2 matrix
A(x,5,p)=(A4"(x,5p)) satisfies tr(A(x,5,p)) = T(x) for all
(x,5,p) ER’XRXR’. Let u be a global solution of 3, (4" (x, u, u,)du) = f(x) where
P(f)>0. Then A(x, u, u.)u, =0 (in particular, u =constant if ker of =0, i.e. if the
equation is elliptic) if any of the following conditions are satisfied :

(@) supu <o, fF€L' and sup.=:[T(x)/F(|x|)]<~ where F>0 satisfies
Jidr/rF(r)= + o,

(b) sup|u|<®, and supn=«[T(x)/F(|x|)] <® with F as in (a),

(¢) sup T(x) <, f =0 and limsup(u(x)/log(1 + F(|x))) < with Fas in (a).

Example. As an example of a matrix o (x, u, u.) = (" (x, u, u.)) that satisfies
the hypotheses of the Theorem 3.9, has a nontrivial kerne! and (yet) for which
A (x, u, u,)u, =0 > u =constant, we may take

2
] Uy Uy, U, — U,
Ay = ——— . 4 has eigenvectors and
Wl Ful+1 , g
Ugly, U, U, u,,

with  eigenvalues A, =|ui|/(1+]|ui]) and A,=0, respectively. (So
Ao-u, =0 > u, =0.) Thus, if u is a semibounded (i.e. bounded above or below)
solution of

(ui,+ u,1u§2> + (uilu,,-l: ui2> -0
W2 . WA . 1



ELLIPTIC EQUATIONS 87

where we have set W?=1+|u,[>, then u = constant. Of course, every linear

function u = ax,+ bx,+ ¢ is also a solution.

Remark. In [7] Gilbarg and Serrin prove a result similar to Theorem 3.9: If
A>0,supT(x)<o, f=0,and|u|= O((logr) ) then u = constant. (However, it
seems that their proof, which uses an idea of Finn [4] as does ours, actually works
even for fZ 0 if |u|= O((logr)'®).) For sup T(x) <« our result requires only the
upper bound on u given in part (c) of the theorem.

It is hardly necessary to point out that these results are weak analogues of a
celebrated theorem of S. Bernstein [1] (cf. [9], [15]): If u is a bounded solution of
A(x, y)uw +2B(x, y)u,, + C(x,y)u,, =0 and AC — B*>0 (pointwise) then u =
constant. It is well-known (Hopf [10]) that such a result is false (i) for R", n > 2 and
(ii) under the weaker hypothesis supu <® even for R>. On the other hand, if
3; (4" (x)3u)=f=0 is uniformly elliptic on R", n =2, then any semi-bounded
global solution is constant (Moser [16]). For other theorems of Liouville-type, we
refer to the papers mentioned in the introduction.

Broadly speaking, there seem to be three techniques for proving theorems of
Liouville-type: (a) via'Harnack-type inequalities, (b) via derivation of. pointwise-
interior estimates for | u, | (e.g. by a maximum principle), and (c) via the method of
differential and/or difference inequalities (the method exploited in this paper). It
should be observed that, even for uniformly elliptic equations of divergence type
divA = B, strong Harnack inequalities are valid only if B(x,s,p) has special
behavior with respect to its growth in x and p (cf. [2], [7], [20-22], and [28]). In fact,
there is no strong Harnack inequality for Au = 0 in R? [18] — the prototype of the
equations treated in this paper. Similarly, the approach via derivation of a priori
estimates for sup | u, | also fails for the equation Au = 0 on R* — while it works well
for equations of the form #,u; = f(u, u.) even in R" (cf. [17], [25]).

The method exploited in this paper is also applicable in certain cases in which the
function B(x, s,0) is not =0 as a function of x (even in a generalized sense) but
rather has some special properties from the point of view of its dependence on s.
We conclude this section with several results of this nature:

Theorem 3.10. Let A be a-regular on R and suppose that: (a) B(x,s,p)=
Bi(x,s,p)+ Bu(x, s, p), (b) sgn(s).Bi(x,s,p) =0 for V(x,s,p), and Ih(x) =0 such
that H = supa-h (x)/m (x) < and |Ba(x,s,p)| = h(x)|p| for V(x,s,p). If u is a
bounded global solution of divA = B then u = constant.

Corollary 3.10.1. Let u be a bounded global solution of the divergence form
equation

3 (A7 (x, u,u)ou)=f(u)+ g(x, u.) in R%
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If 4" =s0" AC, such that Cllu, "= A" (x,u, u)dudu = (1/Co)|u. [’ for all x.

sf(s)= 0, and |g(x,p)| =const|p[ then u = constant.

Theorem 3.11. Let A and B be as in Theorem 3.10 and let p =4 1/(w — 1)
where w satisfies 1/(w — 1)=exp(w). If u is a global solution of divA(x,u, u.)=
B(x, u, u,) such that —1/pH <infu and 3F :(0,°)—(0,») satisfying Definition
3.1(c)

x

f at _ | u(x) <La;1)]infu[

iy Teoand msup e

1

then u = constant.

Remarks. (1) Below, in §6, a number of examples are presented which show
that, by and large, the theorems of this section are sharp.

(2) In a companion paper [13] we give other results on the global behavior of
solutions of equations (resp. inequalities) of the form (3.1) for cases in which &« <n
and A satisfies a weaker version of «-regularity which only requires
super M "Im < o,

§4. The proofs of the theorems

In this section we prove Theorems 3.1-3.11. The proofs all use, essentially, the
same basic idea: Under the hypotheses of each of the theorems of §3 a choice is
made, in each case, of a 1-parameter family of increasing C' functions @, : R' > R'
and a continuous function ¢ (x, t}) = 0 such that ¢ (x,0)= 0 and ¢ (x,1)>0if t# 0. It
is then shown that either u, =0 or for some diffeomorphism ¢ € D3, some t,>0,
and some A =\, a differential inequality can be derived for J(t)=
foman®r (W (x,|u.|)dx (on t, =t <) that leads — after an integration — to a
contradiction.

We now turn to the

Proof of Theorems 3.1-3.2. Suppose that u satisfies divA = B. Choose a
C' function @ : R— (0, ©) such that ®’(t) >0, and diffeomorphism ¢ € Dz (R"). Let
A € (0,), An integration of div[®(Au)A | over the set K(t) = ¢ (B (1)) immediately
yields the inequality

@1n i f &' (Au){u,, A)dx + f ®(Au)Bdx = f [D(Au)|| A (x, u, u)| do.

K (1) K1) K (1)

If A is left a-regular and N = max{l,sup u} we have

4.2) A f O'(Au)(u,, Addx = A f mu (x)O'(Au )| u, [“dx

K
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and

(4.3) f ®(Au)|A|do = f O(Au )My (x)|u, |* 'do.
oK 3K

It follows from Hdlder’s inequality and (4.1)-(4.3) that

[/\ f mu - ®'(Au)|u, [°dx + f D(\u )de]“/(avl)

gu mn - ()| s ]“da] [i ( ry:ji'l).[é‘%)‘u“))]l: da’]ll(a_n.

Choosing @ such that ®/®’ is bounded on (—«,AN) and setting J(t)=
Jxoymn (x)®'(Au)|u, |*dx, we conclude that

(4.4)

af(a—1)
(4.5) [u(z) + j fD()tu)de] = CuJ'(t)- G(1)
K1)
with
d(Au) -
CMA = fg,{’»[ I (I)'(ALI:) . d)()\u)li( 1)}

and, for some constant y, (depending on ¢),

xE3K () mn

3K (1)

Note that under the hypotheses of the theorem G(t)= C, (1 + t)Fx(C, (1 + 1)) for
some constant C, >0 which depends on ¢. To proceed we need the following
lemma:

Lemma 4.1. Under the hypotheses of Theorems 3.1 and 3.2, it is possible to
choose a C' function ®, a diffeomorphism ¢ € Dy (R") and positive real numbers A,
8, and to such that

AJ(e)+ f O(Au)B(x, u, u,)dx = 8J(t) for all t = ¢,.

K@)

The proof of this lemma is postponed until the combined proof of the theorems is
complete.

Using the lemma and observing that J(¢) is nondecreasing we may conclude that
either J(t)=0 or 3 some t,= ¢, and constants C, and C, such that
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_d_1 G =
dt J()" VT 1+ O)E(C(1+ 1)) “"T(@)"

(4.6)

Integrating this differential inequality from ¢, to ¢, in (¢, %) yields

(U B SR f dt
J(tz)lf(a—l)— ](tz)ll(a-l) J(ts)ll(n*l)— T(I)
Since f, dt/T(t)= +  we may let t,— ® and conclude that J(t,) = 0. Since £, > ¢, is
arbitrary we conclude that J(¢) = 0. Thus we must have u, =0 and u = constant. To
complete the proof of Theorems 3.1 and 3.2 we give the

Proof of Lemma 4.1. If B(x,s, p) satisfies the hypotheses of Theorem 3.1
then with N = max{1,sup u} (as in the proof of the theorem) If = fy € L, with
fNE L' and P(f, 9o) >0 for some ¢, € Dy (cf. §2). Choosing ¢ = ¢, we have, since
® >0,

f ®(Au)B(x, u, u,)dx = f P(Au)fdx =0

K(1) eo(B(1))

for all t+ Z some £ and 0 <A = some A, by part (b) of Lemma 2.1 of §2.

If B satisfies the hypotheses of Theorem 3.2 then again with N = max{1, sup u}
and choosing ® as above (i.e., ® >0 and sup /P’ < », e.g., = exp) we have (with
the diffeomorphism ¢ = identity, say)

hn(x) ®P(Au )]
= — _fi(_l ! o
AJ(t)+ f O(Au)B(x, u, u,) = f [A i (2) Ot ) '(Au)mn | u. "

K(t)
Then it suffices to take A = Hy - supo®(t)/P'(t)+ & (with 6 >0 but otherwise
arbitrary). This completes the proof of the lemma and hence the proof of Theorems

3.1 and 3.2.

Proof of Theorem 3.3. Choosing ¢ = exp u and ¢ = identity we may follow
the proof of Theorems 3.1 and 3.2 above (replacing myx and My with m(x) and
M (x) — and without introducing N >0 at all — since A is a-regular) to derive, in
place of (4.5), the inequality

alf{fa-1) aj{la—1) 1/(e—1)
[Al(t) + f e*"de] = wJ'(t) - sup s [sup e“‘t""]
R" |x|=¢
B(¢)

where J(t) = [soexp(Au)m -|u,|"dx and o, is a constant that depends only on n.
Now if limsup u (x)/log F(r)<(a — 1)/H then 34 >0 and 8 >0 such that

exp<H+16u(x))§F(|x[) in [x|Zt.

o —
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Choosing A = H + § (with this 8) it follows as in the proof of Lemma 4.1 that
A (t)+ [swyexp(Au)B = 8J(t). Consequently, either J(¢)=0 or 3 some ¢, Z ¢, and
a constant C >0 such that

d 1 1/(uvz—1)>

i [](t)] = CiF(1)
since a = n. Since [ dt/tF(t)= +o the proof can be completed as above for

Theorem 3.1. Since a similar analysis works if @« >n and limsupu/logr <
(@ — n)/H we are done.

Proof of Theorem 3.4. Let u be a global solution of divA = B that has
finite oscillation and such that

. 1
< ! IRE
sup|u Sngm{N’ZHN'P(fN)}

Then choosing N such that sup|u|= N and oscu < (1/Hwx)P(fn), we may follow
the proof of Theorem 3.1 (with ®(¢) = exp(¢), and riix and My replacing my and
My, respectively) to obtain, for some diffeomorphism ¢ € Ds(R") and Cn,i =
constant > 0:

[AJN(t)+ f exp()«u)B]a/(a_l)é Cror - Th(t) - T, (1),

K

Here Ju (1) = fxw exp(Au)mn (x)|u. [*dx, T, is a positive, increasing function on
(0,») such that [ [T, (t)]'dt = + =, and K(t)= ¢ (B (1)) (cf. (4.5) and (4.6)). We
now need the following

Lemma 4.2. With N as above, 3 positive numbers A = Ax, 8 = 6n, and
to= ton, and a diffeomorphism ¢ = on € D5 (R") such that

A () + f exp(Au)Bdx = 8Jx (2)
*B@)

for all t = t,.

Assuming the validity of the lemma, it follows (as in the proof of Theorem 3.1)
that Jy (t) =0 and u = constant. To complete the proof of the theorem we give the

Proof of Lemma 4.2. Since we have My(t)+[xexp(Au)B=z=
Jxexp(Au)fn + fxw[A — Hn]mn(x)exp(Au)|u, |°, it suffices to choose A = Ay =
Hy + & (with 8 > 0 arbitrary) and prove that

exp{(Aninfu) f fu—exp(Ansupu) f fnz0
S (B(1) *(B@)
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for some ¢ = ¢n and all ¢ = some ¢,. Since we may choose ¢~ such that P(fv; ¢n)is
arbitrarily close to P(fx), it foltows that the desired inequality is a consequence (for
& sufficiently small) of exp(An osc u) <sup, {liminf,..[[,@enfn/fewunfn]} — ie.
of oscu < (1/H~)P(fv).

Proof of Corollary 3.4.1. This is just an application of the theorem with
Hy =0 for all N and 1/0 = + . (This is valid as is easily verified by inspecting the
proof of the theorem.)

Proof of Corollary 3.4.2. If oscu <(1/H)P(f) and divA = B is a-regular
we have osc u <infx{(1/Hn~)P(fv)}, where fy. and Hy. are as in the proof of
Theorem 3.4. Choosing N’ = N >sup|u | we may follow the proof of Theorem 3.4
to conclude that u = constant.

Proofs of Theorems 3.5 and 3.6. Set ¢ >0,

. —p\ -8B,
Fu(x) :deszl [hin(x ) N (x )] 8, G (5)=def% <a @,)

Ex

and C(e) =2}, G (¢) if divA = B is finitely a-regular. Using Young’s inequality
in the form ab =ea*“ % + G (e)b*', it follows that for all (x,s,p)ER" X
[ N,N]XR" we have

B(x,s5,p)Z fu(x) ~ eF (x) = [C(e)in (x) + hn ()] p [ — gn (x) sup ¥/(s).

Since ¢ (0)=0 and limsupime[fonmenFn(x) + gv (X)/ [onman fu(x)] < for some
o~ € Dp (R") such that P(fy, ¢~) >0, we may choose N, and &, >0 (depending on
eny)  such  that  fu (X)=uaefuo(x) — eFn(X) = gno(X)Supp=n, W(s)  satisfies
P(fuo.; on) >0 for all 0 <e = g,. Setting hn,.(x) = C(&)riin(x)+ hn,(x), so that
supr- [An,, (x)/Min(x)] = Hx,e <, we have

B(x,5,p)Z fu,, (x)— hn,. ()| p | for all (x,s,p) ER" X [~ Ny, No] X R".

It now follows from the proof of Theorem 3.4 that if

. 1 =
suplu|<  sup min { —— P(fno. s ¥n)s No { = Yo
£=eo(en,) No 2HN0,5
¢3P(N, oN)>0

then u = constant.
If div A = B is strongly a-regular then Young’s inequality leads to the estimate

B(x,5,p)Zf (x)~h.(x)lp|*  V(x,5,p)ER" XRXR"

Here fe (x)=aetf(x)— eF(x), h.(x)=C(e)-m(x)+ h(x), F(x)=ges
21 [k (x)/mP(x)]""# and C(e) is as above. If ¢ € Dy satisfies P(f, ¢ ) >0 then
we can choose &= eo(¢) such that P(f.,¢)>0 for all 0 < ¢ = g,. For such ¢ we
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may apply Corollary 3.4.2 and conclude that if u is a global solution of divA Z B
with

OSCU < Yi1Tas SUP sup {I} P(fe)}

¢3.P(fe)>0 e=eyle)

then u = constant.

Proof of Corollary 3.6.1. Let u be a global solution of divA = B + C with

a+d

sup|u,| = w <. Since [u "’ = 0"’ |u /0 |*"* = 0®|u ", u also satisfies the
a-regular  inequality divA = B where B =f(x)— 20,k (x)|p|* -
[A(x)+k(x)w’]|p|* and f, h, and h satisfy B = f(x)—=Z7, h;(x)|p|% — h(x)|p ]~

Following the proof of Theorem 3.6 we find that u = constant if

() 0 k)

m(x) m(x)

oscu <vy,= sup  sup {.L P(fe)} where H, = sup{

¢3.P(fe)>0 e=go(¢) £ R”
Thus v, = v:(A, B, C) = y.(A, B).

Proof of Theorem 3.7. It suffices to give an explicit value for y, in Theorem
3.5, since the conditions (GC) imply that (3.3) is a-regular. This immediately
reduces to finding vy, with the following property: If |u | = y, then 3A, 8 and #, >0
and a diffeomorphism ¢ such that

Uy

A f exp(Au)-m ju >+ j (f —b'owu — cu)exp(Au)
e(B(t)) ¢ (B(1))

@.7) =5 f exp(Au)-m -|u [,  forallt=1,.

#(B(1))

For ¢ >0 we have
—bh'au = _£ 2_l 2
f-bouzf-LbP-2 mlp|

and setting A = A(g)=1/4e + 8, where 8 >0, it suffices to find £ >0 and
¢ € Ds(R") such that

exp[A(e)infu] f frdx —exp[A(e)sup u] j [f‘+%+yolc|:|dx§0
@ (B(1) @ (B(t)

for all tZsome #. This immediately reduces to sup,-o{exp[—A(e)-oscu]
—expl — Po(f, ¢)] — £Q, — yoR,} >0 with

Qw:limsup.-m[ f ([b|2/m)dx/ f f+]’

e(B(1) e(B(1)

R¢=limsup,_.,,,[ f lcldx/ f f+].

»(B(1) P(B(1)
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Replacing 1/4¢ with 7, and noticing that osc u = 21y,, it clearly suffices to choose 7,
7n and ¢ such that

1
exp[ —2n7y0] > exp[ — Po(f, ¢)] +;; Q + yoR.

Since Po(f, ¢ ) can be taken arbitrarily close to P(f), it suffices to find y, and n such
that

(4.8) exp[—2nyl > E + 4—;— QO+ yR where E =..exp(— P(f)) < 1.

Putting p =.sIn (4/(3+ E))> 0 and 29y, = u it is easily seen that (4.8) follows from
the choice

_ . 1-E Egl-E}}
yo-mm{—ZR 20 .

Proof of Corollary 3.7.1. If b =0 then we may let n -0 in (4.8) and
conclude that if yoR <1 then u =constant.

Proof of Theorem 3.8. Since osc(u)=osc(~u) we may assume that
P(f)>0. Following the proof of Theorem 3.7, it is clear that we may choose any
v, =+ such that

1> (E +4—1117 O) exp(ny)=uwiF, (1) for some n > 0.

Define I'=sup{y >0:inf,.cF,(n)<1}. Let H,(n)=-exp(ny)Q/4n. Then
min, H, (1) = yQe(4. Since H, =F,, infF, <1 > y =4/Qe > I'=4/Qe. On the
other hand, F, (1/y)=(E + yQ/4)e so I' = (4/Q)(1/e — E) for E sufficiently small.
Finally, from the proof of Theorem 3.7 it follows that I' = u (1 — E)/Q in any case.

Proof of Theorem 3.9. Let ¢ €Ds(R") and A >0. Integration of
div[exp(Au)sfu.] over K(t)= ¢ (B(t)) yields

A f e™{u,, du.)dx + f eMfdx = f e (Au,, A)do

K(t) K(t) aK()

where 7 denotes the unit exterior normal to dK(t). Using the inequality (fu,, Ai) =
(Au,, u.)'*(Ah, A)'"” and setting [xoye™™ (u, Sdu,)dx = J4(t) we derive, for some
constant C = C,,

4.9) [AJJ(1)+ f e“‘f]zé Co - Ju(t) - Sup.epomun [T(x)- €] - 1.

K(t)

If (a) supu <o and f~ € L or if (b) sup|u | < then, according to Lemma 2.1, we
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can choose A >0, ¢ € Dg(R") and # >0 such that [,y e*“fdx =0 for all t = t,.
With this choice of A, t, and ¢, and noting that since ¢ € Dy (R") 3C, > 0 such that
T(e(y))=C,F(Ci(1+]y])) for Y|y|= t;, we conclude that

(4.10) T (V= CILUE(C(+1))  Vit=some 1,

for some constant C > 0. As in the proof of Theorem 3.1 this differential inequality
leads to the conclusion that J,(t) =[x e {(u, Hu,)=0. Since o is non-
negative > Hu, =0.

If f = 0 we may take, for simplicity, ¢ = identity. If u(x) = Clog(1+ F(|x])) for
some C>0 and all x with |x|Zsomet, then we may choose A such that
exp(Au)=1+ F(|x]|) in |x|Z to. Thus, if sup T'(x) <=, we again arrive at (4.10),
and conclude that «fu, =0. This completes the proof of the theorem.

Proof of Theorem 3.10. Suppose that sup|u|< C and let N be a positive
integer. Integration of div(u®"'A) over the ball B(t) yields, since
u™'Bi(x, u, u.) = 0,

N +1) ] u™(u,, A)dx + f uZN”Bz(x,u,u,)dxéflulzN”lAld(f.
aB

B() B()

Thus

@.11) f |u|2~[(zN+1)—1u|r’:lJ(%]m(x)|u,|°;fluVN“;A)da.
B(t) oB

Using the fact that f.s|u["*'|A|do = Ce*™ fp |uNe"Y"M|u, ", we con-

clude that there exists a positive constant C,n such that

alla~-1)
( f 'u,2N+1lA’d0_)
aB(t)

4.12)
af(a—1)
= a,N[f lulz”m[u,I"do-][supM—QL——t"‘“”‘““’]_

mw m(x)
3B(t)

With 2N > CH and Jx(t) =S| u|""m |u. |*dx, we deduce from (4.11), (4.12),
and Definition 3.1 that

In(@)V V= ConJ (1) - tF(t)

for some F >0 with [; dt/tF(t)= — . This differential inequality leads to Jy ()=
0, i.e. u =constant, as in the proof of Theorem 3.1.

Corollary 3.10.1 follows immediately from Theorem 3.10 with a = 2.
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Proof of Theorem 3.11. Integration of div[(e™ — 1)A] over B(r) leads to
the inequality

(4.13) Af eMmu | — f (e“+1)132}§fdiv(e“—1),4g f (e* + 1| Aldo

B() B(1) aB(r)

since (e™ — 1)Bi(x, u, u. )= 0.

The left-hand member of (4.13) may be estimated from below by
few[A —(e™ + DH]me™ |u.|*. Let a >0 and set F,(A)= (e + 1)/A. It is easily
seen that min,-oF,(A)= F,(w/a)=pa where pu =1/(w—1) and 1/(w —1)=
exp(w). Thus if infu = —a> —w, a <1/Hu, A =w/a and § =1~ uaH >0, we
have

(4.14) jdiv(e*“—l)Ai&f eMm|u | for Ve >0.

B(t) B1)

On the other hand,

(J' (e*“+1‘lA]da')a/(a“l)

E):103)

o 1/(a—1)
= f e"“mlu,l"-( f ;A/I;:;(e‘*“—kl)“e*") .

3B(1) aB(1)

(4.15)

If
—aéu(x)éga—;lﬁlogF(lxl) when | x| = some ro,
then — for A as above — we have e = F(|x|)"“"". This estimate, together with
{4.14) and (4.15), leads to the differential inequality
(4.16) J() "= CJ'(t)F(t)- t on t =t

for some C >0 and ¢ >0. As in the proof of Theorem 3.1, the inequality (4.16)
leads to J(t)=0, i.e., u =constant. This completes the proof of the theorem.

§5. Applications
In this section we note some elementary consequences of the theorems of §3.

Theorem 5.1. Let u € C* be a global solution of the variational problem
8 [wF(p,q)dx =0 where p=u, and q=u, sup,,|F,+F,|<®, and
F,Fy, — F%,>0. If u. and u, are semi-bounded (not necessarily both on the same
side) then u is linear.
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Proof. u satisfies (F,). + (F,;), = 0. Differentiation of this equation with
respect to x shows that p = u, satisfies the equation

FPP qu
divsf -gradp =0 with o = .
qu qu

Differentiation with respect to y shows that g = u, satisfies the same equation. The
conclusion of the theorem now follows from Theorem 3.9, since we may assume
F,, >0.

Remark. As the proof shows, the conclusion of Theorem 5.1 remains valid
under the weaker assumption: limsup,_..(au./loglogr)<w for some choice of
a = *1, and lim sup, . Bu, /log log r <= for some choice of 8 = = 1. For the same
conclusion under the assumptions u =0 ({log r|'""*) see Finn-Gilbarg [5].

We now consider equations on R’ of the general form

5.1 a'(x,u,Vu)u; =0

where Vu =grad u and u; = 3°u/dxdx;.
Suppose that the symmetric matrix (a” (x, s, p)) satisfies the following conditions:
(a) 3 measurable positive functions m (x) = M(x) such that the eigenvalues of
a’(x,s, p) lie in [m(x), M(x)],
() sup;(,;,:),{(l/a "+ 1/a®)- M*(x)/m (x)} = w (r) satisfies

©

dr
(5.2) f r,u,(r): + oo,

Theorem 5.2. Suppose that A =(a") satisfies the conditions immediately
above and u € C° satisfies (5.1). If the partial derivatives u. and u, are semi-
bounded, not necessarily both on the same side, then u is linear.

Proof. If u satisfies (5.1) then it is well-known and easily verified that v = u,
satisfies div A,gradv =0, and w = u, satisfies div A;grad w =0 with

11 2 12 1 0
A= %ﬁ ain' and A= 24" a2l
0 1 am  a!

Note that for (x,u, p) ER*XRX R’

o melpr

1 .
A;-p,p)=—(a“pp)=
(4 -p.p) =~ (a"pp) =2

and, for some C >0,

|4 -plSCoM@lpl (=12,
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Since supu-, (1/a’'+1/a®)- M?*/m = p(r) satisfies (5.3), the vector fields
Ai(xz, €)= A;(x,u(x),gradu(x))-§ — which are independent of z — are left
2-regular (cf. Definition 3.1). Since z = u; = du/dx, satisfies div A (x,z,gradw)=0
for j = 1,2, the result follows from Theorem 3.1.

Along the same lines we have

Theorem 5.3. Leta, b, and c be C' functions on R that satisfy a(t)>0 and
a(t)-c(t)— b)Y >0 for Vi If u is a solution of

(5.3) a(u)uy +2b(u)uy +c(u)u,, =0 on R®

and sup u < then u = constant.

Proof. Equation (5.3) may be rewritten as
(a(u)u + b(w)uy ). +(b(u)u. +c(u)u,)y = f(x, u, us, u,)
where
fx, u, u, u,)) = a'(w)ui+c’(u)us+2b'(u)uu,
z —[la' )| +|b'w)|+|c'(w)]]] grad u [
= —constant - [grad u |’

if u is bounded. The desired conclusion now follows from Theorem 3.3, Theorem
3.4, or Corollary 3.4.2.

In the same manner we have the following consequence of Theorem 3.9:

Theorem 5.4. Let ¢ :R—(0,) be a C' function and let F:(0,%)— (0, %)
satisfy [“dt/tF(t)= +o. If (a”(x)) is a positive definite (2 X 2)-matrix satisfying
m|EP = a"(x)&& = M(x)| € with M(x)= V' F(|x|) then every bounded solution of

(5.4 d:(p(u)a’au)=0
is a constant.

Remark. Of course, the requirement that ¢ be C' is not essential. If ¢ is
continuous the theorem is valid for weak subsolutions of (5.4).

As a final and more geometric application we have

Theorem 5.5. Let I'=T(u) denote the graph of u :R°—>R and let H(x,y)
denote the mean curvature of T =T'(u) at (x.y. u(x, y)) € R’ If u is bounded on R’
then P(H) =0 and [« Hdxdy = 0 if u has a Lebesgue integral (which a priori may
be infinite).

Corollary 5.5.1. If H is the mean curvature of a bounded graph over R’ then
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liminf, .. H =0 = limsup,-.. H. Moreover, [ Hdxdy =0 if H does not take both
positive and negative values in every neighborhood of infinity.

Proof. It is well-known that if H is the mean curvature of the graph I' of
u:R*>Rthen divA = + H with A = igrad(+u)/V1+]|grad u[’. It follows from
Corollary 3.4.2 that P(=H)= = P(H)=0 (i.e. P(H)=0) if u is bounded. It
follows that if H has Lebesgue integral (that is, if H* or H~ is integrable) then
J H =0. The corollary follows immediately from the theorem.

§6. Examples

In this section we record a number of examples that show that the theorems of §3
cannot be appreciably improved.

Example 1. If o <n the differential inequality
6.1) div(uc " ?u )= 0
which is not left a-regular has the bounded solution
A+Br’+Crt, in|x|=r=1,
u(x) =
- r® in|x|=r>1,

where p =(a ~n)/(@a—1), A= —1+3p/4—p°/8, B= —p +p?/4, C=pl4—p’/8.
Thus the requirement of left «-regularity is necessary in Theorem 3.1.

Example 2. Given £ >0 and N >0, 3 smooth functions u. and f. on R? that
satisfy
Au. = f.

while u,(x) = O(|x|™) as |x|—> = and f. satisfies either of the following condi-
tions:

() £.(x)Z0in |x|Z e,

(i) fij<rfe (x)dx >0 Vr >0 (but P(f.)=0).
This should be compared with the statements of Theorem 3.1 and Corollary 3.4.1.
To construct u, and f. it suffices to set u, =(—1Y(1+r’)* and make an
appropriate choice of k and j.

Example 3. For p > 1, the function

V2
ds
RS
l 14
> s(log s)

satisfies 0 = u(x) = constant on R” and also the differential inequality d.a” (x)du =
0 with a*(x) = (log V'r*+ 2)’8". On the other hand, according to Theorem 3.9, if
tr(a’(x))= O(logr) then any bounded solution of d,a”gu =0 is a constant.
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Example 4. According to a result of Gilbarg and Serrin [7] the equation
6.2) Au+b'dgu=f

has no nonconstant bounded solution in R* (and even in R", n=2) if b'(x)=
O(]x]™") and f =0. The condition on b’ cannot be significantly relaxed since the
function u =tan '(v), where a and B are constants, and v = ax + By, satisfies (6.2)
with b(x) = (b'(x), b’(x)) = Qv/(1 + v*))(a, B) and f =0.

On the other hand, the conditions b'(x)= O(|x|™") are not sufficient for the
same theorem to hold with f = 0. For example, the function u = tan™'(r’), where
x €R’ and r*= xi+ x3, satisfies

A =
Au+1+r4[x gradu] = 0.

Still, it might be conjectured that if the vector b(x)= (b'(x), b*(x)) decays fast
enough as | x | — « then equation (6.2) should behave in the same manner as Au = f.
This turns out to be false: It is possible to construct vectors b(x) with compact
support such that the inequality Au + b'du =0 has bounded solutions on R’
Without going into details, we remark that the function wu(x)=r’/(1+ ar®),
r’=|x [, satisfies an inequality of this type if « is sufficiently small.

It follows from the discussion above that Theorem 3.8 gives the best possible
result for (6.2) if f = 0: If the coefficients b' = O(|x [7'"®) for some & >0 (or even if
b(x) € L*(R®)) then there exists a lower bound for the oscillation of global solutions
of Au+b'ou=f=0.

Example 5. If P(f)>0 and |g(x,p)|=C|p[ for all (x,p) ER*XR’ then,
according to Corollary 3.4.2, the oscillation of every global solution of

(6.3) Au = g(x,gradu)+ f(x)

satisfies osc u = y = y(g, f) where the constant y = (1/C)P(f). It can be shown that
in general y does not satisfy the stronger inequality y > (2/C)P(f). In fact, for t >0
the functions u,(x)=qtcos’x, have oscu, =t and satisfy Au, +|gradu, [ =
fi(x)= @ (x)— ¥ (x) where ¢, (x) = 2t sin” x, + t*sin” 2x,, ¢, (x) = 2t cos’ x, and x =
(x1, X2). A short computation shows that

exp P(f.id, {e, ¢}) = lim inf ( f (p,/ f 4;,) =14+1t/2>1
'_) fx]<r [x}<e
(cf. §2). Thus exp P(f.)>1+1¢/2. If, in general, y(g, )= (A/C)P(f) with A =1
then the computations above give exp(t/A)= (1+t/2) for all t >0. Thus A =2.
Moreover, we have constructed solutions u of (6.3) with f=f and
oscu, — (1/CYP(f.)—0 as t = 0.

Example 6. According to Corollary 3.7.1, the inequality
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Aut+tcuzfz0 where f#0

has no nonconstant bounded solutions with lul<
liminf, . [ fix< f/ Jicj<r | €|} =as I/R. On the other hand, the equation Au +2u =
2sin’x, (x = (x., x>)) has the solution u =cos’x; with oscillation = 1 while

%z lim inf ( f 28in3x1/2'n'r2) =1/2.

r—x

Ixj<r
Thus the hypothesis [u | = 2/R cannot replace the condition |u| < 1/R.

Example 7. The function u(x) = log[1 + (1/2) log(1 + r*)] satisfies u(x)=0,
limsup,_.(loglogr)'u(x)=1 and Au+|Vu['Z0 on R’. Thus the condition
“limsup(loglog r)'u < (a —1)/H” of Theorem 3.3 is sharp and cannot be relaxed
to limsup(loglogr)™u = (a —1)/H.

Example 8. The equation Au = u has the solution u(x) = —exp x,. Thus the
boundedness condition sup|u|<ew of Corollary 3.10.1 cannot be relaxed to
sup u <o,

Added in proof. After this paper was type-set some additional references (J.
Frehse, Essential self adjointness of singular elliptic operators, Bol. Soc. Brasil. Mat.
8 (1977), 87-107; S. Granlund, Strong maximum principle for a quasilinear equation
with applications, Ann. Acad. Sci. Fenn. Ser. A 21 (1978), 1-25; J. Serrin, Liouville
theorems for quasilinear elliptic equations, Atti Accad. Naz. Lincei 217 (1975),
207-215), which treat related problems, came to our attention. Frehse’s paper is, in
fact, cited in [8] and [14] as motivating some of their work. Of course, our results
are not contained in these papers.
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