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§ 1. I n t r o d u c t i o n  

This paper deals with the asymptotic behavior  of solutions of second-order 

partial differential equat ions in n _-> 2 independent  variables. We are specifically 

concerned with the oscillation ( =  s u p - i n f )  of global C 2 solutions of equations 

(resp. inequalities) of the form 

(1.1) d ivA(x,  u, ux) = B(x, u, u~) (resp. -> B(x, u, ux)). 

Here  A is a given C * vector function of the variables (x ,u ,u , ) ,  B is a given 

continuous scalar function of the same variables, and ux denotes the gradient of the 

dependent  variable u = u (x) = u (x~, • •., x,) .  

The structure of (1.1) is determined by the functions A (x, s,p) and B(x, s,p) 
which we take to be defined on R" x R x R". We assume, for simplicity, in this 

section that A and B satisfy 

{ IA(x,s,p)l< M(x)lpl ~-~, 

(1.2) (A (x, s, p), p) >- m (x)l p I ~, 

B(x, s, p)>= f ( x ) -  g(x)l p I ~-~- c(x)l s 18 - h (x)l p I ~, 

for some a => n,/3 > 0, and for all (x, s, p )  E R" × R x R". Here  ( . , - )  and I" I denote,  

respectively, the usual inner product  and norm on R" ; all functions that appear are 

locally integrable and non-negative and m ( x ) > 0 .  Moreover ,  we assume that 

c + (g~/m a-t) E L l, h/m E L ~, f #  0 if g + c + h # 0, and - -  again, for simplicity in 

this introductory section - -  that sup M~/t~-l)/m < oo. 

It should be remarked here that the Euler -Lagrange  equations of various (not 

necessarily regular) multiple integral variational problems are of the form (1.1) 

where A and B satisfy conditions which take the general form of (1.2) (cf. Serrin 

1"21]). In particular, the structural conditions imposed above include, when a = n = 

2, the second-order  linear elliptic equat ion in divergence form 
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(1.3) ,9~a'J(x)O,u+b'O,u+cu=f>=O ( ~ 0  if tb l - '+  Ic I ~ 0 )  

if, say. m(x)lpl2<=a"(x)p~pj <=tx,,m(x)tpl2 V ( x , p ) E R ~ - ×  R z, O < m  E L ~, i~,,>= 1, 

and [ b l Z + t c l E L  '. 

Actually,  our  results are valid under  weaker  conditions which are discussed in 

detail in §§2, 3 below. In particular,  in §2 we define for f E L,J,,, an extended real 

number  P 0  r) that measures the "posi t ivi ty" of f and is such that P ( f )  = + ~ if [ ~_ () 

a.e. (cf. Definition 2.3). In (1.2) it suffices to assume that P ( f )  > 0 in place of [ => 0. 

Moreover ,  the number  P ( f )  turns out to be of crucial importance  for a precise 

understanding of the asymptotic  behavior  of global solutions of (I.1). In addition, 

we are able to handle the case a < n - -  but under  different conditions on 

M "/<" '~im than that imposed above.  

The investigation of the local behavior  of solutions of (1.1) under conditions 

similar to (1.2) was initiated by Serrin [22-25] and cont inued by Trudinger [28]. The  

asymptot ic  behavior  at infinity of solutions of d ivA(x ,  u, u x ) = 0  was t reated by 

Serrin in [24]. Our  results cover  the case div A (x, u, u~) _-> 0 but are often of a less 

specific nature.  As special cases of the conclusions obta ined below, we record here 

the following theorems (in which we assume that A and B satisfy conditions (1.2) 

and set osc u = sup u - inf u ): 

T h e o r e m  1.1.  L e t g  = c = O  in (1.2) a n d s e t H = s u p ( h / m ) .  I f u i s a  global 

nonconstant solution of  (1.1) then osc u >-_ ( 1 / H ) P ( f )  (where a/O = + oo if a > O) 

even if  {x : [ ( x ) <  0} is not assumed to be empty. 

C o r o l l a r y  1.1.  Let A and B be as in Theorem 1.1. I f  P ( f )  = + oz (e.g., ]: >- O) 

then every bounded global solution of  div A >= B is a constant. 

T h e o r e m  1.2.  Let g = c = h  = 0  in (1.2) and suppose that f E L  ~ and 

P( f )  > O. I[ u is a global solution of  div A >= B such that sup u < ~ then u =- constant  

even if {x : f ( x ) <  0} is not assumed to be empty. 

T h e o r e m  1.3.  There exists a positive extended-real number ~, such that every 

nonconstant global solution of (1. i)-(1.2) satisfies sup I u ] - y,,. I f  c = 0 in (1.2) then 

there exists a positive extended-real number yl such that every nonconstant global 

solution of  (1.1)-(1.2) satisfies osc u _-> ym. The values o[ y,, and y~ may be given 

explicitly in terms of the coefficients in (1.2). Finally, y,, = y, = + ~ if g = c = O. 

It should be observed that each of the theorems above  gives a generalization of 

Liouville 's  theorem for subharmonic  functions on R 2. Liouville 's  theorem,  in this 

form, fails to be true if a < n in (1.2) (cf. §6 below) and this explains the restriction 

=> n. However ,  some corresponding results can be obta ined even for a < n 

(which includes the case of linear elliptic equations in n => 3 variables) and some of 

these are t reated in §3 below and also in a companion paper  [13]. 

We remark  that Liouville-type theorems  for general  l inear and nonlinear elliptic 
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equations have been treated by many people.  Explicit mention should be made of 

the work of Bernstein [1], Bers-Nirenberg [2], Bohn-Jackson [3], Finn-Gilbarg [5], 

Gilbarg-Serrin [7], Ivanov [11], Moser [16], Pelet ier-Serrin [17], Redheffer  [19], 

Serrin [25], Tavgelidze [26] and the survey article of Gilbarg [6]. Also, after the 

work described here was completed, there appeared the paper  [14] of Meier. Meier 

obtains, among other  results, the special case of Theorem 1.1 in which c~ = n = 2, 

f ~ 0, and m and M are constant - -  but for weak solutions. Although we assume 

(for simplicity) that u ~ C-', all our results are also valid for weak solutions. In this 

more general situation the proofs would follow the methods of this paper together 

with those of the author 's  earlier paper [12]. Meier 's methods are similar. We also 

mention that Meier obtains (for m and M constant) a Liouville theorem for 

solutions of div A = t3 on R" for B satisfying more restrictive conditions than (1.2) 

(but without the restriction ~ ~ n) by means of Trudinger 's  Harnack  inequality 

[27]. He remarks that this extends an earlier result of Hildebrandt  and Widman [8]. 

The plan of the paper  is as follows: The  definition of P ( f )  and some preliminary 

material is given in §2, the statement of the main results is given in §3, and proofs 

are given in §4. Some auxiliary applications (to the geometry of graphs over R 2 and 

to nonlinear equations with only linear solutions of slow growth) are given in §5. 

The sixth section is devoted to a number  of examples that shed some light on the 

need for the various hypotheses made in §3 and the sharpness of the estimates that 

we obtain. 

{}2. P r e l i m i n a r i e s  

This section introduces some new concepts that play a fundamental  role in the 

asymptotic behavior  of solutions of elliptic equations. 

We begin by letting Do(R")  denote  the C'-diffeomorphisms of R" that have 

uniformly bounded differentials along with their inverses: 

D ,  (R") = / ¢  E C'-Diff  (R")I sup (ll dcpx II + II d~0 ; ' l l)  < ~1 
t I x E I R  n ) 

for some norm 11" II on R". 

Let B(p; r) denote  the ball of radius r centered at p @ R" and let B(r) = B(0; r). 

For each CLdiffeomorphism ¢p of R ° the family of sets {~p(B(p; r))},>0 covers R" 

and may be thought of as centered at ~0(p). 

D e f i n i t i o n  2 .1 .  A pseudo-spherical exhaustion of R" is a family of sets of the 

form {q~ (B (r))},>o = E~ for some q~ ~ DB (R"). Moreover ,  we set 

Exh~"~=det{E~ : q~ ~ Dn(R")}, and when ¢p is fixed we set K(r)=def~o(B(r)). 

R e m a r k .  It is clear that Exh ~"~ contains every exhaustion of the form 

{q~(B(p, r))},.,, for q~ G Do (R"), p E R". In particular, Exh ¢"~ contains the spherical 

exhaustions {B(p ; r)},>0, p E R". 
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Definition 2.2.  If f ~ L:o~(R") then a decomposition o f f  is an ordered pair 
{g, h} of a.e. non-negative, locally integrable functions g and h such that f = g - h. 
The canonical decomposition of  f is the ordered pair {f+, f-} where f+ = max (0, f )  
and f -  = max (0, - f). 

For any decomposi t ion {g,h} of f we have g >=f+ and h =>f-. 

Definition 2.3.  (a) For f ~ Ll~,  q~ E DR (R") and a decomposi t ion {g, h } of f, 

/ l i m i n f l o g [  ~ g /  f h]  i f h ~ 0 a . e .  

P ( f ;  q~ ;{g, h}) =def ~ Kt~, K,,, 

! + ~  if h =-0 a.e. 

where K ( r ) =  ,p(B(0;r)).  Note  that l o g [ f m , ) g / f m , ) h ]  is defined for sufficiently 
large values of r if h ~ 0. 

(b) Po(f; ff ')=d¢,P(f; ~p;{f+,f-}). 
(c) P ( f ;  ~p)=~e, sup~s.njP(f; ~p;{g, h}). 
(d) P ( f )  =do, sup~o~l~-)P(f;  ~p). 
(e) Po0r)=d¢,sup~o~t~-)Po(f; q~). 

For later reference we record some elementary facts and examples: 

Proposit ion 2.1.  For any pseudo-spherical exhaustion E~ and functions f, f~ 
and f2 ~ L~o~ we have : 

(a) P0( f ;q~)>0  i f f P ( f ; , p )> O .  
(b) I fPo( f ;q~)>O then P0(f;~o)= P(f,q~). 
(c) I f  0 ~ A E R then P(Af, ~0 ) = (sgn X )P(f, ~0 ). 
(d) I f  P ( f l ; ~ ) > O  and P ( f z ; , p ) > 0  then 

P(L  + f2; ~o)>_- min{Pff , ;  ~), Pff2; ,p)}. 

Proof.  (a) Let {g, h} be a decomposi t ion of f and set I+-(r) = fKto f  ±, J+(r) = 
fKt,) g, and J-(r)  = fx~,) h. Then J~-(r) = F-(r) + A (r) with ,4 (r) => 0. It suffices to 
prove that P(f, ,p ) > 0 ::), P0(f; ,p) > 0 and so we assume that 
lim s u p , ~  (J-(r)/J+(r)) < 1 (/---- 0 trivially implying that  P0(/; ~0) > 0). Since 

(J-(r)/J+(r)) = (I-(r) + A (r)/I+(r) + A (r)) = ( I - / I  +) [1 - ( A / A  + I+)] + ( A / A  + I ÷) 

and ( A / A  + I+)(rk) has a convergent  subsequence for any sequence rk ---~ 0o, it is a 
simple mat ter  to conclude that lim sup,~®(I-(r) / l÷(r))< 1, i.e. Po(f, q~)> 0. 

(b) It suffices to prove that P ( f ;  ,p)--- P0(f; ~)  if P0(f; ,p)~> 0, and so it suffices to 
show that for any decomposi t ion {g, h} of f we have P ( f ;  ,p ;{g, h})_- < Po(f; ~o) if 
Po(f; q~)>0. This last inequality follows from the form of (J+[J- ) - ( I+/ I  -) as in 
part (a) above. 



ELLIPTIC EQUATIONS 79 

(c) is obvious. 

(d) Consider the particular decomposit ion {~ = f :  + f2,/~ = f l  + f~} of f~ + f2- It 

follows from (a) and (b) that 

Po(fl+f2;qO>=P(f~+fz;~o;{#,,h}) if P(f l  + f:; ~o ; {g,/~}) > 0. 

Thus it suffices to prove tha t  P(f~ + f2; ~o ; {~,/~}) => min (P0(f~, ~o ), Po(f2; q~ )) > 0 for 
the decomposition {~,/~}. This last inequality, in turn, follows from the inequality 

(2.1) lim sup E +  I2 < ( I~ I_~) , ~  I ;  + I-~, + = max lim sup I-~ ' lim sup , 

where I~-(r)=fK~,)f~dx. The inequality (2.1) follows easily from the identity 

I ; + I  + I~+I~ \ I , /  I ; + I + \ I 2 /  • 

Proposition 2.2 .  If f @ L L and f -  E L 1 then P(f)  > 0 iff f satisfies either of 
the following two conditions: 

(a) f = 0  a.e. 
(b) f , . f dx  > O. 

P r o o f .  If P ( f ) > 0  then P ( f ;~o )=  Po( f ;~0)>0  for some ~0 E D , ( R " )  (cf. Pro- 

position 2.1 (a), (b)). If K(r) = ~o(B(r)) we then have either f = 0 a.e. or 

l i m i n f (  f f + /  f f - ) = ! i m (  f f + /  f f ) =  f f+/ f f->l, 
K ( r )  K ( r )  K ( r )  K ( r )  R n R n 

i.e. fR. f  > 0. The converse is immediate. 

R e m a r k .  For a given f ~ L¢~ it sometimes actually occurs that P ( f ;  q~) = 0 for 

some ~¢EDB(R")  while P ( f ) > 0 .  For example, the function f ( x , y ) =  
(sgn x)exp(x  z) in R 2 clearly has Po(f, ~0) = 0 when ~o = identity. On the other hand, 

it is not difficult to check that for ~ ( x , y )  = ~0,(x,y) = (x + a ,y ) ,  a E R ,  we have 

po(f;q~,)= ___oo according as - - - a > 0 .  It follows from Proposition 2.1 that 

P(f, ident i ty)= 0 while P ( f ;~0 , )=  ___oo according as -+a > 0 .  

We conclude this section with a technical lemma which will be required a number 

of times in the sequel: 

L e m m a  2.1 .  Let ~ : R "  x (a,b)---~[0,oo) be such that xF( . ,A)  is measurable 
on R" for each A ~(a ,b ) ,  -oo<=a <b<=o% and let xt t , (A)=inf,xlt(x,A) and 
xI t, (A) = supx XF(x, A) < oo. Assume that 3Ao ~ (a, b) such that l i m ~ o  xlt(x, A ) = 1 

for all x E R". 
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(a) f f  P ( f ; q ~ ) > 0  and l i m ~ , ~ ( 2 t ) = l = l i m ~ _ ~ , q t , ( A )  then 3 c E ( a . b )  and 
t. > 0 such that 

f (x, c ) f (x)dx  >= 0 for all t >= t,, 
K ( t )  

where K(t )  = q~(B(t)). 

(b) If f - (EL l, P(f ;q~)>O,  and 
such that 

l i m . ~ , ~ . ( 2 t ) =  1 then 3 c ~ ( a . b )  and t . > O  

f (x, c)f(x)dx >=,0 
K ( t )  

for all t >- t,, 

where K ( t ) :  q~(B(t)). 

P r o o f .  (a) Given 0 < e < l  we have 

f ,i,(x,2t)f(x)ax>= f ,i,,(2t)r+(x)ax - f q'~(2t)r (x)dx 
K ( t )  K ( t )  K ( t )  

- ( l - e )  f f+(x)dx-(l+e) f f-(x)dx 
K ( t )  K ( I )  

for all A sufficiently close to 2to. Since P ( f ; ~ o ) > O  we have P,,ff;~o)>O and 

lim inf,~=(fK.)f+/fK.)f  ) = L > 1 or f -  ~- O. In either case. 

(1 - e ) fK . ) f  ~ - (1 + e) fK . ) f -  >= 0 for all t -- some to if e is sufficiently small. 

(b) Since f -  ~ L 1 we have 

f .(x,2t)f(x)ax >= f .(x,2t)f(x)ax-.s(a) f f (x)ax. 
K(O KO) R" 

If f+ ~ L I then ~(x ,  A)f+(x) is integrable for all A sufficiently close to Ao. Thus by 

Lebesgue 's  convergence theorem,  f a . ~ ( x , c ' ) f + ( x ) d x - f a . f - ( x ) d x  >=0 if c '  is 

sufficiently close to ;to since P ( f ;  q~)> 0. Consequently,  3 a neighborhood N of )to 

and to > 0 such that fKo~(x ,  c)f÷(x)dx - xlq (c) fR. f - (x)dx >= 0 for all c E N and 

t ~ to. On the other  hand, if f+ ~ L1 let A, ~ )to. By Fatou 's  lemma 

f f+dx =oo=<lim f ~(x, Aj)f+(x)dx. 
R n R n 

Hence  3c'  such that fR. ~(x, c') f+ (x )dx - ~ s  (c ' ) fa . f  (x )dx >- 0 and consequently 

:lc E (a, b) and to > 0  with the desired properties. 
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{}3. S t a t e m e n t  o f  re su l t s  

In this sect ion we cons ider  var ious  aspec ts  of the a s y m p t o t i c  and  osci l latory 

behav io r  of  g lobal  solut ions  of equa t ions  (resp. inequal i t ies)  of  the  fo rm 

(3.1) d i v A ( x ,  u, u~) = B(x, u, u~) (resp. > B(x, u, u~)) 

where  u : R ~ ~ R, u~ is the  gradient  of u, and  x E R". W e  will a lways  requi re  that  

A(x, u, ux) and  B(x, u, u~) are m e a s u r a b l e .  Since we will a s sume  (for simplici ty)  

t h roughou t  this p a p e r  that  all solut ions  a re  of  class C 2, it suffices to  have  A (x, s, p )  

and  B(x, s,p) m e a s u r a b l e  in x and  c o n t i n u o u s  in s and  p. ( H o w e v e r ,  our  resul ts  

would  not  be  af fec ted  if we only a s sumed  tha t  u was of class H ~ ( R " )  - -  with a as 

be low - -  and  a weak  solut ion of (3 .0 ,  i.e. 

f a + B ( x , ) ~ d x  = 0 V~o ~ C0~(R "). (x, )~ u, u~ u, u~ 

R n 

T h e  proofs  for  this m o r e  genera l  f o rmu la t i on  would use the  s a m e  es t imates  as 

below,  but  the  different ia l  inequal i t ies  we der ive  be low would  be  rep laced  by 

dif ference equa t ions  ob t a ined  by choos ing  a p p r o p r i a t e  test  func t ions  ~0 - -  cf. [12].) 

Using ( . , -  } and  I "} to denote ,  respect ive ly ,  the  usual inner  p r o d u c t  and n o r m  in 

R" we now in t roduce  the  fol lowing 

D e f i n i t i o n  3 . 1 .  (1) Let  a > 1 be  a real  n u m b e r  and  I a sub in te rva l  of  R. T h e  

vec to r  field A : R n x R × R" ---> R" satisfies condition A (a, I) if the re  exist posi t ive  

m e a s u r a b l e  func t ions  m = m~ and M = M~ on R", and an increas ing posi t ive  

funct ion F = F~ on [0, oo) such that:  

(a) m,(x)lpl~<-_{A(x,s,p),p) V(x , s ,p )ER " x l x R ~ ,  
(b) }A(x,s,p)l<-_M,(x)lp} ~-' V ( x , s , p ) E R " x l x R " ,  

(c) sup ( / x l + l ) , ~  ,,/,,_l,F,(ixl ) • m,(x) j < o o  and rF(r---.---3= +oo. 
1 

(2) A is a-regular on R" if it satisfies condi t ion  A (a, I )  with I = R. 

(3) A is left a-regular on R" if it satisfies condi t ion  A (a, I )  for  every  interval  I of  

the  fo rm I = ( - 0 %  N ) ,  N > 0. In this case we wri te  m, = raN, etc. 

(4) A is finitely a-regular on R" if it satisfies condi t ion A (a, I )  for  every  interval  

I of the  f o r m  I = [ - N, N ] ,  N > 0. In this case we wri te  m, = fftN, M~ = -/~N. 

R e m a r k s .  (1) Clear ly ,  a - r e g u l a r  ::> left a - r e g u l a r  ::> finitely a - r e g u l a r .  

(2) Usefu l  cand ida tes  for  F : ( 1 ,  o o ) ~ ( 0 ,  oo) are F(r)=logr, F ( r ' ) =  

log r • log log (e + r),  etc. 

(3) In condi t ion  A(a, 1) we must  have  Mf(x)--->O as Ix]--~ oo if a < n. In fact,  

(MTIC~-nlm,) >= M~ t~-1~ so we mus t  have  M~l~-n(x ) <-_- cons t an t .  

F(Ix I)/(1 + }x I) <"-~'/'~-n and  
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f dr < ( dr ( infM[/" ") rF(r)= J r -7va < o° with 8 = (n - a)/(a - 1 ) > 0 .  
I 1 

On the o t h e r  hand,  if a => n condi t ion  A (a, I )  al lows m~ to app roach  zero and  M~ 

to tend  to  infinity. 

T o  descr ibe  the  behav io r  of  B we in t roduce  (for a fixed real n u m b e r  a > i, a 

fixed set of real  number s  /3~q~=def{/3,},~-, with 0 =  </31 =<- . .  _-</3q < a,  and a fixed 

con t inuous  funct ion 4, : R - +  R with t0(0) = 0) the fol lowing 

D e f i n i t i o n  3 . 2 .  (1) For  an in terva l  I C R, the funct ion B : R" × R x R" --+ R 

satisfies condi t ion  B ( a ,  L/3~q~, to, A )  if A satisfies A (a, 1) and  3 locally in tegrab le  

funct ions  fi, gl >-0, hj,~ >=0 (j = 1 , . . - , q ) ,  and h,(x)>=O such that :  

(a) B(x,s ,p)>=fl (x)- -g , (x) to(u)--ET- ,h , . , lp[  ~, - h ,  lpl ~ for  all ( x , s , p ) E R "  x 
I x R " .  

(b) sup,°  h, (x)/ml (x)  < oo (with rm as in condi t ion A'(a ,  I )) .  

(c) :1¢ = q~, E DB(R" )  such that  

(i) Pq , ; ,p , )>0  (cf. §2), 
(ii) limsupr_~{fK~,)[hT, dm on1/(" ~,)ir ¢+t.-- , j  , j K ~ , ~ j , j ~  ~ (for each  j = 1 , . - . , q ) ,  and 

(iii) limsup[fK,(,)g/fK,(,)f +] <oo, whe re  K~ (t)  = q~1 (B(t)).  
H e r e  we a s sume  f~ ~ 0  if e i ther  g~ or  some  hjj is ~ 0 .  

(2) If A is a - r e g u l a r  and  B satisfies condi t ion B (a,  L/3~q), to, A )  for  s o m e  choice  

of /3 ~"~ and  to when  I = R then d i v A  => B is a - regu la r .  

(3) div A _-> B is strongly a-regular if it is a - r e g u l a r  with the  choice  to = 0. 

(4) d i v A  => B is finitely a-regular if A is finitely a - r e g u l a r  and,  for  s o m e  fixed 

choice  of/3~0) and  to~, B satisfies condi t ion  B(a,  L/3~q), to; A )  for  each I of  the  fo rm 

I = [ -  N, N ] ,  N > 0. (In this case we write,  when I = [ - N, N ] ,  f~ = fN, etc.)  

R e m a r k s .  (1) A discussion of the  natura l  occu r r ence  of condi t ions  such as 

those i m p o s e d  on A and B above  can be found  in Serr in ' s  pape r s  [21] and [23]. 

(2) O b s e r v e  that  if h,, C L'" ~,~/', (for j = 1 , - .  , , q ) ,  h, is cons tan t  and  g, E L ~ 

while P(f~) > 0 and m~ (x) > const  > 0, then the condi t ions  in Defini t ion 3.2 ]par ts  

lb(ii)-(iii)] are satisfied. 

(3) T h e  local s t ructure  of solut ions  of  equa t ions  d i v A  = B, with A and B 

satisfying condi t ions  similar to those  above ,  has been  s tudied,  for  example ,  by  

Serrin [21-24] and Trud inge r  [27]. W e  are in te res ted  in the  b e h a v i o r  nea r  ~ of  

global  solut ions  of  div A _-> B, and  the condi t ions  i m p o s e d  he re  are  slightly w e a k e r  

than those  i m p o s e d  on A in Ser r in ' s  s tudy [22] of  so lu t ions  of  d i v A  = 0  in a 

n e i g h b o r h o o d  of infinity. 

Since the  condi t ions  imposed  a b o v e  are  compl i ca t ed  by  the i r  genera l i ty  it is well  

to cons ider  s o m e  explicit e x a m p l e s  of  some  interest .  We,  the re fore ,  no te  the  

fol lowing 
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E x a m p l e .  Let  the  vec to r  b ( x ) =  (b~(x), bZ(x)) and the  func t ion  c(x)  satisfy 

f ,~lbl2<oo and  f , ~ t c l d x < ~ .  Let  the  mat r ix  (a'~(x,s,p)) satisfy 0<A(x)lpl <_- 
a°(x,s,p)p~pj and Ila"(x,s,p)ll=m(x)<oo V(x , s , p~O)  where  II'll deno tes  s o m e  

mat r ix  no rm.  If 

(3.2) sup [ ( l og (1  
IR 2 

(e.g. f_->O) and  f ~ O  then 

+lxl) P )>0 

a,a~i(x, u, ux)aju + b'(x)O,u + c (x )u  >= f ( x )  (where  

a~ = O/axl) is a 2 - regu la r  inequali ty.  If c - - 0  it is even s t rongly 2-regular .  

With  these  p re l iminar ies  out  of the  way  we can now list ou r  ma in  results.  We  first 

cons ider  t h e o r e m s  of Liouvi l le - type  for  g lobal  solut ions u tha t  satisfy g rowth  

rest r ic t ions only  f r o m  above :  

T h e o r e m  3 . 1 ' .  Let A be left a-regular on R". If  u is a global solution of 

div A (x, u, u~) >= 0 on R" with sup~. u < ~ then u - cons tant .  

This  t h e o r e m ,  which genera l izes  the  classical Liouvil le  t h e o r e m  for  solut ions of  

Au --> 0 on R 2, is - -  in turn  - -  a special  case of  each  of the  fol lowing two theo rems :  

T h e o r e m  3 . 2 .  Suppose that for each N > O 3 a non-negative 

P ( f N ) > 0 ,  and B(x ,s ,p)>-- f~(x)  V ( x , s , p ) @ R "  × ( - o % N ] x R " .  Let A be left a-  

regular on R ~ and let u be a global solution of d i vA(x ,u ,  ux)>=B(x,u, ux). I f  

sup u < oo then u =- cons tant .  

T h e o r e m  3 . 2 .  Suppose that for each N > 0 3 a locally 

locally integrable function hN(x) such that B ( x , s , p ) > = - h ~ ( x ) l p l  ~ for 

V ( x , s , p ) E R " x ( - o % N ] x R " .  Let A be left a-regular on R" and such that 

supa~hN(x)/mN(x)=a,fHN< oo for all N > 0 .  I f  u is a global solution of 

div A (x, u, ux) >= B (x, u, ux) such that supRn u < oo then u =- cons tan t .  

If  the condi t ions  on A and B in T h e o r e m  3.2 are m a d e  m o r e  res t r ic t ive then the 

condi t ions  on u m a y  be  w e a k e n e d  as in 

T h e o r e m  3 . 3 .  Let A be a-regular in R" with a >-n, and assume that 

supanM°/(~-~)/m < oo. Suppose that B (x, s, p)  >_ - h (x )l p I ~ for some non-negative 

function h E L ® that satisfies H = supa- h (x )/m (x ) < oo and let u be a global solution 

of d i v A ( x , u , u ~ ) > - B ( x , u , u , ) .  I f  a = n and l i m s u p , o ® u / l o g F ( r ) < ( a - 1 ) / H  

(with 1/0 = + oo) for some positive, increasing function F satisfying f7 dr/rF(r) = + oo 

then u - c o n s t a n t .  I f  a > n and l imsup ,~®u/ logr<(a  - n ) /H  (with 1 / 0 =  + ~ )  

then u = cons tan t .  

R e m a r k s .  (1) A f t e r  the  work  descr ibed  he re  was c o m p l e t e d ,  there  a p p e a r e d  

the  p a p e r  [14] of  M. M e i e r  which conta ins  ( a m o n g  o ther  results)  a special  case of  

T h e o r e m  3.2. M e i e r  a s sumes  tha t  m (x)  _--- cons t  > 0, h (x)  _-< const  < oo, and a = n = 
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2, and he concludes  that  a weak  solut ion u is cons tan t  if sup u < 0o. As  r e m a r k e d  

above ,  ou r  resul ts  are also valid for  weak  solut ions a l though  we do not  give the 

p roo f  here .  

(2) N o t e  that  if A is, say, a - r e g u l a r  and sup M~/t~-')/m < oo then m (x) <=- M ( x )  <= 

cons tant  < oo and so sup, , ,h  (x)/m ( x ) <  oo ~ h E L ~. This  explains  the change  in 

the h y p o t h e s e s  concern ing  h(x)  b e t w e e n  T h e o r e m s  3.2 and  3.3. 

We now turn to res t r ic t ions on the oscil lation of g lobal  solut ions that  are 

b o u n d e d  f rom bo th  sides. Be fo re  s ta t ing our  results, we r e m a r k  that  the re la t ion of 

the t h e o r e m s  be low to the classical theory ,  say for  Au >= 0 on R 2, is clarified by 

r e fo rmula t ing  a version of Liouvi l le ' s  t h e o r e m  for  s u b h a r m o n i c  funct ions  as 

follows: If  u is a global  solut ion of Au = f=> 0 on R 2 then  e i ther  osc u = oscil lat ion 

of u ( = d e f s u p u - i n f u )  is infinite or  u - - - c o n s t a n t  (in which case we must  have  

f -= 0). W e  genera l ize  this (and at the same  t ime,  explain how the fine s t ruc ture  of  f 

plays a role)  in the fol lowing ana logues  of T h e o r e m s  3.1 and  3.2: 

T h e o r e m  3 . 4 .  Let A be finitely a-regular on R" and suppose that for each 

N > 0 3 locally integrable functions h~(>-- O) and fN such that: P(fN) > 0, /-IN = 

sup~,hN(x)/thN(x)<oo and B(X,S ,p)>=fN(x)- -hN(x)Ipl  " for all 

(x, s, p )  E R" x [ - N, N]  x R". If u is a global solution of div A (x, u, ux) --> B (x, u, u~) 

then 

u - = c o n s t a n t  or suplul>=supmin(,1---~--, P ( fN) ,NI .  either 
N L/I~N J 

C o r o l l a r y  3 . 4 . 1 .  Suppose that for each N > 0  3fN EL]oc such that P(fN) > O 

and B (x, s, p)  >= fN (x ) for all (x, s, p)  E R" x [ - N, N] x R". I f  A is finitely a -regular 

on R" then any nonconstant global solution of div A >= B has infinite oscillation. 

As a n o t h e r  consequence  of T h e o r e m  3.4 we have  

C o r o l l a r y  3 . 4 . 2 .  Let A be a-regular on R" and suppose that for V(x, s, p)  B 

satisfies B ( x , s , p ) > = f ( x ) - h ( x ) l p l  ~ with fEL~oc, P ( f ) > 0  and H = sup~,h/m < 

oo. If  u is a global solution of div A (x, u, u~ ) => B (x, u, u~ ) then either u = cons tan t  or 

osc u >-_ (1 /H)P( f )  (with a/O = + oo). Thus, if P( f )  = + oo (e.g. f >= O) every bounded 

solution is a constant. 

M o r e o v e r ,  we have  the fol lowing genera l  results - -  the p roofs  of  which may  be 

reduced  to that  of T h e o r e m  3.4. 

T h e o r e m  3 . 5 .  If the differential inequality div A (x, u, u~) _-> B (x, u, Ux) is 

finitely a-regular on R", then 3 an explicit positive extended-real number yo = 

yo(A, B ) with the following property : I f  u is a global solution of div A >= B and 

sup lu I < Y, then u = constant .  

T h e o r e m  3 . 6 .  If the differential inequality d ivA(x ,u ,u~)>=B(x ,u ,  ux) is 
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strongly a-regular on R" then 3 an explicit positive extended-real number y~ = 

TI(A,B) with the following property: 1[ u is a global solution of divA >-B and 

osc u < y~ then u =- constant. 

C o r o l l a r y  3 .6 .1 .  Let d ivA(x ,u ,u~)>-_B(x ,u ,u~)bes t ronglya-regularon  R ", 

and suppose that C : R " x R x R " - - - > R  satisfies C(x,s,p)>= - k ( x ) l p l  ~+~ where 

6 > 0 and sup k ( x ) / m ( x )  < ~. Given w > O, 3 an explicit positive extended-real 

number y2 with the following property : I f  u is nonconstant, bounded global solution of 

d i vA(x ,u ,  ux )>=B(x ,u ,u~ )+C(x ,u ,u~ )  with suplu~ [ =< ~o then oscu>-_ 72. 

Moreover, y2(A, B, C)  <= y~(A, B).  

Since the case of linear elliptic equations is of special interest, it is worthwhile to 

record some of the previous results, as well as some new ones, for linear equations 

in two variables. For this purpose we introduce the inequality 

(3.3) 01a " (x, u, u~ )O,u + b' (x )cg,u + c(x )u >= f ( x  ) 

where the coefficients are assumed, for simplicity, to satisfy the following general 

conditions (GC): 

(a) 3 positive functions A(x)_- < A ( x )  such that: 
(i) A(x)lpl2<= a"(x,s,p)p,pl =<A(x)lpl 2 V ( x , s , p ) E R 2 x R x  R 2, 

(ii) sup A-~(x )/m (x) < ~ (or more generally: supl~l=, A2(x)/A (x)  =Oe~/X (r) satisfies 

f~ dr /r t z (r )= +oo); 

(b) P 0 r ) > 0 ,  and f ~ O  if Ib l~-+lc l#0;  
(c) 3 ¢ ~ D B ( R " )  such that P ( f , ¢ ) > 0  and, with ¢ ( B ( t ) ) = K ( t ) ,  Q~(b)=def 

lim sup,-=[(fK,,,I b 12/m )/f,,(,,f+] < 0o, and R~ (c)=detlimsup,~=[fKt,,l c l / f r ( , , f  +] < 
oo. We set 

We then have 

(3.4) 

E = e x p ( -  P(f)) ,  

Q = sup{Q¢ (b):  ¢ satisfies P( f ;  ¢ ) > 0 } ,  

R = sup{R~ (c):  ¢ satisfies P ( f ;  ¢ )  > 0}. 

T h e o r e m  3.7.  I f  the coefficients aii  b', c, and f in inequality (3.3) satisfy 

conditions (GC) above, then every bounded, nonconstant global solution of the 

inequality (3.3) satisfies 

supl u I => yo w h e r e y o = m i n { 1 ; R  E , (12QE) • In (3----~E)} 

and E, P and Q are as in (3.4). 

The proof of this result gives the following sharpened version if b - 0 :  
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C o r o l l a r y  3 . 7 . 1 .  Let (a o) and f be as in Theorem 3.7. I f  u is a global solution 

of 
O,a 'J (x, u, u, )Oju + c(x )u >= f 

then supR~l u [ => 1/R where R is as in (3.4). 

T h e o r e m  3 . 8 .  Let the matrix (a 'j) and the vector function b ( x )  = 

(b '(x ), b 2(x)) satisfy the condition (GC) ,  and let f E L ~o~ satisfy P( f )  ~ 0 and f ~ O. 
Let E and ¢) be defined as are E and Q, after first replacing f with [sgn P ( f ) ]  • f. I f  u is 
a global solution of 

O,a " (x, u, u~ )Oju + b'O,u = f 

On R 2, then 

OSC U _---> Yl 

Moreover, if E. < 1/e 

where y l satisfies [ ln ( 3___~ ) ] ( 1 -  E ) < 4 
t) =Y~<- : Oe 

we may take y ,>-_ (4 /Q) (1 / e -E) .  Thus if IF. = 0  (i.e. 
p ( f )  = +_ oz) we may take yl = 4/Oe. 

If it is not  necessary  to cont ro l  t e r m s  of the fo rm b'O,u, then  we can obta in  s imilar  

resul ts  even if the  matr ix  is a l lowed to be  m o r e  d e g e n e r a t e :  

T h e o r e m  3 . 9 .  Suppose that the trace of the non-negative 2 × 2  matrix 
sC(x , s ,p )= (s#'J(x,s,p)) satisfies t r (sg°(x ,s ,p))  <- T(x )  for all 
(x, s, p )  E R 2 × R × R 2. Let u be a global solution of  0, (sg'J (x, u, ux )Oju ) >- f (x  ) where 
P( f )  > O. Then sg ( x, u, u~ )ux - 0 (in particular, u =- cons t an t  if  ker  ~t = 0, i.e. i f  the 
equation is elliptic) if any of  the following conditions are satisfied: 

(a) s u p u < o %  f - ~ L  ~ and suplxl~,[T(x)/F([xl)]<~ where F > 0  satisfies 
fT dr /rF(r)= +~ ,  

(b) sup[u f < and supj j , [ T ( x ) / f ( l x  [)] < with f as in (a), 
(c) sup  T(x )  < ~, f >= 0 and l im sup  (u (x) / log  (1 + F(J  x [ ))) < ~ with F as in (a). 

E x a m p l e .  As  an example  of  a mat r ix  ~ (x, u, u , )  = (~¢" (x, u, u , ) )  that  satisfies 

the  h y p o t h e s e s  of  the  T h e o r e m  3.9, has a nontr ivia l  ke rne l  and (yet)  for  which 

sg(x ,u ,u , )u ,  -:0 ~ u ---constant ,  we m a y  take  

f ] r] [ ]  1 U x~ U~ U,  a U~ - -  U,  a 

• ~o = 2 2 • ~0  has e igenvec to r s  and 
u~, + u ~ +  1 I.u,,u,~ u~  ,.u,~ u,, 

with e igenva lues  A~ = lull~(1 + lu l l )  and Az = 0, respect ively .  (So 

M0" u, -= 0 ::), u, -= 0.) Thus,  if u is a s e m i b o u n d e d  (i.e. b o u n d e d  above  or  be low)  

solut ion of 

, ) ( 2  3) 
U ~1 + U~l U z 

\ W ~ ~, W 2 ~ 
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where we have set W 2= 1 + l u~ 12 , then u = constant. Of course, every linear 

function u = ax ,+ bx2+ c is also a solution. 

R e m a r k .  In [7] Gilbarg and Serrin prove a result similar to Theorem 3.9: If 

> 0, sup T ( x )  < ~, f = 0, and l u I = O ((log r) ~-~) then u ---- constant. (However,  it 

seems that their proof, which uses an idea of Finn [4] as does ours, actually works 

even for f => 0 if l u I = O((log r)a-~).) For sup T ( x )  < oo our result requires only the 

upper bound on u given in part (c) of the theorem. 

It is hardly necessary to point out that these results are weak analogues of a 

celebrated theorem of S. Bernstein [1] (cf. [9], [15]): If u is a bounded solution of 

A (x, y)uxx + 2B (x, y)uxy + C(x, y ) u ,  = 0 and A C  - B 2 > 0 (pointwise) then u 

constant. It is well-known (Hopf [10]) that such a result is false (i) for R n, n > 2 and 

(ii) under the weaker  hypothesis sup u < ~ even for R 2. On the other  hand, if 

Oi(stO(x)%u) = f =-0 is uniformly elliptic on R n, n => 2, then any semi-bounded 

global solution is constant (Moser [16]). For other  theorems of LiouviUe-type, we 

refer to the papers ment ioned in the introduction. 

Broadly speaking, there seem to be three techniques for proving theorems of 

Liouville-type: (a) v ia 'Harnack- type inequalities, (b)v ia  derivation of. pointwise- 

interior estimates for l ux I (e.g. by a maximum principle), and (c) via the method of 

differential and/or  difference inequalities (the method exploited in this paper). It 

should be observed that, even for uniformly elliptic equations of divergence type 

divA = B, strong Harnack inequalities are valid only if B ( x , s , p )  has special 

behavior with respect to its growth in x and p (cf. [2], [7], [20-22], and [28]). In fact, 

there is no strong Harnack inequality for Au --> 0 in R 2 [18] - -  the prototype of the 

equations treated in this paper. Similarly, the approach via derivation of a priori 

estimates for supl ux I also fails for the equation Au _-> 0 on R 2 - -  while it works well 

for equations of the form ~,u~j = f (u,  ux) even in R" (cf. [17], [25]). 

The  method exploited in this paper  is also applicable in certain cases in which the 

function B (x, s, 0) is not-> 0 as a function of x (even in a generalized sense) but 

rather has some special properties from the point of view of its dependence on s. 

We conclude this section with several results of this nature: 

T h e o r e m  3 .10 .  Let A be a-regular on R n and suppose that: (a) B(x,  s ,p)  = 

Bdx ,  s , p )+  B2(x, s ,p),  (b) sgn (s).B~(x, s ,p)  >- 0 for V(x, s,p),  and 3 h ( x )  >- 0 such 

that H = supA- h (x) /m (x)  < oo and I B2(x, s, p)l  <-- h (x)l P I ~ for V(x, s, p). I f  u is a 

bounded global solution of div A = B then u =- constant. 

Corollary 3 .10 .1 .  Let u be a bounded global solution of the divergence form 

equation 

cg,(,d'(x,u, u x ) % u ) = f ( u ) + g ( x ,  ux) in R 2. 
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I f  sg" =.~/", 3C,, such that c,~lu~12<=sg"(x,u,u~)o,ud, u<=(l /C, , ) luxl  2 for all x. 

s f ( s )  >= 0, and I g (x, p)l =< const Ip [e then u =- constant. 

T h e o r e m  3.11 .  Let A and  B be as in Theorem 3.10 and let tZ =~e~I/(~o- I) 

where ~o satisfies 1/(~o- 1)= exp(w).  I f  u is a global solution of div A(x ,  u, u~)= 

B (x, u, u~) such that - 1/p~H < inf u and :IF : (0, oo) ~ (0, oo) satisfying Definition 

3.1(c) 

dt 
= + ~  and  l imsup u ~ ! _  

~ I~, . . . .  log ) <  

(a - 1 )  
l infuf  

O.) 

1 

then u ~ constant. 

R e m a r k s .  (1) Below, in §6, a number  of examples are presented which show 

that, by and large, the theorems of this section are sharp. 

(2) In a companion paper [13] we give other results on the global behavior of 

solutions of equations (resp. inequalities) of the form (3.1) for cases in which a < n 

and A satisfies a weaker version of a-regular i ty  which only requires 

supR°M~/C~-U/m < ~. 

§4. T h e  proofs  of the t h e o r e m s  

In this section we prove Theorems 3.1-3.11. The proofs all use, essentially, the 

same basic idea: Under  the hypotheses of each of the theorems of §3 a choice is 

made, in each case, of a 1-parameter family of increasing C ~ functions ~ : R'---~ R ~ 

and a continuous function to(x, t ) -  > 0 such that to(x, 0) = 0 and t0(x, t ) > 0  if t J  0. It 

is then shown that either u~ -= 0 or for some diffeomorphism q~ E DB, some to > O, 

and some A = Ao a differential inequality can be derived for J ( t ) =  

f , ( B , , ~  ( u ) $ ( x ,  l ux 12)dx (on t,, _<- t < ~) that leads - -  after an integration - -  to a 

contradiction. 

We now turn to the 

Proof  of  T h e o r e m s  3 . 1 - 3 . 2 .  Suppose that u satisfies div A ->_ B, Choose a 

C '  function q~ : R--~ (0, o0) such that (b'(t) > 0, and diffeomorphism ~ E Da (R"). Let 

A @ (0, oo). An integration of div [(b(Au )A ] over the set K ( t )  = ~ (B (t)) immediately 

yields the inequality 

(4.1) A f ¢'(au)<ux, a>dx+ f ¢(Au)t dx<= f 
K ( t )  K(I )  OK(t) 

If A is left a - regular  and N = max{l ,  supu} we have 

I cP(Au)] {A(x,  u, u,) l  do'. 

(4.2) A f d~ ' (Au) (u . ,A )dx  >= A f m~(x )@' (Au) lu , [~dx  
K K 
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and 

(4.3) f dP(Au)lA Id~r _~ f dP(Au)MN(x)lu~ I~- ldo ". 
OK OK 

It follows from H61der's inequality and (4.1)-(4.3) that 

(4.4) 
K K 

[ fmN" (I~l( ~u )1 ~'~x I°'do=] [ I / M~Nr ~° [~()~U )]a do'] 1/(o~--1) 
= , k m ~ , - ' ]  [ ~ , ' ( x u ) ]  ° - '  

OK 8K 

with 

~ ° t  O'(~u) 

and, for some constant ~/~ (depending on ~), 

s u .  I 1, 
~ o x ( , ) t  mN 

OK(t) 

Note that under the hypotheses of the theorem G(t) <= C, (1 + t)F~ (C, (1 + t)) for 

some constant C, > 0  which depends on ~0. To proceed we need the following 

lemma: 

L e m m a  4.1. Under the hypotheses of Theorems 3.1 and 3.2, it is possible to 
choose a C ~ function ~, a diffeomorphism q~ E D~ (R ~) and positive real numbers A, 
8, and to such that 

AJ(t)+ f ~Otu)B(x,u,u~)dx>=SJ(t) forallt>=to. 
K O )  

The proof of this lemma is postponed until the combined proof of the theorems is 

complete. 

Using the lemma and observing that J(t) is nondecreasing we may conclude that 

either J(t)~ 0 or ::1 some t~_-> to and constants C~ and C2 such that 

(4.5) [AJ(t)+ f ~(Au)Bdx]~/(~-~<= Cs, J '( t) .  G(t) 
K ( t )  

Choosing qb such that qb/qb' is bounded on (-oo, AN) and setting J ( t ) =  

f K(,)m~(x )~'(Au )l u~ [°dx, we conclude that 
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(4.6) 
d 1 >  C1 1 
dt J(t) ''~° " =  (1 + t)FN (C~(1 + t ) ) -~° '  T(t)" 

Integrat ing this differential inequality from t2 to 13 in ( h , ~ )  yields 

l l 1 > f  dt 
Jttt 2~;(~-~)>= J(t2) ~/(~-~' J(t3~/(~-0= T ( t )  " 

t2 

Since f~ d t / T ( t )  : + ~ we may let t3---> ~ and conclude 

arbitrary we conclude that J ( t )  - O. Thus we must have 

complete  the proof  of Theo rems  3.1 and 3.2 we give 

that J(t2) = 0. Since t: > t~ is 

u~ ~ 0 and u ~ constant.  To 

the 

P r o o f  of  L e m m a  4.1 .  If B ( x , s , p )  satisfies the hypotheses  of Theorem 3.1 

then with N = max{l ,  sup u} (as in the proof  of the theorem)  :If  = fN E L~oc with 

fh  E L 1 and P 0  r, ~0) > 0 for some ~o E DB (cf. §2). Choosing ~o = q~o we have, since 

qb>0 ,  

K (t) ,po(B (t)) 

for all t = some to and 0 < ) t  =< some A0 by part (b) of L e m m a  2.1 of §2. 

If B satisfies the hypotheses  of T h e o r e m  3.2 then again with N = max{l ,  sup u} 

and choosing ~ as above (i.e., qb > 0 and sup qb/qb' < ~, e.g., qb --- exp) we have (with 

the diffeomorphism ~ = identity, say) 

,~J(t)+ cb(Au)B(x, u, u~)>= X - raN(x) ~ ' ( A u ) ]  
K ( t )  

Then it suffices to take ), = HN "sup,>o~(t)/cb'(t)+ ~ (with 6 > 0 but otherwise 

arbitrary).  This completes  the proof  of the l emma and hence  the proof  of Theo rems  

3.1 and 3.2. 

P r o o f  o f  T h e o r e m  3 .3 .  Choosing qb = exp u and ~0 = identity we may follow 

the proof  of Theorems  3.1 and 3.2 above (replacing mN and MN with m ( x )  and 

M ( x )  - -  and without introducing N > 0 at all - -  since A is a - regula r )  to derive, in 

place of (4.5), the inequality 

~ J ( t ) +  e~"Bdx -< ¢o,J'(t) • sup ~ • sup e~"t "-~ 
a .  m I~r=, 

B( t )  

l / ( a - l )  

where J ( t )  = fB(,~exp(Au)m • l ux I~dx and ¢o, is a constant  that depends only on n. 

Now if l i m s u p u ( x ) / l o g F ( r ) < ( a  - 1) /H then 3 t 0 > 0  and 6 > 0  such that 

{H+3 ) 
exp \-~-S--]- u(x  ) <=F(lxl )  in Ixl----to. 
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Choosing X = H + 6 (with this 6) it follows as in the proof of Lemma 4.1 that 

AJ(t)+ f s ( , )exp(Au)B >- ~J(t). Consequently, either J(t)  =- 0 or 3 some tl _-> to and 

a constant C > 0 such that 

d [  1 ] 1/~-, 
dt [ J - ~ ]  >- CtF(t) 

since a = n. Since f ~ d t / t F ( t ) =  +oo the proof can be completed as above for 

Theorem 3.1. Since a similar analysis works if a > n  and l i m s u p u / l o g r <  
( a -  n ) /H  we are done. 

P r o o f  of  T h e o r e m  3.4.  Let u be a global solution of divA ->_ B that has 

finite oscillation and such that 

s u p l u [ < s u p m i n { N ' , 2 - - ~ N P ( f N ' )  }. 

Then choosing N such that sup l u l =  < N and osc u < (1/HN)P([N), we may follow 

the proof of Theorem 3.1 (with dp(t)= exp(t),  and nan and _h4~ replacing mN and 

MN, respectively) to obtain, for some diffeomorphism q~ E Da (R") and CN,~.~ = 

constant > 0: 

AJN(t)+ e×p(~u)B <= CN.~,, .J; , ( t ) .  T~(t). 
K 

Here JN(t )= fK(oexp(Au)naN(X)IU, Iadx, T~ is a positive, increasing function on 

(0,~) such that f l [T~ (t)l-~dt = + ~, and K ( t ) =  ~,(B(t)) (cf. (4.5) and (4.6)). We 

now need the following 

L e m m a  4.2.  With N as above, 3 positive numbers A = AN, 8 = 6N, and 
to = to,N, and a diffeomorphism q~ = q~N E DB (R") such that 

l 
AJn(t)+ ~ exp(Au)Bdx  >- 8JN(t) 

,p(a(O) 

for all t > to. 

Assuming the validity of the lemma, it follows (as in the proof of Theorem 3.1) 

that JN ( t )  = 0 a n d  u --- constant. To complete the proof of the theorem we give the 

P r o o f  of  L e m m a  4.2.  Since we have A J N ( t ) + f r  exp(Au)B __-> 

J'K exp(Au)fN +fr~o[A - ffI~]naN(x)exp(Au)[u~ [a, it suffices to choose A = AN = 

/'IN + 8 (with 8 > 0 arbitrary) and prove that 

exp(Auin fu )  f f ~ - e x p ( A ~ s u p u )  f f ~ > 0  
,p (B (t)) ,p (a 0 )) 
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for  some  q = ~PN and all t => some  to. Since we may  choose  ~PN such that  P ( f~ ;  ~N) is 

arbi t rar i ly  close to P(/N), it fol lows tha t  the desired inequal i ty  is a consequence  (for 

sufficiently small)  of exp(hN osc u)  < sup+ {liminf,~[f+<B<,,f~lf+<Bc,,f~]} - -  i.e. 

of  osc u < (1/HN)P(fN). 

P r o o f  o f  C o r o l l a r y  3 . 4 . 1 .  This  is just an appl ica t ion  of the t h e o r e m  with 

HN = 0 for  all N and 1/0 = + oo. (This is valid as is easily verif ied by inspect ing the 

p roof  of  the  t h e o r e m . )  

P r o o f  of C o r o l l a r y  3 . 4 . 2 .  If osc u < (1/H)P(f)  and div A => B is a - r e g u l a r  

we have  osc u < infN,{(1/HN')P(fN,)}, where  fN' and HN, are as in the p roo f  of  

T h e o r e m  3.4. Choos ing  N '  = N > sup[  u I we may  follow the  p roof  of T h e o r e m  3.4 

to conc lude  tha t  u =-constant .  

P r o o f s  o f  T h e o r e m s  3 .5  a n d  3 . 6 .  Set e > 0 ,  

q 

FN (x)  = a ~ , ~  [h';,N(X)/thN (X)8, ]l/(a-.~ ) 
i=1 \ e o t  I 

and C(e)  = Eq:l  Cj (e )  if d i v A  _-- B is finitely a - r e g u l a r .  Us ing  Y o u n g ' s  inequal i ty  

in the  f o r m  ab<=ea~/<~-~?+Cj(e)b~%, it fol lows tha t  for  all ( x , s , p ) @ R " ×  
[ - N , N ] x R "  we have  

B(x, s,p ) >= fN(x ) -  eFN(x ) -  [C(e )tfiN(x ) + hN(X )]lp J~ - gN(X ) sup ~b(s). 
rsp<N 

Since ~ (0 )  = 0 and Iimsup,~+[f+~B(,,FN(x)+ gN(x)/f+~,,<,,f~X)] < 0o for  s o m e  

CN E D a  (R")  such that  P(fN, ~PN) > 0, we may  choose  No and eo > 0 (depending  on 

CNo) such that  fNo, (x)  = dof[No(X ) -- eFNo(X ) -- gNo(X ) sUpI,I<N,, ~ (S) satisfies 

e 0 r ~ o , ; ¢ N o ) > 0  for  all 0 < e  < e o .  Set t ing /~N0,(x) = C(e)r~No(X)+hN,,(X), SO that  

sups- [/~No., (x)/ff~No(x)] =/'~No,, < o% we have  

n(x,s ,p)>=fl~o.(X)-E~, , . (x) lpl  ~ f o r a l l ( x , s , p ) E R ° x [ - N , , , N o ] x R  ". 

It  now fol lows f rom the p roof  of  T h e o r e m  3.4 that  if 

sup l u I < sup min  P(fNo., ; ~PNo), No = 3/o 
E ~eo(,.PN ) No 

then u =- cons tan t .  

If  div A _----- B is s t rongly a - r e g u l a r  t hen  Y o u n g ' s  inequa l i ty  leads to the  e s t ima te  

B ( x , s , p ) > - _ f . ( x ) - h . ( x ) l P l  " V ( x , s , p ) ~ R "  x R × a".  

H e r e  f ,  (X)=de f f (x )  - EF(x ) ,  h e ( x )  = C(F_,).m (x)-[- h ( x ) ,  F ( x )  =def 

ET=~ [h';(x)/m ~ (x )]l/<"-"? and C(e)  is as above .  If ~ E D a  satisfies POt, ~p) > 0 then  

we can choose  eo = eoCp) such tha t  POt,, ~p) > 0 for  all 0 < e - eo. For  such e we 
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may apply Corollary 3.4.2 and conclude that if u is a global solution of div A >- B 

with 

o s c u < y ~ = ~ f  sup sup ~ ' ! p ( f , ) ]  
,~.eq.,)>o ,~o(,) [ H~ J 

then u -= constant. 

P r o o f  o f  C o r o l l a r y  3.6.1.  Let u be a global solution of divA >- B + C with 

s u p l u ~ l - < t 0 < ~ .  Since lu~l'~+~=to~+~lux/tol'~+~<_to~lu~l ~, u also satisfies the 

a-regular inequality div A > /3  where /3 = f ( x )  - E7=1 hi ( x ) lp  I ~' - 

[h (x) + k (x)w ~]IP I ° and f, h, and h satisfy B >= f ( x )  - Z]_l h, (x)[ p I ~, - h (x)[ p 1". 
Following the proof of Theorem 3.6 we find that u -= constant if 

o s c u < y 2 = -  sap sup /--~ -1 P(f~)/ w h e r e H , = s u p ~ h ( x ) +  8 k ( x ) ) .  
~ P~.~)>0 ~-<~,,~) tH~ J x- t i n ( x )  m(x)J  

Thus y2 = y2(A, B, C) -< y,(A, B). 

P r o o f  of T h e o r e m  3.7.  It suffices to give an explicit value for y0 in Theorem 

3.5, since the conditions (GC) imply that (3.3) is a-regular.  This immediately 

reduces to finding y,i with the following property: If I u I -< yo then ::IA, 6 and to > 0 

and a diffeomorphism ~ such that 

f e x p ( A u ) ' m ' l u ~ [ 2 +  f ( f - b ' O i u - c u ) e x p ( A u )  
¢p(B(t)) ~(B(t)) 

(4.7) 
/ exp(Au)- m • I ux ]2, for all t = to. => 6 

~(B(t)) 

For e > 0  we have 

_ ! ] b ( x ) r  1 12 f - b'O'u >= f m - ~ e  m lp 

and setting A = A ( e ) =  1/4e +6,  where 6 > 0 ,  it suffices to find e > 0  and 

q~ E DB (R") such that 

exp[a(e)infu] f Fdx-exp[X(e)supu] f [f-+eb--~+Y°[cl] 
,~ (B( t  )) ,~(B(t  )) 

for all t ->some to. This immediately reduces to 

- e x p [  - Po( / ,  ~0)] - e Q .  - y 0 R . }  > 0  w i t h  

sup. >o{exp[ - A (e)" osc u] 

R,~=limsup,-~[ f Icfdx/ J F]. 
~(B(tB ,e(nO)) 

Q, =limsup,-- [ f ([b[2/m)dx/ f r], 
,p(B(0) ¢(n(0) 
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Replacing 1/4e with r/, and noticing that osc u _--< 2yo, it clearly suffices to choose yo, 

7/ and ~o such that 

exp[ - 2rlyo ] > exp[ - Po(f, q~)] +~-~ Q + yoR. 

Since Po(f, q~ ) can be taken arbitrarily close to P(f) ,  it suffices to find yo and 7? such 

that 

(4.8) 
1 

exp[ - 2nyo] > E + ~ O + yoR 
'*71 

where E = ~ f e x p ( -  P0r)) < 1. 

Putting/x =d.~ln (4/(3 + E ) ) >  0 and 2,/70 = p~ it is easily seen that (4.8)follows from 

the choice 

To=min{12RE,l~(12oE)}. 

P r o o f  o f  C o r o l l a r y  3 . 7 . 1 .  If b - - - 0  then we may let -0-->0 in (4.8) and 

conclude that if yoR < 1 then u --- constant. 

P r o o f  o f  T h e o r e m  3.8.  Since o s c ( u ) = o s c ( - u )  we may assume that 

P( f )  > 0. Following the proof of Theorem 3.7, it is clear that we may choose any 

y~ = y  such that 

I > ( E  + l-~ Q) exp(~y)=,~F,(71) 
4~1 

for some 7/ > 0. 

Define F = sup{y > 0 : i n f , > o F ~ ( , / ) <  1}. Let /-/ ,(7/)= exp(~/y)O/47/. Then 

min~H, (~ )  = yOe/4.  Since H,--<F, ,  i n fF ,  < 1  ~ y <_4/Oe ~ F_-<4/Oe. On the 

other hand, F ,  ( l / y )  = (E + yO/4)e so F-> (4/O)(1/e - E )  for E sufficiently small. 

Finally, from the proof of Theorem 3.7 it follows that F _>-/~ (1 - E)]O in any case. 

P r o o f  o f  T h e o r e m  3 . 9 .  Let  q~ ~ D B ( R  ~) and A > 0 .  Integration of 

div [exp (Au)Mu~] over K (t) = ~p (B (t)) yields 

x f e "(ux, ux>dx+ f e Tax= f 
K(t) KO) OKO) 

where d denotes the unit exterior normal to OK(t). Using the inequality (~tux, ti} < 
e e X U l  (du~, u~)m(d~, fi)arz and setting JK(t) X~, du~)dx = Ja(t) we derive, for some 

constant C = C., 

(4.9) [ AJ~ ( t)  + e A < C ¢ .  J ~ ( t ) .  SUpx~¢(oBo, [ T ( x )  • e~"] • t. 
KO) 

If (a) sup u < oo and f -  E L ~ or  if (b) sup  l u [ < o0 then,  accord ing  to  L e m m a  2.1, w e  
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can choose A > 0, ~0 E DB (R") and to > 0 such that f~<m,, e*'fdx >= 0 for all t _-----to. 

With this choice of A, to and ,p, and noting that since q~ E Ds (R") 3C~ > 0 such that 

T(~0 (y )) _--- C~F(C,(1 + lY I)) for V l y l -  > t,, we conclude that 

(4.10) J~ (t) 2 <- CJ~(t)tF(C(1 + t)) Vt >-_ some t2 

for some constant C > 0. As in the proof  of Theorem 3.1 this differential inequality 

leads to the conclusion that J~(t)=fmoe~"(u~,~u~)=-O. Since ~t is non- 

negative f f  ~/ux -= 0. 

If f = 0 we may take, for simplicity, ~0 = identity. If u (x)_--- C log (1 + F(I x I) ) for 

some C > 0  and all x with I xl_-__someto, then we may choose A such that 

exp (Au) -< 1 + F(lx  1) in I x I -> to. Thus, if sup T(x) < 0% we again arrive at (4.10), 

and conclude that ~u~ -= 0. This completes the proof of the theorem. 

P r o o f  o f  T h e o r e m  3 .10 .  Suppose that sup J u l <  C and let N be a positive 

integer. Integration of div(u2N+~A) over the ball B ( t )  yields, since 

~N+1 u~) _-> 0, u B~(x, u, 

B(t )  B( t )  OB 

Thus 

(4.11) lu[ TM (2N+l)-lu] m(x) J  m(x)Jux < ju 
B( t )  8B 

Using the fact that lab ]u I2N+*IA [dtr <--<_ C"+2N)/'faB ]U 1 2 N " - " M I  u~ I °-1, we con- 

elude that there exists a positive constant C~ ,  such that 

(4.12) 

(f 
aB(t) 

L oai~ m (x) ]" 
aBO) 

With 2N > CH and JN(t) =a~,fB<o] u/2~'m ]ux ]'dx, we deduce from (4.11), (4.12), 

and Definition 3.1 that 

I, ,  ( t ) ° " ° - l ' _ -  < c~,d~(t), tF(t) 

for some F > 0 with f~ dt/ tF(t)= -o0. This differential inequality leads to J~ (t)---- 

0, i.e. u - c o n s t a n t ,  as in the proof  of Theorem 3.1. 

Corollary 3.10.1 follows immediately from Theorem 3.10 with oe = 2. 
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Proof  o f  T h e o r e m  3 . 1 1 .  In teg ra t ion  of d iv[ (e  ~ - 1)A] over  B ( t )  leads to 

the inequal i ty  

(4.13) af e~°m{u.,~-f (e~"+l)lB~l<=fdiv(e*°-l)A<= f (e*°+l)lAldcr 
B(I) B(I) B ~B(t) 

since (e ~ - 1)Bl(x, u, u x ) -  > 0. 
T h e  le f t -hand  m e m b e r  of  (4.13) m a y  be  e s t i m a t e d  f rom be low by  

fB(,,[A - (e -~" + 1)H]me~U[u~ {~. Let  a > 0  and set Fo (A) = (e ~ + 1)/A. It  is easily 

seen  tha t  min~>oF~(A) = F~(oa/a) = la.a where  /z = 1/(oJ - 1) and 1/(oa - 1) = 

exp(to) .  T h u s  if i n f u  _-> - a  > - 0 %  a < 1/Htx, A = oa/a and  8 = 1 - / a . a H  > 0 ,  we 

have  

(4.14) f d i v ( e ~ " - l ) A > ~  f e~"m[uxt ~ f o r V t > 0 .  
B(,~ B(O 

On the o t h e r  hand ,  

(4.15) 

(f 
OB(t) 

If 

(e ~" + D I A  {do-) ~;(~-l) 

f ( f  ° < e ~ , m l u ~ l , .  M , _ ~ , + l ) , e ~ , )  . = ~ - = / ( e  
OB(t) OEl(t) 

- a <- u(x)<= (a - 1 ) a l o g F ( I x l )  
O3 

when Ix I --> some  ro, 

then  - -  for  A as a b o v e  - -  we have  e*" =< F ( l x  I) 1/(~-1~. This  es t imate ,  t oge the r  with 

(4.14) and  (4.15), leads to  the  di f ferent ia l  inequal i ty  

(4.16) J(t)~/(~-')<_- C J ' ( t ) F ( t ) .  t on t _-> to 

for  s o m e  C > 0  and t 0 > 0 .  A s  in the  p roo f  of T h e o r e m  3.1, the  inequal i ty  (4.16) 

leads  to  J ( t ) - O ,  i.e., u - c o n s t a n t .  This  comple t e s  the  p r o o f  of  the t h e o r e m .  

05. Appl i ca t ions  

In this sec t ion  we no te  some  e l e m e n t a r y  consequences  of  the  t h e o r e m s  of §3. 

T h e o r e m  5 . 1 .  Let  u ~ C 3 be a global solution of  the variational problem 

8 f a 2 F ( p , q ) d x  =O where p = ux and  q = u y ,  supp, q IFpp+Fqq l  <°% and 

F ~ F ~ - F 2 > 0 .  I f  u~ and  uy are semi -bounded  (not necessarily both on the same 

side) then u is linear. 
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P r o o f .  u satisfies (Fp)x +(Fq)y = 0 .  Di f fe ren t ia t ion  of  this equa t ion  with 

respec t  to x shows that  p = ux satisfies the  equa t ion  

div ~ -  grad  p = 0 with s~ = 
LF,~ fqq J 

Differen t ia t ion  with respec t  to y shows that  q = u, satisfies the  s ame  equat ion .  The  

conclusion of the t h e o r e m  now fol lows f rom T h e o r e m  3.9, s ince we may  assume  

Fpp > 0 .  

R e m a r k .  As  the  p roo f  shows, the  conclus ion  of T h e o r e m  5.1 r emains  valid 

unde r  the  w e a k e r  a s sumpt ion :  lim sup,_~(aux/loglog r ) < o o  for  s o m e  choice  of  

o~ = __ 1, and  l im sup,_~/3uy/ log log r < ~ for  some  choice  of /3  = __+ 1. For  the s ame  

conclus ion unde r  the  a s sumpt ions  u = 0 ([ log r ] 1-~) see F i n n - G i l b a r g  [5], 

We  now cons ide r  equa t ions  on R 2 of  the  genera l  f o rm 

(5.1) a ' ;  (x, u, Vu )u,, = 0 

where  Vu = grad  u and  uq = O2u/ax~Oxi. 

Suppose  that  the  s y m m e t r i c  matr ix  (a ~j (x, s, p ) )  satisfies the  fol lowing condit ions:  

(a) El m e a s u r a b l e  pos i t ive  funct ions  m (x)<-_ M ( x )  such tha t  the  e igenvalues  of 

a 'j (x, s, p )  lie in [m (x),  M(x)] ,  
(b) supl, l- ,{(1/a " +  1/a22) • M2(x) /m (x)} = tz (r) satisfies 

(s,p) 

(5.2) l dr = +oo. 
r (r) 

I 

T h e o r e m  5 . 2 .  Suppose thai A = (a °) satisfies the conditions immediately 

above and u E C 3 satisfies (5.1). I f  the partial derivatives u~ and uy are semi- 

bounded, not necessarily both on the same side, then u is linear. 

P r o o f .  If u satisfies (5.1) then it is we l l -known and easily ver if ied that  v = u~ 

satisfies div A2 g rad  v = 0, and w = uy satisfies div AI  g rad  w = 0 with 

__ ral___i ' A2 [a 2 g = ]  and 

N o t e  that  for  (x, u, p )  ~ R 2 x R x R 2, 

(Ai" p, p )  = 1 (a ,kp,p~, ) > _ _  
a# 

and,  for  some  C > 0, 

[A; .p  f<= C 1 M ( x ) l p [  
a~j 

A I =  
[1 0] 

2a~2 a22 • 
L a  rT a u 

1 m ( x ) l p l  2 
a H (x) 

( / =  1,2). 
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Since supl~l=, (1/a" + 1/a22) . M 2 / m  = / z ( r )  satisfies (5.3), the vec to r  fields 

,ij (x, z, ~) = Aj (x, u (x),  g rad  u (x ) ) .  ~: - -  which are  i n d e p e n d e n t  of  z - -  a re  left 

2- regular  (cf. Def ini t ion 3.1). Since z = uj = ~u/Ox, satisfies div .J,j (x, z, g rad  w) = 0 

for  j = 1, 2, the  result  fol lows f r o m  T h e o r e m  3.1. 

A long  the  s a m e  lines we have  

T h e o r e m  5 . 3 .  Let a, b, and c be C' functions on R that satisfy a ( t ) >  0 and 

a ( t ) .  c ( t ) - b ( t ) 2 > 0  for Vt. I f  u is a solution of 

(5.3) a(u )uxx + 2b(u )uxy + c(u )Uyy >= 0 

and sup u < ~ then u =- cons tant .  

Proof .  

where  

on R 2 

E q u a t i o n  (5.3) m a y  be  rewr i t ten  as 

(a(u)ux + b(u)uy)x + (b(u)ux + c(u)uy)r = f(x,  u, u~, uy) 

f(x,  u, ux, uy) = a'(u)u~ + c'(u)u~ + 2b'(u)uxuy 

>= - [ l a ' ( u ) l  + l b'(u)l + lc ' (u) l l l  grad u l 2 

_-> - c o n s t a n t - [ g r a d  u t 2 

if u is b o u n d e d .  T h e  des i red  conc lus ion  now fol lows f r o m  T h e o r e m  3.3, T h e o r e m  

3.4, or  C o r o l l a r y  3.4.2. 

In the  s a m e  m a n n e r  we have  the  fol lowing c o n s e q u e n c e  of T h e o r e m  3.9: 

T h e o r e m  5 . 4 .  Let ~ :R- -~(0 ,  oo) be a C'  function and let F : ( 0 ,  oo)---~(0,~) 

satisfy f~ dt / tF( t  ) = + oo. I f  ( a " ( x ) )  is a positive definite (2 x 2)-matrix satisfying 

m Is c 12 _---< a "  (x)s~,s~j _-< M ( x  )l ~ 12 with M ( x )  <= ~v/-~l x I) then every bounded solution of 

,9, (~ (u )a '%u ) _~ 0 (5.4) 

is a constant. 

R e m a r k .  Of  course ,  the  r e q u i r e m e n t  that  q~ be  C 1 is not  essential .  If  q~ is 

con t inuous  the  t h e o r e m  is val id for  w e a k  subsolu t ions  of  (5.4). 

As  a final and  m o r e  g e o m e t r i c  appl ica t ion  we have  

T h e o r e m  5 . 5 .  Let F = F ( u )  denote the graph of u :R2- -~R and let H ( x , y )  

denote the mean curvature of l" = F(u  ) at (x, y, u (x, y )) ~ R 3. I f  u is bounded on R 2 

then P ( H )  = 0 and f~2 Hdxdy = 0 if u has a Lebesgue integral (which a priori may 

be infinite). 

Coro l lary  5 . 5 . 1 .  If  H is the mean curvature of a bounded graph over R 2 then 
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lim inf,~® H =< 0 =< lim sup,~® H. Moreover, f Hdxdy = 0 if H does not take both 
positive and negative values in every neighborhood of infinity. 

P r o o f .  It is well-known that if /-/ is the mean curvature of the graph F of 

u : R2---~ R then d i v A  = --+H with A = ½grad(-- + u)/¥/1 + Igrad u 12. It follows from 

Corollary 3.4.2 that P(+-H)= ±P(H)<-O (i.e. P(H)= 0) if u is bounded. It 

follows that if H has Lebesgue integral (that is, if H ÷ or H -  is integrable) then 

f H = 0. The corollary follows immediately from the theorem. 

06.  E x a m p l e s  

In this section we record a number  of examples that show that the theorems of §3 

cannot be appreciably improved. 

E x a m p l e  1. If a < n the differential inequality 

(6.1) div(I ux [°-2ux)_--- 0 

which is not left a - regular  has the bounded  solution 

u ( x ) =  { A +Br2+Cr4' i n l x l = r N l '  

- r  P, i n l x l = r > l ,  

where p = (a - n)/(a - 1), A = - 1 + 3p /4 -  p2/8, B = - p + p2/4, C = p / 4 -  p2/8. 
Thus the requirement  of left a-regular i ty  is necessary in Theorem 3.1. 

E x a m p l e  2.  Given e > 0 and N > 0, :1 smooth functions u, a n d / ,  on R 2 that 

satisfy 

Au~ =f~ 

while u~ (x)= O(Ix I -N) as Ix l---* oo and f~ satisfies either of the following condi- 

tions: 

(i) f~(x)~O in Ixl>-e, 
(ii) ff,,r<,f,(x)dx > 0  V r > 0  (but P ( f~ )=  0). 

This should be compared  with the s tatements  of Theorem 3.1 and Corollary 3.4.1. 

To  construct u, and fe it suffices to set u~ = ( - 1 ) J ( l + r 2 )  -k and make an 

appropriate choice of k and ]. 

E x a m p l e  3. For  p > 1, the function 

f£ ds r 2 u(x)=o~, s(log s) P , = [xl 2, 

satisfies 0 --< u (x) =< constant on R z and also the differential inequality Via ij (x)Oju >- 
0 with a~(x)= (log X/-~-+ 2 ) ~ (  On the other  hand, according to Theorem 3.9, if 

tr(a~i(x)) = O(log r) then any bounded solution of aia°Oiu >= 0 is a constant. 
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E x a m p l e  4 .  Accord ing  to a result  of Gi lbarg  and  Serrin [7] the equa t ion  

(6.2) Au + b %u = f 

has no n o n c o n s t a n t  b o u n d e d  solut ion  in R 2 (and even  in R", n =>2) if b ' (x)= 
O(Ixl  ') and f ~ 0. T h e  condi t ion  on b ~ cannot  be  significantly re laxed since the  

funct ion u = tan ' (v ) ,  where  c~ a n d / 3  are  constants ,  and  v = a x  +/3y, satisfies (6.2) 

with b(x) = (bl(x), b2(x)) = (2v/(1 + v2))(a,/3) and f -- 0. 

On the  o the r  hand,  the condi t ions  b ' ( x ) =  O(Ixl  -~) are  not sufficient for  the  

s ame  t h e o r e m  to hold with f---  0. Fo r  example ,  the  func t ion  u = tan-~(r2), whe re  

x E R  2 and  r 2=  x~+x~, satisfies 

+ 4r2 Ix g r a d u ]  > 0 .  
Au 1 + r -------7 " = 

Still, it might  be  con jec tu red  tha t  if the  vec tor  b(x)= (b~(x), be(x)) decays  fast 

enough  as Ix I ----~ ~ then equa t ion  (6.2) should b e h a v e  in the  s a m e  m a n n e r  as Au = jr. 

This turns  out  to be  false: It  is poss ib le  to cons t ruc t  vec to rs  b(x) with c o m p a c t  

suppor t  such tha t  the inequal i ty  Au + b%u =>0 has  b o u n d e d  solut ions on R 2. 

Wi thou t  going into details,  we r e m a r k  that  the  funct ion  u(x)=r2/( l+ar4),  
r 2 = Ix 12, satisfies an inequal i ty  of  this type if c~ is sufficiently small. 

It fol lows f r o m  the discussion a b o v e  that  T h e o r e m  3.8 gives the best  poss ib le  

result  for  (6.2) if f => 0: If the  coeff icients  b '  = O( I  x { 1-~) for  s o m e  6 > 0 (or even  if 

b (x)  E L 2(R2)) then  there  exists a lower  b o u n d  for  the  osci l la t ion of global  solut ions  

of  A u + b 'cg,u = f => O. 

E x a m p l e  5 .  If P ( f ) > 0  and  lg(x,p) l<-Clpl  ~ for  all ( x , p ) E R : x R  z then,  

according  to  Coro l l a ry  3.4.2, the osci l lat ion of every  g lobal  solut ion of 

(6.3) A u = g (x, grad  u ) + f(x)  

satisfies osc u => 7 = Y ( g , f ) w h e r e  the  cons tan t  7 => (1/C)P(f). It can be  shown tha t  

in genera l  y does  not  satisfy the  s t ronge r  inequal i ty  y > (2/C)P(f). In fact, for  t > 0 

the funct ions  u,(x)=~ettcosZx~ have  oscu ,  = t  and satisfy Au,+lgradu, I 2= 
f, (x) = q~, (x) - tO, (x) where  q~, (x)  = 2t sin 2 x~ + t2 s in22x ,  tO, (x)  = 2t cos 2 x, and  x = 

(x~,x2). A shor t  c o m p u t a t i o n  shows tha t  

expP(f, , id,{~,,q, ,})=liminf( f ¢ , /  f t O , ) = l + t / 2 > l  
txl<r I~[<, 

(cf. §2). Thus  e x p P ( f , ) >  1 + t/2. If, in general ,  T(g,f)>= (A/C)P( f )  with A => 1 

then the c o m p u t a t i o n s  above  give exp(t/A)>= (1 + t/2) for  all t > 0 .  Thus  A _-<2. 

M o r e o v e r ,  we have  cons t ruc ted  solut ions  u, of  (6.3) with f =  f, and 

o s c u , - ( 1 / C ) P ( f , ) - - - ~ O  as t---~0. 

E x a m p l e  6.  Accord ing  to Coro l l a ry  3.7.1, the inequal i ty  
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A u + c u > = f > = O  where  f # 0  

has no noncons t an t  b o u n d e d  solutions with l u [ < 

l iminf ,_~[flxr<,f / fdxj<,lc[]=a~fl /R.  On the o ther  hand,  the equa t ion  Au + 2 u  = 

2sin2xl (x = (x,, x2)) has the solution u = cos2xl with oscillation = 1 while 

1 l i m i n f ( f  9sin ' -x1/27rr2)=l]2.  
R r ~  

fxl<r 

Thus  the hypothes is  [ u I =< 2/R cannot  replace  the condi t ion I u [ < 1/R. 

E x a m p l e  7 .  T he  funct ion u ( x )  = log[1 + (1/2)s¢ log(I  + r2)] satisfies u ( x )  >= O, 

l i m s u p r ~ . ( l o g l o g r ) - l u ( x )  =1  and A u + l V u l e = > 0  on R 2. Thus  the condi t ion 

" l im sup( log log r) - lu  < (a - 1 ) / H "  of T h e o r e m  3.3 is sharp and  canno t  be relaxed 

to lim sup(log log r) - lu  <= (a  - 1)/H. 

E x a m p l e  8 .  T he  equa t ion  A u = u has the solution u (x) = - exp xl. Thus  the 

boundednes s  condi t ion  s u p ] u I < o 0  of  Coro l l a ry  3.10.1 canno t  be relaxed to  

s u p u  <~o. 

A d d e d  in proof. A f t e r  this paper  was type-set  some addi t ional  references  (J. 

Frehse,  Essential  self  adjointness of  singular elliptic operators, Bol. Soc. Brasil. Mat .  

8 (1977), 87-107;  S. Gran lund ,  Strong m a x i m u m  principle for a quasil inear equation 

with applications, A n n .  Acad .  Sci. Fenn.  Ser. A 21 (1978), 1-25;  J. Serrin,  Liouville 

theorems for quasil inear elliptic equations, Att i  Accad.  Naz.  Lincei  217 (1975), 

207-215),  which treat  re la ted  problems,  c a m e  to  our  a t tent ion.  F rehse ' s  pape r  is, in 

fact, cited in [8] and [14] as mot iva t ing  some of  their work.  Of  course ,  our  results 

are  not  con ta ined  in these papers.  
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