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0. I n t r o d u c t i o n  

0.1. THE CONJECTURE OF LANG AND VOJTA. Let X be a variety over a field 

of characteristic 0. We say that X is a variety of logarithmic general type, if 

there exists a desingularization )C --~ X, and a projective embedding )~ C Y 

where D = Y \ )( is a divisor of normal crossings, such that the invertible sheaf 

wv (D) is big. We note first that this property is independent of the choices of .~ 

and Y, and that  it is a proper birational invariant, namely, if X ~ -+ X is a proper 

birational morphism (or an inverse of such) then X is of logarithmic general type 

if and only if X ~ is. 

Now let X be a variety of logarithmic general type defined over a number field 

K.  Let S be a finite set of places in K and let OK,s C K be the ring of S-integers. 

Fix a model X of X over OK,S. It was conjectured by S. Lang and P. Vojta (cf. 

[Lan86], [Voj86]) that the set of S-integral points on X is not Zariski dense in 

X. In case X is projective, one may choose an arbitrary projective model X and 

then X((gg,s) is identified with X(K).  In such a case, one often refers to this 

Lang-Vojta conjecture as Lang's conjecture. When d imX = 1, the conjectures 

of Lang and Vojta reduce to Siegel's theorem and Mordell's conjecture (Faltings's 

theorem). 

0.2. THE UNIFORMITY PRINCIPLE. In [CHM97], L. Caparaso, J. Harris and B. 

Mazur show that  Lang's conjecture implies a uniformity result for rational points 

on curves of genus g _> 2 over a fixed number field, which extends Faltings's 

theorem [FalS3]: 

Suppose Lang's conjecture holds true. Then there exists a number 
N(g, K) (depending only on the genus g and the number field K)  
such that the number of rational points #C(K)  on a smooth projec- 
tive curve C of genus g defined over a number field K is uniformly 

bounded: 
# c ( g )  < N(g, g) .  

The basic principle of [C-H-M] may be summarized by the implication 

Uniform version of Lang's conjecture in 
Lang's conjecture in ==v a fixed dimension (e.g. Uniform Mordell's 
arbitrary dimension 

conjecture in dimension 1). 

Indeed, the results of [Has96], [R97a] and [RV96] show that the same principle 

holds in higher dimensions as well. 
It is only natural then to seek to show the following analogous implication, 

which may be considered a logarithmic generalization of the above: 
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Uniform version of the Lang- The Lang-Vojta conjecture in 
==~ Vojta conjecture in a fixed arbitrary dimension 

dimension. 

0.3. THE CASE OF ELLIPTIC CURVES. 

353 

Let K be a number field, S a finite 

number of places in K,  and denote by OK,S the ring of S-integers. Let E be 

an elliptic curve defined over K,  with origin 0, and let P be a K-rational point 

of E \ { 0 } ,  i.e., P E ( E \ { 0 } ) ( K ) .  Fix a model E of E over OK,S, and denote 

by {0} the "zero section". We say that P is S-integral if P E (8 \ {0})(OK,s). 

Siegel's theorem, which may be considered a logarithmic version of Mordell's 

conjecture, states that the number of S-integral points on $ \ {0} is finite. We 

can view this as a case of tile Lang-Vojta conjecture, regarding E \ {0} as a curve 

of logarithmic general type. Thus according to the principle in 0.2, one might 

naively expect that,  assuming the Lang-Vojta conjecture, a uniform version of 

Siegel's theorem in the following form would hold: 

Could there exist a number N(K, S) (depending only on the number 

field and the finite number of places S in K) such that for any elliptic 

curve defined over K and any model $ over OK,s, the number of 

S-integral points in the complement of the zero section is uniformly 

bounded: 

#(C \ {O})(OK,s) < N ( g ,  S)? 

but the statement in this naive form fails to hold. Indeed, take an elliptic curve 

E with an infinite number of K-rational points. Let 

y2 = x3 + Ax + B 

be an affine equation for E with A, B E Og,s (here the origin of E is the point 

at infinity). This equation gives an integral model E over OK,S. Note that for an 

arbitrary n-tuple of K-rational points P1 , . . . ,  P,, E ( E \ { 0 } ) ( K ) ,  one can find 

c E OK,S such that 
c2x(p,), c3y(p,) E OK,S 

where x(P~) and y(P~) are x- and y-coordinates of the point Pi. By changing 

coordinates xl  = c2x, yl = c3y, one obtains a new model g" of E with a different 

defining equation over OK,S: 

y2 = x 3 + c4Axl + c6B 

where all the points Pi are now S-integral points in ~;'. This example shows that 

even for a fixed elliptic curve defined over K one may have an arbitrarily large 
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number of S-integral points on varying models over COg,s, and hence the number 

is not uniformly bounded. 

We observe that  this unboundedness is caused, as demonstrated in the example 

above, by allowing some coordinate changes. Geometrically, these coordinate 

changes correspond to some blowing up centered at the zero points in some 

fibers of E ~ Spec COg,s, possibly followed by some blowing down. From the 

Lang-Vojta point of view, such a procedure may introduce a curve F in a fiber 

with negative intersection with the logarithmic relative dualizing sheaf: 

O)E/SpecOK,s({O})" F ~ O. 

Such a component fails to be "hyperbolic" and thus may "leave space" for more 

integral points. 

In order to avoid such a situation one may wish to impose some positivity 

condition on the models one takes. This lead the first author to the notion of 

stably S-integral points: a K-rational point P E (E \{0})(K)  is called stably S- 

integral if for any finite extension L of K,  with T being the set of places above S, 

such that E has a stable model ~L,T o v e r  COL,T, we have P �9 (~L,T \ {0})(COL,T)- 

Using this definition, the following assertion was shown in [R97b]: 

Assume that the Lang-Vojta conjecture holds true. Then there ex- 

ists a number N(K, S) such that for any elliptic curve defined over 

K the number of stably S-integral points E(K, S) stable is uniformly 

bounded: 
#E(K,  S) stable < N(K, S). 

0.4.  ABELIAN VARIETIES. The purpose of this paper is to extend the result of 

0.3 to the higher dimensional case, according to the uniformity principle of 0.2. 

Let A be a principally polarized abelian variety with theta divisor e ,  defined 

over a number field K. Let S be a finite set of places in K,  and OK,S the ring of 

S-integers. It is a theorem due to Faltings [Fal91] that if ,4 --+ COg,s is a model 

of A over COg,s, and O the closure of e ,  then 

#( .4  \ e ) ( o g , s )  < oo. 

As observed in 0.3 for the case of dimension 1, one cannot expect that  the num- 

ber of S-integral points be uniformly bounded without imposing some positivity 

condition, or equivalently, without restricting oneself to some notion of stably in- 

tegral points. In Definition 3.1.1 below we define stably integral points as points 

which are integral on the complement of ~ on the stable model of a principally 
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polarized abelian variety, after taking a finite extension of K. The existence of 

such stable models is provided by recent results of Alexeev and Nakamura (see 

[A1396], [AN96], [Ale98]), in which the moduli of principally polarized abelian 

varieties is compactified by the moduli of stable quasi-abelian pairs. 

Here is our main arithmetic result on abelian surfaces: 

MAIN THEOREM: Assume that the conjecture of Lang and Vojta holds true. 

Then there exists a number N(K,  S), such that for any principally polarized 

abelian surface with a theta divisor (A, O), the number of the stably S-integral 

points of A \ (9 is uniformly bounded: 

# ( A  \ O)(K, S) stable < N(K,  S). 

We expect a similar result to hold for abelian varieties of any fixed dimension 

with a divisor of arbitrary fixed polarization degree. 

0.5. In Section l, we review the proof of the uniformity statement on rational 

points on varieties of general type, as we will apply several methods which have 

been used in that context. In Section 2 we review the construction of complete 

moduli of stable quasi-abelian pairs as described by Alexeev and Nakamura. In 

Section 3, we prove the Main Theorem. There is one difficulty in the last inductive 

step where we consider families of subvarieties of principally polarized abelian 

varieties, especially families of abelian subvarieties, which are not necessarily 

principally polarized. We can complete the argument in dimension <_ 2 using 

Pacelli's stronger uniformity results for the elliptic curves, leaving the general 

case of dimension > 2 conjectural. 

0.6. It is worth noting that a similar argument to the one we give for principally 

polarized abelian varieties often works for pairs of logarithmic general type (X, D) 

(see 0.7 below) defined over K, if a "good" moduli for the log canonical models of 

such pairs exists. For example, one can use such an argument to show, assuming 

the conjecture of Lang and Vojta, that  there is a uniform bound on stably integral 

points for p1 ".{n points} (n >__ 3), using the moduli of stable n-pointed curves 

of genus 0. However, at least when n = 3, this uniformity statement is nothing 

but the classical result of Siegel about the finiteness of the number of solutions of 

an S-unit equation (which holds regardless of the Lang-Vojta conjecture). This 

result of Siegel has been strengthened to a great extent in recent years; see, e.g., 

[Sch96]. 

0.7. LOGARITHMIC PAIRS. In Section 0.1 we defined what it means for a variety 

to be of logarithmic general type, in terms of a good compactification .~ C Y of 
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a desingularization )(  -+ X. It is convenient to have a criterion which does not 

require choosing a desingularization. One can approach that using "singularities 

of pairs"; see [KMM87]. 

Let X be a projective variety, D C X a reduced effective Well divi- 

sor. Assume 

1. the pair (X, D) has log-canonical singularities; 

2. oC~-(D ) is big, and 

3. the complement X \ D has canonical singularities. 

Then X \ D has logarithmic general type. 

Thus it is enough to check that X has a lot of logarithmic differentials, and 

that  its singularities are sufficiently mild. 

We would like to draw the reader's attention to condition 3, which does not 

follow from condition 1 because of possible exceptional divisors. Many authors 

define the pair (X, D) to be of logarithmic general type if conditions 1 and 2 are 

satisfied - -  this is equivalent to the statement that the variety X \ (D u Sing(X)) 

is of logarithmic general type in our terminology. 

0.8. ACKNOWLEDGEMENTS. We are grateful to Professors Alexeev, Hassett, 

Kawamata, Koll~r and Pacelli, as well as the referee, for invaluable suggestions 

on various parts of the paper. 

1. O u t l i n e  o f  t h e  proof of uniformity for varieties of  gene ra l  type 

l . l .  CORREI,ATION OF POINTS. W e  briefly recall the outline of the proof of 

uniformity of rational points on curves of genus _> 2 in [CHM97]. One of the main 

ideas of [CHM97] is to observe that, assuming Lang's conjecture holds true, the 

set of K-rational points on all smooth projective curves of genus g _> 2 defined 

over a number field K is correlated, i.e., the collection of n-tuples of such points 

satisfies a nontrivial algebraic relation, for suitable n. 

Let It: X ~ B be a projective family of smooth irreducible curves of genus 

g >_ 2 defined over a number field K.  We denote by 

7rn: X ~  m . X  •  ' ' "  •  X ~ B 

the n-th fibered power of X over B. Denote by 7,~: X~ --+ X~ -1 the projection 

onto the first n -  1 factors. Given a point b E B we denote by Xb the fiber ~r-l(b). 
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Similarly, given a point Q = (P1,- . - ,  Pn-1) E X~ - I  we denote by XQ C X~ the 

fiber T~I(Q). Note that  if Q E X ~ - I ( K )  and 7rn-l(Q) = b then XQ ~- Xb. 

Assume that  we are given a subset P C X(K) .  We denote by P ] c  X~ the 

fibered power of P over B (namely the set of all n-tuples of points in P whose 

images on B are the same), and by Pb the points of P lying over b. 

Definition 1.1.1: The set P is said to be n-correlated if there is a proper Zariski- 

closed subset Fn C X~ such that P~  C Fn. 

For instance, a subset P is 1-correlated if and only if it is not Zariski-dense 

in X; in which case it is easy to see that over some nonempty open subset U in 

B the number of points of P in each fiber is uniformly bounded. This simple 

observation is generalized by the following lemma. 

LEMMA 1.1.2 ([CHM97], Lemma 1.1; [1~97b], Lemma 1): Let X ~ B be a 

projective family of smooth irreducible curves, 7 3 C X ( K) an n-correlated subset. 

Then there exists a nonempty open subset U C B and an integer N such that 

for every b E U we have #73b <-- N. 

We find it instructive to include a short proof of this simple lemma, in which it 

will be clear that  the argument only works for a family of curves. A modification 

which does work in higher dimension will be discussed later in this article - -  see 

Sections 1.4 and 3.4. 

Let Fn = 73~ be the Zariski closure, Un = X~ \ Fn the complement. We now 

define Zariski-open and nariski-closed subsets Ui-1 and Fi-1 C X~ -1 by descend- 

ing induction as follows: we take U~-I = Ti(U,:), and set Fi-1 = XB -1 \ Ui-1 t o  

be the complement. 

Note that  over Ui-1 the map Ti restricts to a finite map on Fi. In fact, by 

definition, if x E U~-I then r i - l (x)  ~ F~ and hence T[-~(X) M F~ is a finite set, 

since T/-l(x) is a curve. Thus there exists di E N such that 

#Ti-l(x)  n M <_ di for x e U~_~. 

Let U -- U0 C B. We claim that over U the number of points of 73 in each fiber 

is bounded. Consider a point b E U. 

CASE 1: 73b C F1. 

In this case, we have #735 <_ dl. 

CASE 2: There exists some Q E 735 \ F1 where XQ N 73~ C F2. 

In this case, we have #73b <_ d2. 
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CASE i: There exists Q = (P1 , . . . ,  Pi-1) E p~-x ,. Fi-1 where XQ M Tag C Fi. 

In this case, we have #Pb  _< di. 

As XQ M 7a~ C Fn for all Q E :p~-i by definition, the cases will be exhausted 

at some stage when i <_ n. Thus 

#Pb  < max{di}. I 

1.2. LANG'S CONJECTURE AND CORRELATION. The remarkable observation of 

the paper [CHM97] is that Lang's conjecture implies that the set of K-rational 

points on curves of genus g > 1 is n-correlated, for sufficiently large n E N. 

PROPOSITION 1.2.1 (cf. Lemma 1.1 in [CHM97]): Let X --+ B be a projective 

family of  smooth irreducible curves of genus g >_ 2 over a number field K.  Assume 

that Lang's conjecture holds true. Then X ( K ) is n-correlated for sufficiently large 

n E N .  

In order to deduce the uniformity assertion of Section 0.2 from Proposition 

1.2.1, one starts with X ~ B, a "comprehensive" projective family of smooth 

irreducible curves of genus g _> 2 in which "all curves appear", namely, for any 

projective smooth curve C of genus g defined over K there exists a morphism 

Spec K ~ B satisfying 

C ~ S p e c K x X  �9 X 

l 1 
Spec K �9 B. 

Such a family always exists over a suitable Hilbert scheme, since all curves of 

genus g > 1 are canonically polarized. We set P = X ( K ) .  There exists a 

nonempty Zariski-open subset U0 C B and an integer No such that #Pb  _< No 

for b E U0 by Lemma 1.1.2. Now take B1 = B "-U0, and apply the lemma to 

the family X1 -- X XB B1 -~ B1 to obtain a new nonempty Zariski-open subset 

0"1 C B1 and an integer N1 such that #'Pb <_ N1 for b E U1, and so on. By 

noetherian induction, we have the uniformity assertion. 

1.3. THE FIBERED POWER THEOREM. It is easy to see that Proposition 1.2.1 

follows from the Fibered Power Theorem: 

THEOREM 1.3.1: Let lr: X -~ B be a projective family of varieties of general 

type, with B irreducible, defined over a field K of characteristic O. Then there 
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exists a positive integer n, a variety of general type Wn over K with dim Wn > O, 

and a dominant rational map 

r: X ~  ---, W,,. 

To see how Proposition 1.2.1 follows from this theorem, first note that  we may 

replace B by an irreducible component. Next, by Lang's conjecture, there exists 

a proper Zariski-elosed subset G,~ of Wn which contains all the K-rational points 

X,~ of Wn. Let ( s)do~ be the domain of the rational map X~ --* W,,. Denote 

P = X(K) .  Then for a point P E P~ C X~, we have either P E X~ \(X~)aom 

or P E r-1 (Gn). Then we only have to set 

Vn = [X~ \(X~)aom] U [r-l(Gn)].  

In the ease of curves, the Fibered Power Theorem was proven in [CHM97] 

Theorem 1.3, using the following observation: let X -~ B be.a family of curves 

of genus g > 1 as above. For each n we have a rational map X ]  --* Mg.n. 

Denote by Wn the image of this map. Then an argument is given in [CHM97] 

which in effect proves the following: 

For large n, the image variety Wn is a variety of general type. 

The argument in [CHM97] uses the compactification Mg, the moduli space 

of stable curves, in an essential way. A similar argument was used in [Has96], 

Theorem 1, for the case of surfaces. This is precisely the line of proof we will take 

in this paper for abelian varieties (see Theorem 3.2.2). In higher dimension, it 

was necessary to give a different argument in [R97a], Theorem 0.1, since complete 

moduli spaces of stable varieties in dimension > 2 are not known to exist in 

general. All proofs use deep results about weak positivity of the push forward of 

pluricanonical sheaves; in the present paper we use such a result due to Kawamata 

[Kaw85] about abelian varieties. 

1.4. UNIFORMITY IN HIGHER DIMENSION. In order to prove a uniformity result 

in dimension > 1, one needs to modify the statement appropriately, and then 

adjust the proof. 

First, as a variety of general type may contain a subvariety which is not of 

general type, on which there may be infinitely many K-rational points, we have 

to modify the uniformity statement (this issue does not come up in this paper). 

Such a subvariety is called exceptional. Given a family X --+ B of varieties of 

general type, it is natural to restrict attention to points in X ( K )  which do not 

lie on any exceptional subvariety, which we denote X ( K )  "~e~ ("nex" for non- 

exceptional). We arrive at the following statement (see [NV96], Theorem 1.5): 
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Assume Lang's conjecture holds true. Fix a family of varieties of 

general type X -+ B. Then there exists a number N ( X  -+ B , K )  

depending only on the given family and the number field K such 

that,  for any b E B(K) ,  the number of non-exceptional points on 

the fiber XD is bounded: 

# X ( K )  '~" < N ( X  --+ B, K).  

Second, we still need to modify Lemma 1.1.2 for higher dimension. Such a 

modification was given in [R95], [Pac97a], and [RV96], and is essential in this 

paper as well. We will discuss some aspects of it in the course of the proof of 

the Main Theorem (see Section 3.4). First, we would like to adjust the notion of 

correlation for the higher dimensional case: 

Definition 1.4.1: Let v: X ~ B be a projective surjective morphism of reduced 

schemes of finite type over a field K,  with B irreducible. Denote the dimension 

of the generic fiber of 7: X --+ B by d. Fix a subset Q c X ( K ) ,  and denote by 

Gk the Zariski closure of Qk in the fibered power X~. We say that  Q is strongly 

k-correlated with respect to T: X ~ B, if every irreducible component of Gk 

which dominates B has relative dimension < kd over B. 

We will now see how to reduce a question of strong correlation to a question 

of correlation. Let X -- X1 tA �9 .. U Xc bc a decomposition into irreducible com- 

ponents. Let X~ -+ X~ be the normalization, and let X~ ~ B~ --+ B be the 

Stein factorization. There is a dense open set Ui C X~ over which X~ ~ X is an 

isomorphism. Therefore the set Q~ -- Ui v) Q sits naturally in X~(K). 

PROPOSITION 1.4.2: Assume that for each Xi of relative dimension d over B, 

the set Q~ is k~-correlated with respect to X~ ~ B~. Then for large k, the set Q 

is strongly k-correlated for X --+ B. 

Proof: We make a number of reduction steps leading to the proposition. 

1.4.1. Let B ~ C B be a nonempty open set, X t C T - 1 8  t a dense open set, and 

Q~ = Q N X  ~. Assume Qt is strongly k-correlated. Then Q is strongly k-correlated 

as well. 

This is immediate from the definition. 

In particular, we may as well assume that  B is normal and T: X -+ B is flat. 

We may also replace X by a birational modification, since we can restrict to the 
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points of Q where this modification is an isomorphism. Therefore we may assume 

X is normal, thus it is the disjoint union of normal irreducible components. 

1.4.2. Let X 1 , . . . , X c ,  be the irreducible components of X of relative dimension 

d over B.  Let X r = X1 U . . . U X c ,  and let Qr = Q M X  ~. I f Q '  is strongly 

k-correlated then so is Q. 

One can write 

= U x,,  x , . . .  x ,  x , , .  
1<_6<c 

If some component Xi has relative dimension <: d, then any term involving Xi 

in X~ = Ul_<q<_cxi~ XB . . .  XB Xik has relative dimension < kd. 

Thus we may as well assume that all fibers of X -+ B have pure dimension d. 

1.4.3. Let Q~ = X~ M Q. Assume Qi is strongly l-correlated. Then for k = l �9 c, 

Q is strongly k-correlated. 

By the box principle, every term in the expression 

U x,,x,...x,x,, 
l~ i jKc  

has at least one ij appearing at least I times. Considering the projection on those 

factors, it follows that Q is strongly k-correlated. 

1.4.4. Denote by ci the degree of B~ ~ B. Assume Q~ in the proposition is 

k~-correlated with respect to X~ --+ B~. Then for k = cik~ we have that Qi is 

strongly k-correlated with respect to Xi -+ B. 

Let G be an irreducible component of X 'k iB" A point on G corresponds to a k- 

tuple of points on a fiber of X~ over B, which fall into the ci different components 

of this fiber, which are identified as fibers of X~ over B~. By the box principle 

there is a subset J C {1, . . . ,  k} of size at least k/ci = k~ such that for a point 

(P1 , . . . ,  Pk) E G, all the Pj for j E J lie in the same component of the fiber. In 

other words, the projection G -+ (X~)~ to the factors in J maps G onto the closed 

subset (X~)J:. Since Q~ is k~-correlated for X~ -+ B~, we have that (Q~)~ M G 

is not dense in G, which implies that Q~ is strongly k-correlated with respect to 

X~ --~ B. Step 1.4.1 in the proof implies that Qi is strongly k-correlated as well. 

I 
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2. Modul i  of  s table quasi-abelian pairs 

Both the statement and proof of our main theorem depend on the existence of a 

good compactification of the moduli space of abelian varieties. We now review 

some essential facts about these spaces which we will utilize. 

2.1. ABELIAN SCHEMES. Recall that a principally polarized abelian scheme 

(A --+ S, A) is an abelian scheme A ~ S (with a zero section S ~ A) and an 

isomorphism A: A -~ Pic~ which locally over S is a polarization induced 

by a relatively ample invertible sheaf. 

The moduli category ~g of principally polarized abelian schemes (morphisms 

given by fiber diagrams) is a Deligne-Mumford stack. It admits a coarse mod- 

uli scheme Ag, which is quasi-projective over Spec Z (see [MFK94], [FC90]). In 

analogy with the moduli spaces of curves, one would like to have a good com- 

pactification of 2g in a canonical way, and possibly also an analogue of .Mg,,~. 

Beginning with [AMRT751 and through the work of many authors (see [FC90]), 

an infinite collection of toroidal compactifications "~g" of 2g was constructed, de- 

pending on choices of "cone decompositions". In general these compactifications 

are not moduli stacks of any explicitly described families of "stable objects". It is 

however shown in [FC90] that each of these compactifications carries a family of 

semiabelian varieties. If one takes the formal completion of such a 2g at a point, 

one can apply Mumford's construction (see [Mum72], [FCS0]) and get a toroidal 

compactification of the family of semiabelian schemes, but this compactification 

again depends on "degeneration data", and one has a serious problem in gluing 

these together. 

These issues were recently resolved in the work of Alexeev and Nakamura 

[AN96], [Ale98]. See also the related [Nak98]. 

2.2. STABLE QUASI-ABELIAN PAIRS. A first important step is to change the 

original moduli problem in a way which surprisingly simplifies the situation. 

Instead of working with principally polarized abelian schemes, one forgets the 

zero section of the abelian scheme and instead one insists that the polarization 

come from a global relatively ample invertible sheaf; in fact, since we work with 

principal polarizations, this sheaf has a unique divisor e .  To this end, a smooth 

principally polarized quasi-abelian scheme (P ~ S, (9) is a torsor P -~ S on an 

abelian scheme A --+ S, and a relatively ample divisor O C P which behaves 

like a principal polarization, in the sense that its Hilbert polynomial is ng. (We 

note that in [Ale98], Alexeev changed the tcrminology to "abelic pairs".) The 

moduli stack of smooth principally polarized quasi-abelian schemes is canonically 

isomorphic to ~g ([Ale98], Corollary 3.0.8). It admits a universal family which we 
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denote (!219,1 -+ 2g, O); the added subscript 1 indicates that 29,1 is the moduli 
stack for smooth principally polarized quasi-abelian schemes with one marked 

point. (It should not be confused with Mumford's notation for level structure.) 

Next, Alexeev and Nakamura make a canonical choice of degeneration data in 

Mumford's construction. Over a discrete valuation ring, this gives a canonical 

way to compactify a torsor on a semiabelian scheme with smooth principally 

polarized quasi-abelian generic fiber. The fibers (P, OF) of this construction 

are called stable principally polarized quasi-abelian varieties, and they can be 

characterized explicitly; see [Ale98], Definition 1.1.5. (The reader is advised 

not to be confused by this nomenclature: a smooth quasi-abelian variety is by 

definition also a stable quasi-abelian variety.) 

Finally, it follows from Alexeev's work (see [Ale98], 1.2 (H)) that the category 

of stable principally polarized quasi-abelian schemes is a Deligne-Mumford stack 

~g admitting a projective coarse moduli scheme Ag -~ SpecZ. On the level 

of geometric points, Alexeev shows that ~9 agrees with the so-called "Second 
- - I  

Voronoi Compactification" ~l 9, which is a very special toroidal compactification 
. - - I  

of 2g (see [Ale98], Theorem 1.2.17). Indeed, there is a morphlsm ~lg ~ 2g which 

is one-to-one on geometric points. 

Again, we denote the universal family by (r --4 ~g. We denote by ~g,,~ 
- -  n the fibered power (!~19,1)~ ,. (This is, to some extent, in analogy with the space 

of stable pointed curves Mg,,,, although we do not use Knudsen's stabilization.) 

Denote by pi: ~g,,~ ~ ~9,1 the projection to the i-th factor. We have a natural 

*O relatively ample divisor On C 2g,n defined by On = ~]i Pi �9 

We denote by Ag,,~ the coarse moduli spaces of 2g,n, and by On C A9,,~ the 

image of On. A-priori these are Artin algebraic spaces (see [KM97]), but since 

some multiple mO,~ descends to a Cartier divisor on Ag,,, and is relatively ample, 

these are projective schemes over Spec Z. 

2.3. PROPERTIES OF STABLE PAIRS. We now collect a few properties of stable 

principally polarized quasi-abelian schemes, which we will use in the next section. 

To save words, we will refer to a stable principally polarized quasi-abelian 

scheme (P, O) (always assumed fiat over a base scheme S) as a stable pair. 

The first two items are included in [Ale98], Definition 1.1.5. 

2.3.1. For a stable pair (P, O) over a field, the underlying stable quasi-abelian 

variety P is proper and reduced, and 0 is an ample Cartier divisor. 

2.3.2. Let (P  -+ S, O) be a stable pair over S. Let P0 C P be an open subset, 

consisting of exactly one irreducible component of the smooth locus in every fiber. 
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Then A = Aut~ is semiabelian, P0 is an A-torsor, and A independent of 

the choice of P0. Over a field, P is stratified by finitely many orbits of A. 

2.3.3. Let Us C S be a toroidal embedding over a field, and let (r: P --+ S, O) 

be a stable pair over S, such that P -~ S is smooth over the open set Us. Let 

U p  : 7 r - l U s  . Then Up c P is a toroidal embedding, and P ~ S is a toroidal 

morphism. (Toroidal morphisms are defined in [RK97], Definition 1.2.) 

See [Ale98], 5.6. Indeed, Mumford's construction is by definition toroidal! 

(If one is working in mixed characteristics, one only needs to replace "toroidal" 

by "log-smooth" in the sense of K. Kato.) 

2.3.4. Let (P, O) be a stable pair over a field. Let pi: P'~ ~ P be the projection 

onto the i-th factor, and consider the divisor On = ~ i p * O .  Then (P'~, O,~) is a 

stable pair. 

This follows immediately from [Ale98], Definition 1.1.5. 

2.3.5. In the situation of 2.3.3, suppose S has Gorenstein singularities. Then 

the scheme P has Gorenstein singularities. 

This is a general fact about toroidal morphisms with reduced fibers and no 

horizontal divisors. The proof is easy using the associated polyhedral complexes; 

see [RK97], Lemma 6.1 (which applies when S is nonsingular) and [lqK97], Lemma 

6.3 (which reduces to that case). 

We note that, since a toroidal embedding has rational singularities, it follows 

that P has rational Gorenstein singularities, hence canonical singularities. This 

is a refinement of Alexeev's [Ale96], Lemma 3.8. 

2.3.6. Suppose the base field has characteristic 0. In the situation of 2.3.5, the 

pair (P, O) has log-canonical singularities. 

Indeed, the proof of [Ale96], Theorem 3.10 applies word-for-word, if we do not 

add the central fiber P0 (this only makes the proof simpler). 

Finally, we have the following crucial extension property, proved in [Ale98], 

5.7: 

2.3. Z Let S be the spectrum of a discrete valuation ring R, with generic point 

r/. Let (Pr/, e,7) be a stable pair. Then there exists a finite separable extension 

of discrete valuation rings R C R1, with spectrum $1 and generic point rh, and 

a stable pair (P1 ~ $1, O1) extending (Pr)l, Or/,) .  

This result immediately extends to dedekind domains. 

We call (P1 -+ $1, O1) a stable quasi-abelian model of (Phi,Or~i). 
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2.4. RELATION WITH THE NI~RON MODEL. Let R be a discrete valuation ring, 

S = Spec R, with generic point ~/and special point p. Let (P --+ S, O) be a stable 

pair, and assume A = Pn is smooth. For simplicity we also assume there is a 

section s: S --+ P landing in the smooth locus of P -+ S. This makes A into an 

abelian variety. Denote by Af A ~ S the N6ron model of A. 

PROPOSITION 2.4.1: There is a unique morphism 

extending the isomorphism 

f : .hfA --~ P 

(]r ~ ~A. 

Proob The formation of A:A ~ S commutes with &ale base change. Once we 

prove the proposition after such a base change, the uniqueness implies that we 

can descend back to S. Thus we may replace R by its strict henselization. 

Now by construction, the stable quasi-abelian model (P  ~ S, 8 )  can be viewed 

as a "compactification" of a semi-abelian scheme Ao = Aut~ ~ S with the 

origin identified with the section s. Note that the construction of the stable 

quasi-abelian model gives an action 

A o x P ~ P  

extending the addition law on Ao. 

Note that there is also a natural inclusion Ao ~ A/'A as the zero component. 

Denote by 

M,, i = l , . . . , t  

the components of the fiber (A/'A)p of the N6ron model over p. For each i, we 

have an open neighborhood 

= :CA-, U Mj. 

We may choose the numbering so that N'I = A0. We have 

and 

f3ffj  = (.N'A)n V i r  j. 

Since R is strictly henselian, we can choose, for each i, a section 
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such tha t  s l  = s. The  schemes Afi can be viewed as Ao-torsors,  and the choice 

of the si gives a tr ivialization of these torsors. 

We denote  by 

(si)n, i = l , . . . , t  

the corresponding rat ional  points on (AfA)n = Pn" Since P --~ S is proper ,  we 

can extend (si)n to sections 

ti �9 P ( S )  

such tha t  

We define 

= 

f i :A f i  ~ P, i =  l , . . . , t  

as follows. Given a scheme T over S and a point  z E Afi(T) .there exists a unique 

point  a E Ao(T)  such tha t  z = a .  si. Here the nota t ion  a .  si s tands for the act ion 

A0 x Afi ~ Afi. Define f i (z)  = a .  ti. Here the nota t ion  a .  ti s tands for the act ion 

,40 x P -~ P .  This  rule is clearly functorial  and therefore defines a morphism.  

We claim tha t  the morph isms  fi  are independent  of the choice of si and coincide 

on (A/'A)n. In fact, given s~ E Afi(R) consider the corresponding t~ and f t .  There  

exists bi C A0 such tha t  s~ = bi" s~. Therefore,  ( t i ) ,  = (bi)n �9 (t~)~, which implies 

tha t  ti = bi �9 t~, since P is separated.  Therefore,  we conclude 

s  = f i ( a .  si) = a .  ti = a .  (bi . t ' i )  = (abi) .  t~ 

=f[( (abi )  . s~) = f~(a .  (bi " s~)) = f [ ( a .  si) = f~(z) .  

The  same a rgumen t  shows tha t  given a scheme T over ~? and a point  z E AfA (T) 

we have f i ( z )  = f j ( z ) ,  i.e., the morphisms  fi  coincide over the intersection of 

their  domains  (AfA)n. 

Since AfA is covered by the Afi and Afi N Afj = (AfA)v whenever i :/: j ,  it 

follows tha t  the f~ glue together  to give a morph ism AfA --+ P as required in the 

Proposi t ion.  | 

2.5. TAUTOLOGICAL FAMILIES OVER MODULI SPACES. Since Ag is not a fine 

modul i  scheme, it does not have a universal family. Our  a rguments  below depend 

on the geomet ry  of families, therefore it is useful to have some approx imat ion  of 

a universal  family, which, following [CHM97], one calls a tautological family.  We 

need such a family with a s t rong equivariance property.  This  is summar ized  in 

the following s ta tement .  
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PROPOSITION 2.5.1: Let Wo C Ag be a closed integral subscheme, and let W1 C 

Ag,1 be the reduced scheme underlying its inverse image. Then there exists a 

projective, normal integral scheme B, and a family of g-dimensional stable pairs 

(A --~ B, 8) ,  satisfying the following properties: 

1. The natural moduli morphisms B -4 Ag and A -4 A.q,1 are finite and 

generically dtale, with images Wo and W1, respectively. 

2. Denote G = Autxg (A --~ B, 0) ,  namely the group of automorphisms of the 

gadget (A -4 B, 8)  commuting with the morphism B -4 A 9. Then the two 

morphisms B /G  -4 A9 and A/G -+ Ag j  are birational onto their images. 

Moreover, in this situation consider the moduli morphism A~ -+ Ag,n. There is 

a diagonal action of G on AnB, and AnB/G --~ Ag,n is again birational onto the 

image. 

Proof The existence of a family (A -~ B, 0)  satisfying condition i is an 

immediate consequence of [Kol90], Proposition 2.7. (Koll~r attributes the proof 

to M. Artin. See also discussion in [CHM97]. Proofs of this fact have been given 

by a number of authors through the years.) 

We now wish to replace this family by one which satisfies the equivariance 

condition 2. First, we may assume that the function field extension K(Wo) C 

K(B)  is Galois, by going to the Galois closure. Denote the Galois group Go. 

Write 7/for the generic point of B. Second, we may assume that the geometric 

points of the finite group H = Auto(AT, 07) are all rational over K(B)  --- simply 

pass to a suitable finite extension and take Galois closure again. The morphism 

AutB(A, 8)  --4 B is proper, since the moduli stack is separated. Therefore the 

automorphisms of (A~, 07) extend to automorphisms of the family (A -4 B, 8)  

over B. Third, in a similar manner we can ensure that for any g C Go we have a 

B-isomorphism (A -4 B, 0)  ~> g*(A -4 B, 8). Now consider the set 

G = {(g,h)l.q e Go, h: (A -+ B,O) --~ g ' (A -4 B,O)}.  

Note that  for any (g, h) C G and g~ E Go we can define 

h(g'}: g'*(A -4 B,O) _Z_+ g'*g*(A --~ B,O). 

We can now define 

(g, h)(g', h') = (gg', h{g'}h'). 

We leave it to the reader to check that this is a group. It is now immediate to 

verify condition (2) and the fact that A"B/G ~ Aa,,, is birational onto the image. 
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3. P r o o f  of  t h e  M a i n  T h e o r e m  

3.1. STABLY S-INTEGRAL POINTS. Let A be a principally polarized abelian 

variety, with theta divisor O, defined over a number field K. Let S be a finite 

number of places in K,  and denote by OK,s the ring of S-integers. For an 

extension L of K,  we denote by SL the set of places in L over S. 

Definition 3.1.1: A K-rational point P C (A \ O)(K) is called a stably S-integral 

point if there exists a finite extension L D K, and a stable quasi-abelian model 

(7) --4 SpecOL,SL, 0), such that P �9 (7)\  O)(OL,SL), namely P is integral on 

the complement of (~ in 7). 

The following result shows that the existential quantifier is not important in 

the definition: 

PROPOSITION 3.1.2: Suppose P �9 (A \ O)(K) is stably S-integral. Let L' D K 

be any finite extension for which there exists a stable quasi-abelian model 

(P' --~ Spec OL',SL,, ~t). 
Then P �9 (7) \ O')(OL',SL, ). 

Proof." Let L D K be a finite extension satisfying the conditions in the definition. 

Take a Galois extension M D L' which contains L, with Galois group G = 

Gal(M/L'). Then by the functoriality of the stable model 

P �9 {(7) \ O)(OL,SL)~L M} n {(A \ O)(K)K@M} 

C (7)M \ ~M)(OM,SM) G 
~ 

= ( p \  

This completes the proof. | 

Stably integral points have a nice characterization in terms of modu|i: 

PROPOSITION 3.1.3: Let P E (A \ O)(K). Consider the associated moduli 

morphism Pro: S p e c k  -~ A ~ Ag,1. Then P is stably S-integral if and only if 

Pm is an S-integral point on Ag,1 \ O. 

Proof: Clearly Pm is a rational point on An, t \ O, so to check that  it is S integral 

we may pass to a finite extension field. Let L D K be an extension such that  there 

exists a stable quasi-abelian model (7) --~ SpecOL,SL, (~). Since 7) and Ag,1 are 

proper, we have morphisms/5: Spec (gL,SL ~ 7) and /Sin: Spec OL,SL "~ Ag,t. 
Note that  by the coarse moduli property, O is the set theoretic inverse image of 
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O. Then P is stably S-integral if and only if/5 is disjoint from O, if and only if 

/Sin is disjoint from O. II 

3.2. REDUCTION TO MODULI. Fix a family (2 -+ ~ , ~ )  of smooth principally 

polarized quasi-abelian varieties with theta divisors. We say that a point P E 

(2 \ ~,)(K) is stably S-integral, if it is stably S-integral on the fiber of 2 -~ r 

on which it lies. 

Let P c (2 \ Z) (K)  be the set of stably S-integral points. 

PROPOSITION 3.2.1: Assume that the Lang-Vojta conjecture holds true. Then 

for a sufficiently large integer n, the set "P is n-correlated. 

Proof." We may assume ~ is irreducible (by taking irreducible components one 

by one) and hence is a variety. 

Following [CHM97], we would like to reduce the situation to a situation on 

moduli spaces. There is the natural moduli morphism ~: ~ ~ A 9 from if3 to the 

coarse moduli space of stable pairs. We denote by Wo the image v(~)  under this 

map. There is also a compatible dominant morphism 2 -~ W1 C Ag,1, creating 

a commutative diagram: 

2 -~ W1 C A9,1 

~ - ~ W o c  Ag. 

Recall that  we have characterized stably integral points in terms of their image 

in moduli. Thus the Proposition follows immediately from the following purely 

geometric result: 

THEOREM 3.2.2: Let Wo C (Ag)c be a closed subvariety, and suppose we have 

WoN(Ag)c r 0 (thus the generic point ofWo parametrizes a smooth quasi-abelian 

variety). Let Wn C (Ag,n)c be the reduced scheme underlying the inverse image, 

and e w ,  -- Wn N On. Then for large integer n, the variety W,~ \ Ow, is of 

logarithmic general type. 

In view of Proposition 2.5.1, it suffices to prove the following: 

PROPOSITION 3.2.3: Let (P -~ B, O) be a generically smooth complex projective 

family of stable pairs over a projective base variety B. Assume (P --4 B, O) is 

of maximal variation, namely the morphism B -~ Ag is generically finite. Let 

G C Aut(P  -~ B, O) be a finite subgroup. Then for a sufficiently large integer 

n, the quotient variety (P~ \ On)/G is of logarithmic general type. 
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Proof'. Our first step is to replace P ~ B by a toroidal situation. We have 

a moduli morphism B ~ ~g, hence at least a rational map to the Voronoi 

compactification B --* ~'g, which is toroidal. Unfortunately we might need 

finite covers to lift this to a morphism, since we are working with stacks! 

In any case, there is a variety B1 and a finite surjective morphism B1 -~ B 

such that  B1 ~ B --* ~g extends to a morphism. Taking the normalization in 

the Galois closure of K(B1) over K(B/G) ,  we may assume that B1 ~ B / G  is 

Galois, with Galois group G'. The group 

G I = G  • G' 
AutB 

acts on P1 = P xB B1 in such a way t h a t  (P1)nB1/G1 = P~/G.  Thus we may re- 

place P ~ B by P1 ~ B1, in particular we may assume that there is a morphism 

B ~ ~'g lifting B --+ ~g. We may also assume that B ~ ~9 factors through a 
--H ~g 

toroidal desingularization fig ~ . We denote --"~g, 1 = -'~lg, 1 • ~'9 -"~9" 

We can choose a G-equivariant resolution of singularities B'  -~ B such that 

P '  = P • B'  degenerates over a normal crossings divisor. Again, we replace 

P --~ B by P '  ~ B',  so we may assume B is nonsingular and P -+ B degenerates 

over a normal crossings divisor. Denote by UB C B the complement of this 

divisor, namely the smooth locus of P ~ B, and Up C P the inverse image. 
- - ,  - - I  - - , !  - -41 

Since ~g,1 -~ ~g is toroidal, we have that ~g,1 --+ ~9 is toroidal. Since ~ '  ~[g is 

nonsingular, we can apply [A-Karu], Lemma 6.2. This implies that (Up C P) -+ 
(UB C B) is also a toroidal morphism. 

Under this assumption we claim 

CLAIM: 

1. The pair (P~, e,~) has log-canonical singularities, and 

2. The complement P~ \ 0,, has only canonical singularities. 

Proof: Observe that  (P'~, On) is also a family of stable pairs over a nonsingular 

base B1, satisfying the toroidal assumptions. Now the assertion follows directly 

from 2.3.6 and 2.3.5. "(Claim) 

We go back to the proof of the proposition. 

Since B is generically finite over the moduli space and since the generic fiber 

of 7r is a smooth Abelian variety, Theorem 1.1 of [Kaw85] implies that  

det( zr.wIV/ B) = ~.WZp/ B 
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is a big invertible sheaf on B for some positive integer I. Here we used the fact 

that  

h~ = 1 Vb e B. 

Since 5gp/B(O ) is relatively ample for r ,  we conclude 

is big for some sufficiently large integer n. As we have the natural inclusion map 

* [  ~ \ n  Wp/B(O ) ~ "K ("ff,Wp/B) r (Wp/B(O)) l+In, 

we conclude that  the sheaf Wp/B(O) is big. 

Let E C P be the locus of fixed points of nontrivial elements of the group G. 

Denote the sheaf of ideals Z~.. For sufficiently large n the sheaf 

is big as well. Taking the n-th fibered powers, we have that 

n 

(~ ,p r , / . (e , , ) ) |  ~ - "  . ~ ' , ~  ,,.,~,. | Hp;'z~ ~1 
i = l  

is a big sheaf on P~. Note that 

n 

[ [  p;'Z  L c ,,, 
i=1  

where the latter ideal vanishes to order >_ n[GI on the fixed points of nontrivial 

elements of G in P~. Also note that 

* On (~vr,/~(o,,)) ~" | ~ . ~ .  = (~p;,  ((-)~))*". 

Therefore, for I > >  0 we have many invariant sections of WRy(O,,) | vanishing 

on this fixed point locus to order >_ In. [G!. Let f :  (V,D) -~ (P~,(3,)  be 

an equivariant good resolution of singularities such that f-l(O,~) = D. Now 

the following lemma, together with the Claim above, imply that the invariant 

sections of wp~ (On) | vanishing on the fixed point locus to order >_ In. IG I 
descend to sections of the pluri-log canonical divisors of a good resolution of the 

quotient pair (P~/G, en/G), and hence (P~ ". O,~)/G is of logarithmic general 

type. 
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LEMMA 3.2.4 ([R97b], Lemma 4; [CHM97], Lemma 4.1): Let V be a nonsingular 

variety with a normal crossing divisor D, and let G C Aut(V, D) be a finite 

subgroup of the automorphism group of the pair (V, D). Let E be the locus of 

the fixed points of the nontrivial elements of G. 

Denote by q: (V, D) --+ (W = V/G, Dw = D/G) the natural morphism to the 

quotient and choose a good resolution r: (IV, DW ) ~ (W, Dw).  

Then an invariant section 

s E H~ wv(D)| a 

such that 

s ,  E wv(D) vk |  

comes from IV, i.e., there exists 

Yx E E \ D  

t E H~ w w ( D w )  | 

such that s = q*r,t. 

This completes the proof of Proposition 3.2.3, which implies Theorem 3.2.2, 

and Proposition 3.2.1 follows. I 

3.3. A "COMPREHENSIVE" FAMILY. In order to prove a result about all princi- 

pally polarized abelian varieties of a given dimension, we use the following fact: 

there exists a projective family of principally polarized abelian varieties with 

theta divisors rr: (~1 --+ f13, .~.) over a quasi-projective base ~ such that for any 

principally polarized abelian variety with theta divisor (A, (9) defined over K 

there is a morphism Spec K -~ !13 satisfying 

(A, (9) = Spec K x (~[, .~.) �9 (!21, .~.) 

Spec K �9 ~3. 

Such a family can be found easily by noting that any principally polarized 

abelian variety (A, (9) defined over K can be embedded in a projective space 

using the very ample linear system [l(9[ for some fixed l _> 3, and therefore one 

can choose an appropriate quasi projective subscheme of the Hilbert scheme as 

the base ill  
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3.4. FROM CORRELATION TO UNIFORMITY. Proposition 3.2.1 shows that  the 

set P of stably S-integral points on ~ \ E is correlated. We now suggest an 

argument for uniformity, replacing that  in Lemma 1.l.2. We follow [Pac97b] and 

[tqV96]. The argument is complete in case g <_ 2. 

Let En C P ~  be the set of n-tuples of distinct stably S-integral points. 

Consider the tower of maps 

"'" ~ En+l ~ En -~ E , - 1  ~ "'" ~ El.  

Let E (m) be the image of Em in E,~ and set F ('n) = E (m). We have a descending 

chain of closed subsets 

F(nm) D F(, mr')  D "'" 

which must stabilize to a closed set F , ,  i.e., there exists m ,  such that  

F .  (m") = _F (m"+1). . . . . .  F,~. 

Accordingly, we have a tower of maps 

�9 .. Fn+, ~ Fn --+ F , -1  --+ ' "  --+ F,.  

Ultimately we would like to conclude that  all the F~ are empty, which implies 

the uniformity. 

First observe that  Fn+l --+ Fn is surjective for all n. In fact, if we take 

m > mn+l ,mn  then ~(m) E(,n) - ~,,+1 -+ is surjective by definition and hence F ,+ I  = 

E(m) ~ F,~ = E ('~) is surjective. Second, we wish to prove inductively that  a n-b1 
fiber of F , + I  --+ F,, cannot have dimension 0, 1 , . . .  ,g and hence all the Fn are 

empty; in this paper  we do this only for g <_ 2. 

Denote by r,,+l: F ,+ l  ~ F ,  the surjective morphisms as above. It is enough 

to prove the following "Inductive Statement d" for all 0 < d < g: 

I n d u c t i v e  S t a t e m e n t  d :  "Suppose no fiber of the map vn+l: Fn+l 

-+ Fn has dimension < d for all n >_ 1, where 0 <_ d <_ g. As- 

sume that the Lang-Vojta conjecture holds true. Then no fiber of 

rn+l: Fn+l --+ Fn has dimension <_ d for all n >_ 1." 

Inductive Statement  0 can be proven without assuming any conjectures: 

CLAIM: No fiber o/ rn+l :  Fn+l -~ Fn has dimension 0 for all n >_ 1. 

Proof of Claim: Assume that  a fiber of 7",,+,: Fn+1 ~ Fn has dimension 0 for 

some n. Then by the upper semicontinuity of the fiber dimension, the dimension 
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of a fiber must be 0 over some open subset U of Fn. Over U we may assume 

the number of points in a fiber is also a constant e. The open set U contains 

a p o i n t  in E (m) w h e r e |  >_ mn,mn+l and m - n  > e. But as Em consists of 

n + (m - n)-tuples of distinct points, this is impossible. | (Claim) 

We can prove the "upper end of the induction" d = g in general: 

CLAIM: Assume the Lang-Vojta conjecture holds true. Suppose every fiber of 

rn+l: Fn+l -+ Fn has dimension g for all n > 1. Then Fn = @ for all n. 

Proof of Claim: Take an irreducible component Mn of Fn and denote by Mn+k 

its inverse images in Fn+k (which is also an irreducible component in Fn+k) for 
k k >_ 1. Then Mn+k = Mn+IMn, where M , + I  --+ Mn is a family of principally 

polarized quasi-abelian varieties of dimension g, with theta divisors OM.+,. By 

Proposition 3.2.1, for sufficiently large integer k, the set of k-tuples of stably 

S-integral points 7~4, is not dense in the fibered power ( M n + l ) k  . On the 

other hand, Mn+k has by definition a dense set of stably S-integral points, a 

contradiction. I(Claim) 

From now on fix d >_ 1, We now make a few general reduction steps for 

Inductive Statement  d. We note that  in general we have Fn+k C F,~+lkn for 

k >_ 1. Consider an irreducible component B C Fn over which X = T ~ I B  has 

relative dimension d. Consider r = rn+llx: X ~ B, and Q = En+l N X .  In 

terms of Definition 1.4.1, wc can reformulate our problem as follows: 

LEMMA 3.4.1: In order to prove Inductive Statement d, it suffices to show that 

Q is strongly k-correlated for some integer k. 

Indeed, we have that  the dimension of every fiber of Fn+k ~ F,~ is >_ kd. | 

Denote by Xi, i = 1 . . . .  , c' the irreducible components of X of relative dimen- 

sion d over B. Let X~ -+ X, be the normalization, and X~ ~ B~ --+ B the Stein 

factorization. In order to keep things inside a family of smooth quasi-abelian 

varieties, consider A = B '  • ~ ~i and denote by X~' the image of X~ in A. Note 

that  we have a factorization X~ ~ X~' --+ Xi. Consider the subset Q~ as in 

Proposition 1.4.2. Writing O = B'  x ~ ~,  we can view Q~ as a subset of the set 

of stably integral points on A \ O. 

By Proposition 1.4.2, we have the following: 

LEMMA 3.4.2: In order to prove Inductive Statement d, it suffices to show that 

Q~ C X[ ' (K)  is correlated for X~'(K) --+ B' for all i. 
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What  can we say about correlation of Q~? For simplicity of notation denote 

X~' = H C A, and replace B by B'. We may even replace B by a nonempty 

open subset, therefore we may assume H --4 B is flat. We can now classify the 

family H -~ B. We apply the following proposition, which is essentially due to 

Ueno [Uen73] and Kawamata [Kaw80], to our situation. 

PROPOSITION 3.4.3: Let H --4 B be a fiat family of geometrically irreducible 

closed subvarieties of a family of smooth quasi-abelian varieties A -+ B, defined 

over a number field K,  where A is a torsor on an abelian scheme fi ~ B. 

Then there exists an abelian subscheme D -+ B such that H is invariant under 

translation by D and such that the generic fiber of H / D  -~ B is a variety of 

general type. 

Ueno and Kawamata state the above proposition only in the case B = Spec C. 

The general case is immediate from [McQ94], Th6orbme 1.2, and Lemme 1.3 

applied to the generic fiber. 

Consider the family H / D  -+ B. It is a family of varieties of general type. We 

have two cases to consider 

CASE 1: H / D  --+ B has relative dimension > 0. 

By the Fibered Power Theorem (Theorem 1.3.1), (H/D)kB dominates a positive 

dimensional variety of general type, for some integer k. This immediately implies 

that H~ dominates a positive dimensional variety of general type. Lang's con- 

jecture implies that  H k ( K )  is not dense, which implies that  Q~ is k-correlated, 

which is what we wanted. 

CASE 2: H / D  ~ B is an isomorphism. 

In this case, the generic fiber of H C A is a translate of the generic fiber of 

D, which is an abelian variety. The issue here is whether or not the set of stably 

S-integral points contained in this sub-family is correlated. 

3.5. THE CASE OF AN ELLIPTIC SUBSCHEME. In this section we provide an 

argument for case d = 1, completing the proof of Inductive Statement 1. The 

argument uses Pacelli's strong uniformity results for elliptic curves (see [Pac97b]). 

This completes the proof of the Main Theorem. At the end of the paper we discuss 

a possible line of argument which could lead to a proof in arbitrary dimension. 

Thus we assume T: H ~ B is a family of elliptic curves inside of principally 

polarized abelian varieties. For simplicity of notation we denote Q~ = R. 

Take a point P E R, and let b = T(P) E B. Choose a point O E E M O 

(which may not be K-rational). Note that there is a constant a which only 

depends on the family H ~ B and such that a _> length g (gEnO and hence 
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that the extension degree of the residue field at O over K is bounded by this 

number, [k(O) : K] < a. Let (E x Spec k(O), O) be the elliptic curve extended 

by extension to the residue field k(O). Then the following lemma implies that 

P E (E • Spec k(O) \{O})(k(O)) is a stably Sk(o)-integral point, where Sk(o) is 

the set of places in k(O) over S. 

LEMMA 3.5.1 : Let (A, ~) be a principally polarized abelian variety and E C A be 
an elliptic curve with the origin 0 E EMO C A defined over a number field L. Let 

Q E E \ 0 C A \ 0 be an L-rational point, i.e., Q E (E \ O)(L) C (A \ O)(L), 

which is a stably St.-integral point of the pair (A, 0). 
Then Q is also a stably SL-integral point of the pair (E, 0). 

Proof First remark that by Proposition 3.1.2 we are allowed to take any finite 

extension of L in order to prove the assertion. 

By taking such a finite extension of L, we may assume that 

(A -~ Spec L, O) 

has the stable quasi-abelian model 

~r: (79 --> Spec OL,SL , ~), 

and that  (E, O) --+ Spec L has a stable model s ~ Spec OL,SL. 

For any prime p E Spec OL,SL, we need to show that the point QE is disjoint 

from the origin O in the fiber gp over p, where QE is the Zariski closure of the 

L-rational point Q in t?. Therefore, instead of working over OL,SL, we may work 

over the completion R of OL,SL at the prime p. 

We denote by r / the  generic point of Spec R. In a slight abuse of notation, we 

use the same letters for the objects over Spec R as for those over Spec OL,SL. 
Replacing R by a finite extension we may assume there exists a section 

s: Spec R --~ 7 9 so that its image Os sits in tile locus where the morphism r is 

smooth. This can be done by picking a smooth point on the central fiber 79p and 

lifting using Hensel's lemma. 

Let A/'A --+ SpecR be the N6ron model of A (with the origin Os), and 

Ac~ ~ Spec R the Ndron model of E (with the origin O). 

By the universal property of the N6ron model, we have a morphism 

extending the inclusion E ~ A. By Proposition 2.4.1 we also have a morphism 

r ~ P, 
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extending the isomorphism 

(AfA),~P, = A. 

Therefore, we have a morphism 

r162  

extending the inclusion 

Ec-+A. 

Under this morphism, the origin O~r maps into 8. 

Denote by Q~'E and Q~, the closures of the L-rational point Q in AlE and P, 

respectively. Then clearly r o r  = Qp. 

Since Q is a stably SL-integral point of the pair (A, e) ,  we have that O and 

Up are disjoint in P. A-fortiori, O ~  and Q---~E are disjoint in A/'~. 

Note that A/'E and C are isomorphic in a neighborhood of O ~ .  We conclude 

that Oc and Qc are disjoint, and hence that Q is a stably SL-integral point of 

the pair (E, O). |(Lemma) 

Going back to Inductive Statement 1, recall that the extension degree 

[k(O) : K] _< a over the fixed number field K is uniformly bounded. In par- 
ticular, [k(O) : Q] _< d = a .  [K : Q]. Pacelli's result [Pac97b] asserts that, 

assuming the Lang-Vojta conjecture, there is a uniform bound N(d, S) such that 

for any elliptic curve (E, {O}) defined over a number field L of degree <_ d, the 

number of the stably SL-integral points is uniformly bounded, 

#E(L,  SL) 8t'bte < N(d, S). 

In our situation, this implies that the number of stably S-integral points on 

A \ e lying in E is uniformly bounded by N(d, S), which in particular says that 
the points are N(d, S)-correlated. 

This completes the proof of Inductive Statement 1, which completes the case 
dim A = g = 2 and hence the Main Theorem. | 

3.6. TOWARDS HIGHER DIMENSIONS. Finally we discuss a possible line of 

argument for higher dimensions (which would also lead to a result about ar- 

bitrary polarizations). 

If one considers Lemma 3.4.2 and Case 2 in the discussion following that 

Lemma, one reduces to the following conjecture: 
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CONJECTURE 3.6.1: Let (A --+ B, e)  be a family of smooth principally polarized 

quasi-abelian varieties over a number field K. Let H C A be a family of quasi- 

abelian subvarieties. Let P C A(K) be the set of stably integral points. Then 

"P N H is correlated with respect to H -+ B. 

We would like, at least, to show that this conjecture follows from the Lang- 

Vojta conjecture. 

Denote e H =  HNO. Replacing B by a nonempty open subset, we may assume 

e does not contain a fiber of H -~ B. Then (H --+ B, OH) can be viewed as 

a family of polarized quasi-abelian varieties. The issue is, that these are not 

necessarily principally polarized. 

In the recent preprint [Ale98], Alexeev defines a complete moduli space for 

such pairs as well. We call these "Alexeev stable pairs" below. This suggests the 

following approach to the problem: 

1. Define "Alexeev stably integral points" of (H, e l l )  to be rational points 

which are integral on the complement of OH in an Alexeev stable model of 

a pair (H, (3H)" 
2. Give a criterion for Alexeev stably integral points in terms of Ndron models. 

3. Deduce that a stably integral point of a pair (A, (3) is also stably integral 

on (H, OH). 
4. Assuming Lang-Vojta, reduce the problem to a problem on moduli of n- 

pointed Alexeev stable pairs similar to Theorem 3.2.2 and Proposition 3.2.3. 

5. Prove a result analogous to Proposition 3.2.3. 

All but the last step seem straightforward. The main issues in the last step 

are: 

1. Suppose (P -+ B, 0)  is an Alexeev stable pair of maximal variation, defined 

over a field K,  over a projective irreducible nonsingular base B, with smooth 

generic fiber. There exists r > 0 such that, for all n, the pair (P~, cO,,) 

has log-canonical singularities. 

2. For such (P -~ B, 0),  the sheaf W'P/B ((3) is big for some m > 0. 
We expect that these statements can be proven using Alexeev's work. 
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