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ABSTRACT 

In this note the AK invariant of a surface in C 3 which is given by 
xny = P(z)  where n > 1 and deg(P) = d > 1 is computed. Then this 
information is used to find the group of automorphisms of this surface 
and the isomorphism classes of such surfaces. 

Introduction 
Let A be a (not necessarily commutative) algebra over a field F.  Typically a 

description of the group of automorphisms of A, one of the most important  char- 

acteristics of an algebra, is a difficult problem. Recall that  even for the most 

"symmetric" algebras, i.e. for algebras of polynomials and for free associative al- 

gebras, we know the answers only when the number of generators is less than three 

(see [C]). In the commutat ive case the geometric counterpart  of this question is 

a description of the automorphisms of afline algebraic varieties. So polynomial 

algebras correspond to affine spaces F n. Though the question on algebraic au- 

tomorphisms of the plane was settled long ago (see [J], [vdK]) and, arguably, 
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the most important  question of three-dimensional affine algebraic geometry is to 

describe the group of automorphisms of F 3, this is a wide open problem. 

Even for surfaces we do not know too much since we are lacking any general 

technique to at tack the question. 

In this note we describe the groups of automorphisms of the hypersurfaces in 

C a which are given by x n y  = P ( z )  where n > 1 and the degree d of P is also 

larger than 1. The case n = 1 was considered in [DG1], [DG2], and [ML1], and 

if d = 1 the surface is a plane (see [J]). 

In [B] some information on the groups of automorphisms of a more general 

class of surfaces is obtained. In [W] techniques of algebraic geometry are used to 

obtain similar results for a class of surfaces which slightly overlaps with the class 

considered in our paper.* 

This is an interesting class of surfaces which has appeared before in connection 

with the generalized Zariski cancellation question: 

Let V and W be aftine varieties over a field F .  Is it  true that  V x F k ~_ W • F k 

implies  V ~- W ? 

If  V and W are curves the answer is positive (see [AEH]). But even for surfaces 

this is not the case. The surfaces x n y  = z 2 - 1 for n = 1 and n -- 2 provide a 

negative answer as was shown by Danielewski [Da]. Danielewski also established 

that  the cylinders over these surfaces are isomorphic for all n. Later Fieseler IF] 

proved that  the surfaces with different n are all non-isomorphic by computing 

the first homology group at infinity. 

In [W] a wider class of surfaces which are pairwise non-isomorphic while all 

the cylinders are isomorphic is presented. 

Following ideas of Dixmier [Di] and Rentschler [R] the author introduced a 

ring invariant AK which distinguishes from C a the Koras-Rnssell threefolds (see 

[ML2] and [KML]). This was the crucial step which allowed Koras and Russell 

to finish their consideration of C*-actions on C a and to show that  these actions 

are linearizable (see [KKMLR]). 

Here we compute the AK invariant for the surfaces x n y  = P ( z )  in C a. It  turns 

out that  when n > 1 and the degree of P is also larger than 1, the AK invariant for 

these surfaces is C[x]. After that  it is rather easy to describe the automorphism 

groups of these surfaces and to classify them up to isomorphism. This generalizes 

the result of Fieseler since the surfaces in our class are not necessarily normal. 

* This paper was brought to the author's attention by one of the referees. 
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Defini t ions  

All algebras in this paper have characteristic zero. 

Let A be a (not necessarily commutative) algebra over a field F. Let Der(A) 

be the Lie algebra of all F-derivations on A, i.e., F-linear homomorphisms on A 

which satisfy the Leibniz rule (O(ab) = O(a)b + aO(b)). For any derivation 0 the 

set A ~ denotes the kernel of 0. It is easy to check that A ~ is a subalgcbra. This 

subalgebra is usually called the ring of 0-constants. Let LND(A) C Der(A) be 

the set of all locally nilpotent derivations of A. A derivation 0 is locally nilpotent 

if for each a �9 A there exists a natural number n = n(a) for which On(a) = O. In 

the case when A is the ring of regular functions on an algebraic variety, a locally 

nilpotent derivation gives rise via exponentiation to a (2 +-action on the variety 

(e.g. see [Sn]). 

AK INVARIANT. The intersection of the rings of constants for all locally nilpo- 

tent derivations will be called the ring of absolute constants and denoted by 

AN(A). 

The set LND(A) and the ring AK(A) play obvious roles in the investigation of 

the automorphisms of A: any automorphism induces an automorphism of AK(A) 

and acts on LND(A) by conjugation. So it is useful in this context to describe 

them if possible. They may also be helpful when investigating isomorphisms 

between rings. 

General  facts about  derivations 

LEMMA 1: Let A be a commutative domain and let 0 be a derivation of A. I f  

O(g) ~ 0 then g is algebraically independent over A a. 

Proof." Assume that R(g) = 0 where R(x)  E A~ and has minimal possible 

degree. Then 0 = O(R(g)) = R'(g)O(g) where R' is the ordinary derivative. So 

R~(g) = O, which is a contradiction. 

LEMMA 2: Let 0 E Der(A) where A is a subring of F ( x l , . . . , x , , ) .  I f  the 

transcendence degree of A ~ is n -  1 a n d / 1 , . . . ,  fn-1 is a transcendence basis 

of A ~ then there exists an h E F ( x l , . . . ,  x,~) so that O(a) = h J ( / 1 , . . . ,  f,~-l, a) 

for every a E A. Here J ( / 1 , . . . ,  a) is the Jacobian relative to xl  . . . .  , x,~. 

Proof'. Any derivation of F ( x l , . . . ,  x,~) is completely determined by its values on 

any n algebraically independent elements. Let c(a) = J ( / 1 , . . . ,  f , , -1,a).  Then 

e(f~) = 0 for i = 1 , . . . , n -  1. Let us take a n y g  e A for which O(g) r O. 
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By Lemma 1, e(g) ~= 0. Since he is a derivation of F ( X l , . . . , x , , )  for any h E 
F ( x l , . . .  ,xn)  it is sufficient to determine h by h = O(g)(e(g)) -1. 

With the help of a locally nilpotent derivation 0 acting on a ring A one can 

define a function deg o by dega(f  ) = max(nI0n(.f) r 0) if f E A is not zero and 

dega(O ) = -oo.  

LEMMA 3: I r A  is a domain and 0 E LND(A) then 

(i) deg o is a degree function, i.e. 

dego(a + b) <_ max(dego(a),dego(b)) and dega(ab ) = dega(a ) + dega(b ). 

(ii) The ring A ~ is "factorially closed", i.e. ira, b E A where a and b are non-zero 

elements and ab E A a then a, b E A ~ 

The proof of this lemma is an easy exercise. Or see [FLN]. 

Let A be a ring with an ascending Z-filtration {Ai} for which Ni~-oo Ai = 0 

and let 0 be a derivation on A for which O(Ai) C Ai+k for a fixed k and all i. 

Let Gr(A) = ~ Ai/Ai_I  be the corresponding graded ring and let h E Ai /Ai -1 .  

Let us write h = a + A,_I where a E Ai. We can define a homomorphism 81 

on Gr(A) which acts on h by 01(h) = O(a) + A~+k-1 E Ai+k/A~+k-1 and then 

extend 01 on Gr(A) by linearity. It is clear that 01 is a derivation of Gr(A). If k 

is chosen minimal (and k :p -oc)  then 01 -~ 0. 
By definition 01 sends a homogeneous component Ai/Ai-1  into the homoge- 

neous component Ai+k/Ai+k-1. So we can call 01 a homogeneous derivation of 

degree k. 

Let us also define a non-linear mapping gr from A to Gr(A) by gr(a) = a + A , _ l  

if a E Ai \ Az-1, gr(0) = 0. Then 01(gr(a)) is either gr(0(a)) or 0 by definition 

of 01. 
The proof of the following lemma is straightforward. (Or see Lemma 4 from 

[ML2].) 

LEMMA 4 : / / 0  is a locally nilpotent derivation on A then 01 is a locally nilpotent 

derivation on Gr(A). 

Locally nilpotent derivations of S 

Let S = C[X, Y, Z]/(Q) where Q = X ' ~ Y - P ( Z ) ,  n > 1, and P(Z)  is a polynomial 

with degree d > 1. Let x, y, z be the images of X, Y, Z in S. 

We'll describe here all locally nilpotent derivations of the ring S and show that 

AK(S) = C[x]. 
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It is sometimes possible to obtain information on a locally nilpotent deriva- 

tion by transition to the corresponding homogeneous locally nilpotent derivations 

induced by different filtrations. This approach will be used in this section. 

Let us consider S as a subring of the ring T = C[x,x -1, z]. So y = x -nP(z ) .  

We are going to use filtrations of S which are induced by so-called weight 

filtrations of T. To define such a filtration on T it is sufficient to give any real 

weights # and u to x and z. Then the weight of a monomial xiz j is i# + ju  and 

the weight of an element p from T is the maximal weight of monomials of p. 

Since any element of T can be presented as the sum of homogeneous elements 

this weight function gives T the structure of a graded algebra, so Gr(T) ~_ T. 

Of course if we want a Z-graded algebra we should take # and u from Z. The 

filtration on T is given, as usual, by taking T,( to be the linear span of {xiz j li# § 

ju  <_ n} and S,, - -Tn MS. 

Let us identify Gr(T) and T and denote gr(x) by x and gr(z) by z. If the weight 

u of z is positive then gr(y) = x-'~z ~ and Gr(s) is generated by x, z, and x - n z  a. 

Indeed, any element of S can be written as a polynomial in x, y, and z. Because 

of the relation xny = P(z) we can rewrite it as a sum of monomials x~zJy k such 

that i < n whenever k > 0. It is easy to see that the monomials xizJ(x-nzd)k 

which are obtained from these monomials by replacing y with gr(y) are linearly 

independent. So the algebra Gr(S) is the linear span of these monomials and is 

generated by x, z, and gr(y). 

It is also possible to extend the weight to the rational functions C(x, z) by 

defining the weight of pq-1 as the difference of the weights of p and q. The 

associated graded algebra Gr(C(x, z)) is isomorphic to the subalgebra of C(x, z) 

consisting of fractions with homogeneous denominators. 

Let 0 be a non-zero locally nilpotent derivation of S and let f E S ~ \ C. Such 

an f exists since by [DF] the kernel of 0 has transcendence degree one. Then 

a(g) = hJ( f ,  g) where J is the Jacobian relative to x and z, and h E C(x, z) (see 

Lemma 2). 

LEMMA 5: f E C[x,z]. 

Proof: Let us call the order of an element s E S the smallest degree of x 

appearing in the monomials of s. Let us take weights # = - N ,  u = 1 where 

N is a positive integer which is sufficiently large to make the leading forms 

gr(f)  E Gr(S) and gr(h) E Gr(C(x, z)) monomials with the same powers of x as 

the orders of f and h, respectively. 
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Let 01 be the locally nilpotent derivation of Gr(S) which is induced by 0 for k -- 

deg(h) + deg(f)  - deg(x) - deg(z) (see Lemma 4).* It is clear that O(Si) C Si+k. 
We can check that  0l(gr(g)) = gr(h)J(gr(f),gr(g)) for every g �9 S. Indeed, 

01(dr(g)) = gr(0(g)) if deg(O(g)) = deg(g) + k and 01(dr(g)) = 0 if deg(0(g)) < 

deg(g) + k. But gr(0(g)) = gr(hJ(f,g)) and by definition of the Jacobian 

gr(J(f,g)) = J(gr(f), dr(g)) if the latter is non-zero. In this case deg(J ( f ,  g)) = 

deg(])  + deg(g) - deg(x) - deg(z) and 01(dr(g)) = gr(h)J(gr(f), dr(g)) by defini- 

tion of k. If instead J (gr ( f ) ,  (dr(g)) = 0, then deg(J( f ,  g)) < deg(f)  + deg(g) - 

deg(x) - deg(z) and again by definition of k we have 01(dr(g)) = 0. In either 

case 01(dr(g)) = gr(h)J(gr(f), dr(g)). The derivation 01 is identically zero if and 

only if dr( f )  �9 C. 

Let us assume that f r C[x, z]. As mentioned above any element of S can be 

presented as a Laurent polynomial from C[x, x -x,  z]. So f contains monomials 

with negative degree in x. Since we choose the filtration to pick the monomial 

with the smallest x-degree possible we have that dr(f)  is a monomial with nega- 

tive power of x. 

This means that dr(f)  can be written as a monomial x a z  b gr(y)C where a, b, 

and c are non-negative integers. So dr(f)  is divisible by dr(y) in Gr(S) because 

negative powers of x occur only when c > 0. 

Since dr ( f )  is a 01-constant and a non-zero product of elements from Gr(S) 

is a 01-constant only if all factors are constants (see Lemma 3), this means that  

dr(y) is a constant. Since 31 is not the zero derivation, dr(f)  = gr(y) c where 

c > 0 (otherwise 01 will be zero on two algebraically independent elements 

of Gr(S) and therefore zero by the proof of Lemma 2). Now, 0l(gr(g)) = 

gr(h)g(gr(y) c, gr(g)) = cgr(y) c-1 gr(h)J(gr(y), dr(g)) is a locally nilpotent deri- 

vation. Let us denote gr(y)C-lgr(h) by cixaz b. So forgetting about the 

coefficients, 02(g) = x%bj(gr(y),g) defines a locally nilpotent derivation on 

Gr(S). 

Let us use the conditions that 02(x) and 02(z) are some elements of Gr(S). 

These conditions can be written as 

(a,b) + ( - n , d -  1) = ax(-n,d)  + (~x,'Yx) 

and 

(a,b) + ( -n  - 1,d) = az(-n,d)  + (flz,"/z), 

respectively, where all scalars in the right sides are non-negative integers. They 

* Here deg denotes the weight function induced by deg(x) = - N  and deg (z) = 1. 
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may be rewritten as 

a + ( a ~ - l ) n _ > 0 ,  b - l - ( a ~ - l ) d _ > 0 ,  

a - l + ( a z - 1 ) n > _ O ,  b - ( a z - 1 ) d > _ O  

119 

or  
b - 1  - a  b 1 - a  

> (a=-l) >-- >(a~-l) >-- 
d - - n '  d -  - n 

Let us use now the condition that  02 is locally nilpotent. Since 02(xiz j) = 
- (nj +di)x  i+~-n-i  zj+b+d- 1 it means that n[j + k ( b + d -  1)] +d[ i+  k ( a -  n -  1)] = 0 

for some non-negative integer k for all xiz  j E Gr(S). In particular, 

nj  + di 
n + d -  n b -  da 

E N  for any i ,  j E N .  

Let us denote n(1 - b) + d(1 - a) by A. We should have therefore A > 0 (and A 

divides n and d). Hence 

b a b n + a d  n + d - A  n + d  
- - - -  < < 1  

n dn nd - - ~  - 

since we assumed that n > 1 and d > 1. So the integers a z - l a n d  a z - 1  

must be equal since they both belong to the interval [ -a /n ,  b/d]. But then 

( b -  1)/d >_ (1 - a)/n,  which means that 0 _> A. We have reached a contradiction 

which proves the lemma. 

So we have proved that O(g) can be written as O(g) = h J ( f , g )  where f E 

C[x, z]. Let us refine it further. 

LEMMA 6: f E C[z]. 

Proof: Let us take # = 1, v = N where N is sufficiently large to make gr( f )  and 

gr(h) monomials which have the same degrees in z as do f and h, respectively. 

Let 0i be the locally nilpotent derivation of Gr(S) which is induced by 0 (see 

Lemma 4). As in the proof of Lemma 5, 0i(gr(g)) = gr(h)J(gr( f ) ,  gr(g)) where 

gr(f)  is divisible by z in Gr(S) if f r C[x]. So z is a constant if f ~ C[x]. 

But then z d is also a constant and it is divisible by gr(y) in Gr(S). So both 

gr(y) = x-'~z d and z are constants and this implies that 01 is identically zero. 

Therefore f E C[x]. 

From these two lemmas we see that some polynomial in x is a constant of a non- 

zero locally nilpotent derivation. From Lemma 1 (or from the representation of a 

derivation as a Jacobian), we see then that x is a constant of any non-zero locally 
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nilpotent derivation, and we can write 0 as O(g) = hJ(x ,g) ,  i.e. 0 = hO/Oz. If 

degz(h ) > 0 t h e n 0 " ( z )  r  S o h � 9  C(x). Of c o u r s e h = 0 ( z )  �9 S. 

Since S M C(x) = C[x] we see that h �9 C[x]. 

Let us take now the same filtration as in Lemma 5. Then Gr(S) is generated 

by x, z, and gr(y) = x - n z  d. Now, O(y) = h x - " P ' ( z )  e S (here P'(z)  is the 

ordinary derivative relative to z) and gr(0(y)) = d g r (h ) x - " z  d-1 �9 Gr(S). If the 

order of h is k then xk -n z  d-1 �9 Gr(S). So k - n _> 0, which means that  h is 

divisible by x'* in C[x]. 

Therefore h = xnhl  where hi E C[x]. 

PROPOSITION: (i) A derivation 0 of S is locally nilpotent if  and only if  O(g) = 

x"hl (x)O/Oz where hi �9 C[x]. 

(ii) AK(S) = C[x]. 

Proo~ We need only check that 0 = x"O/Oz �9 LND(S). This is so because 0 

is even locally nilpotent on T and O(S) C S. 

Let us use this information for a description of the automorphisms. 

A u t o m o r p h i s m s  of  S 

Some of the automorphisms of S are quite evident. First of all we have a C*-action 

A(x, y, z) = (Ax, A-ny, z). Secondly, since the exponent of a locally nilpotent 

derivation gives an automorphism (see [Sn]) we also have an additive C[x] action 

h(z)(x ,  y, z) = (x, y + (P(z  + hx")  - P ( z ) ) x - " ,  z + hx")).  It turns out that for 

a typical P(z)  these automorphisms generate the whole group Aut(S).  

Let us make a linear substitution in z so that P(z)  will become a monic 

polynomial with zero coefficient of z ~- 1. 

LEMMA 7: Let a �9 Aut(S).  Then a(x)  = clx and a(z) = c2z + b(x) where 

c,,c2 �9 C*, b(x) �9 C[x], b(x) - 0 (mod xn), and P(c2z) = cdp(z).  

Proof'. Since a induces an automorphism of AK(S) -- C[x] we see that a(x)  = 

c l x + b l  where cl E C* and bl E C. Next 02(z) = 0 for any 0 E LND(S). 

Therefore 02(a(z)) = 0 for any 0 E LND(S) and a(z) = c2z+b where c2, b E C[x]. 

Since a is invertible we see that c2 E C*. 

Let e = x"O/Oz. Then a - l e a  is also a locally nilpotent derivation of S. Now, 

a - l e a ( z )  = c-~nc2(x - bl)". But O(z) is divisible by x n for any locally nilpotent 

0. So bl = 0. 
Next, a(xny)  = c•xna(y) = P(c2z + b) = cd2p(z) + A (x , z )  where A ( x , z )  �9 

C[x, z] and degz(A ) < d. So c'~a(y) = x - " ( c g P ( z ) + A ( x ,  z)) = c~y+A(x,  z)x -n.  
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Since A ( x , z ) x  -'~ E S = C[x,y,z] and degz(A) < d this means that  A = 0 

(mod xn). Since A = P(c2z + b) - c ~ P ( z ) . =  dcd- lzd- lb  + ~ where deg z 5 < d -  1 

we see that b = 0 (mod x"). Therefore P(c2z + b) = P(c2z) (rood x") and 

A -- P(c2z) - c ~ P ( z )  - 0 (mod x"), which is possible only if P(c2z) -cd2P(z) = 

0. 

Now we are ready to check the following 

THEOREM 1: The group Aut(S) is generated by the following automorphisms. 

(a) H(x)  = Ax, H(y)  = A-ny, H(z) = z where A 6 C. 

(b) T(x)  = x, T(y)  = y + [P(z + x " f ( x ) )  - P ( z ) ]x -" ,  T(z)  = z + xn f ( x ) ,  

where f ( x )  E C[x]. 

(c) I f  P(z )  = z d then the automorphisms R(x)  = x, R(y)  = Ady, R(z)  = Az 

where A E C* should be added. 

(d) I f  P(z)  = zip(z m) then the automorphisms S(x)  = x, S(y) = I.tdy, S(z) = 

#z  where tt E C and #m = 1 should be added. 

Proof: It is clear that all of these transformations are automorphisms. It is also 

clear from Lemma 7 that any automorphism is a composition of an automorphism 

H,  an automorphism T, and an automorphism a for which a(x)  = x and a(z) = 

cz. Cases (c) and (d) describe all polynomials P for which P(cz) - cap(z) = 0 

with c # 1 is possible. (In all other cases a is the identity automorphism.) 

Remark: The triangular automorphlsms T form a normal subgroup which is 

isomorphic to the additive group of C[x] and the group Aut(S) is a semidirect 
product of T and L where L is the subgroup of linear automorphisms generated 
by the automorphlsms from (a), (c), and (d). 

In the general case when (d) is not satisfied, L is isomorphic to C*. If (d) is 

satisfied but not (c), then L is isomorphic to the direct product of C* and a cyclic 
group Cm. Finally, if (c) is satisfied, then L is isomorphic to the direct product 

of two copies of C*. 

The group Aut(S) is a metabelian group. 

Isomorphisms of S 

Let $1 and S~ be two algebras which correspond to Q1 = X ~ Y 1  - PI(Z1) and 

Q2 = X~2Y2 - P2(Z2) where nl,  n2, dl, and d2 are all larger than 1. We also 
assume that Pi are monic polynomials with zero coefficients of z d '-  1. 
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THEOREM 2 : S 1  ~ $2 i f  and only i f  n l  = n2 = n, d l =  d2 = d, and P2(z) = 

A - d p I ( A z )  where A E C*. 

Proo~ Let a be an isomorphism of these algebras. We know that  AK(S~) = 

C[xi] and that  LND(S/) = x'~'C[xi]O/Ozi. So as in Lemma 7 we can conclude 

that  a ( x l )  = clx2 and a( z l )  = c2z~ + b(x2) where cl,c2 C C*, b(x) E C[x]. We 

may even assume using Theorem 1 that  Cl = 1. We may also assume without 

loss of generality that  dl _< d2 because we can switch $I and $2. 

Let us assume that  dl < d2. Then a(Yl) = x 2 " ' P l ( c 2 z 2  + b) qf $2 since the 

elements from $2 with negative power of x2 should contain z2 in the power d2 

at least. So dl = d2 -- d. Similarly, the assumption that  nl > n2 brings us to a 

contradiction. Therefore nl  = n2 -~ n. 

Now we can see that  b(x) - 0 (mod xn), so using Theorem 1 again we may 

assume that  a ( z l )  = cz2. Finally, Pl(cz )  = cdp2(z) as in Lemma 7. So P2(z) = 

c -dP l ( c z ) .  
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