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A detailed numerical study has been made of the dissolution kinetics of particles in binary alloys 
during isothermal annealing. In earlier models, the assumption was made that the dissolution 
reaction could be described by the dissolution of only one particle in an infinite matrix or the 
dissolution of a regular array of particles of  equal size. This assumption has been relaxed and 
a log-normal size distribution of  particles has been introduced instead. The calculations have 
been done numerically by applying a finite difference technique to a spherical particle in a 
spherical cell of finite size. The presence of a size distribution of  particles was found to have 
a great effect on the dissolution kinetics and, therefore, must be included in a reliable model 
for the dissolution of particles. The results have been presented in diagrams, giving the volume 
fraction as a function of the dimensionless annealing time with the geometrical standard devia- 
tion as a parameter, and thus should be useful in making accurate predictions of the dissolution 
kinetics of binary alloys. The curves can be used for all volume fractions provided that all of  
the particles can be dissolved completely at the temperature considered. Also, equations have 
been derived that can easily be used to give an estimate of the annealing time to dissolve 90 pct 
of the initial volume fraction. 

I. I N T R O D U C T I O N  

HOMOGENIZATION and solution heat treatments 
are very important heat-treatment operations carried out 
during metal processing. Homogenization is the com- 
monly used term for the treatment resulting in a decrease 
of the microsegregation formed during solidification, while 
solution heat treatment refers to the treatment where 
second-phase particles become unstable and dissolve into 
the matrix phase. Very often these two processes take 
place simultaneously, and this is probably the reason for 
a somewhat inconsistent phrasing in the literature. It is 
also quite common to use the term homogenization as a 
general term for high-temperature annealing of  castings. 
This is also inadequate, because a heterogenization 
instead of a homogenization occurs quite often during 
high-temperature annealing. The term soaking is an 
appropriate term for such high-temperature annealing. 

In spite of their obvious industrial importance, the 
homogenization and solution heat-treatment reactions have 
received rather limited scientific attention. On the other 
hand, the reverse reaction, namely the nucleation and 
growth of second-phase particles in a homogeneous 
supersaturated solution, has been under extensive inves- 
tigation for a long time. The reason for this difference 
in scientific interest probably reflects the difference in 
the central problems in the two cases. For the latter re- 
action, the central problem is related to the physics of 
the reactions (nucleation and growth), while for the for- 
mer reaction, the central problem is related to the com- 
plexity of the mathematical description. 
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The first attempt to develop mathematical models for 
diffusion-controlled dissolution of second-phase parti- 
cles in binary alloys was made by Thomas and Whelan, m 
Aaron, tzl and Whelan. c31 These early models were lim- 
ited to the dissolution of  one single particle in an infinite 
matrix. Thomas and Whelan approximated the dissolu- 
tion process to the reverse growth process, while Aaron's 
model was a one-dimensional model and thus cannot de- 
scribe the dissolution of small particles. Whelan derived 
the correct differential equation for the dissolution of a 
spherical particle in an infinite matrix and also gave the 
general solution to this equation. The dissolution process 
was found to be much more complicated to describe 
mathematically than the growth process (or the reversed 
growth process). Whelan also discussed some limiting 
cases where the solution could be given in closed forms. 

In all of  these early attempts to describe the dissolu- 
tion process mathematically, several assumptions were 
made. 

(1) The rate of dissolution is limited by long-range dif- 
fusion; hence, equilibrium is always established at the 
interface between the particle and the matrix. 
(2) The diffusion coefficient D is independent of the 
concentration. 
(3) The stationary interface approximation is used to ob- 
tain the concentration gradient in the matrix. 

These approximations'are needed to obtain solutions in 
closed forms. The validity of  approximations 1 and 2 is 
related to the thermodynamics of  the alloy and in prin- 
ciple can be checked experimentally. In the stationary 
interface approximation, the concentration profile out- 
side a particle of  radius R is the same as that which exists 
if the particle has been fixed at R from the start of the 
dissolution process. However, when a particle dissolves, 
the interface moves away from the matrix. This means 
that the concentration gradients calculated by the sta- 
tionary interface assumption are too steep at all times 
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and particularly when R approaches zero. This approx- 
imation is a reasonable one when a solute-rich particle 
is dissolving in a dilute matrix. 

Aaron and Kotler I4] have studied the thermodynamical 
effect of curvature on the dissolution kinetics. The in- 
fluence of curvature they found is negligible unless the 
difference between the solute concentration at the particle/ 
matrix interface C ~/~ and the matrix concentration Cm is 
sufficiently small. However,  the reduction in total dis- 
solution time is considerably less than 10 pct in all 
practical cases. 

In order to describe the dissolution process in real ma- 
terials, the model must contain the volume fraction of a 
second phase instead of only one isolated particle. This 
introduces a topological factor into the dissolution pro- 
cess: the shape and the spatial distribution of the second 
phase. Only some special cases can now be treated an- 
alytically. Nolfi e t a l .  [5"6"71 studied the dissolution of 
spherical particles of equal size arranged in a simple cubic 
lattice and solved the diffusion equation by a series ex- 
pansion. A consequence of this type of modeling is that 
all of  the particles dissolve at the same rate. 

Singh and Flemings t8'91 studied the dissolution of 
interdendritic second-phase particles in a cast structure 
by assuming the particles to be plate-shaped and ar- 
ranged in parallel, thus reducing the diffusion to linear 
diffusion. In this way, they also obtained an analytic 
expression for the dissolution process. Refinements of  
this model have been carried out by Singh et al. tl~ and 
Fuchs and Ro6sz.~l'~ These refinements, however, result 
in equations that can be solved only by numerical methods. 

A rather ambitious application of the numerical so- 
lution methods of the dissolution process was carried out 
by Tanzilli and Heckel. t'2j They solved the diffusion 
equation numerically using a finite difference technique. 
Their model in principle can be used to describe the dis- 
solution kinetics in materials with a given volume frac- 
tion of precipitates of  different shapes. However,  their 
model has some severe limitations. The salient assump- 
tions in the model are that all precipitates are of  equal 
size and that they are divided into identical, spherical 
cells having the particle at their center. A consequence 
of this is that all of the precipitates dissolve completely 
at the same annealing time. 

,~gren u3~ has developed a model similar to that of  
Tanzilli et al. but extended it also to cover diffusion in 
multicomponent alloys. He also demonstrated convinc- 
ingly the applicability of  this model to a number of dif- 
fusional reactions in steels, t~4-1a~ In principle, the model 
is also applicable to other alloys. 

Baty et  al. t191 presented a method for predicting the 
variation with time of the particle size distribution by 
assuming that the size distribution does not change shape 
during the annealing process. The assumption that the 
particle distribution is moving rigidly to the left is not 
well founded. This implies that the radius of  a large par- 
ticle decreases at the same rate as a small particle, which 
is not correct. Also, they did not include the volume 
fraction of particles in this model so the method is thus 
of limited use. 

The analytical and numerical approaches referred to 
above are not well suited for solving problems related to 
industrial practice. In general, one has to carry out ad- 

ditional extensive computer calculations to obtain useful 
results. The intention of the present work is to present 
the results in such a way that results can be obtained 
directly from nomogrames without additional calcula- 
tions. Also, the assumption in earlier treatments of  equal 
size of  all particles is relaxed, and a particle size distri- 
bution is included instead. 

I I .  ANALYSIS  

The main intention of the present investigation is to 
relax the assumption used in earlier investigations that 
all particles are of  equal size and to introduce a particle 
size distribution instead. When the particles are assumed 
to be all of  equal size, it is reasonable to arrange the 
particle in space in a simple, regular manner, as done, 
for instance, by Nolfi et  al.  tSj With a particle size dis- 
tribution present, the arrangement of the particles in space 
needs some consideration. It is convenient to discuss two 
limiting cases. 

A .  M o d e l  1 

When all of the particles are nucleated simultaneously 
in a uniform, supersaturated solid solution, the particles 
will grow independently of  each other until soft impinge- 
ment occurs. As a first approximation, each particle is 
surrounded by a solute-depleted cell with a size propor- 
tional to the size of  the particle. This approximation is 
assumed to be valid as long as extensive coarsening has 
not taken place. The above arguments lead to our 
Model 1: the material is divided into spherical cells with 
a size distribution that matches the size distribution of 
the particles. Each particle is located in the center of  the 
corresponding cell. The size of  the cells is such that the 
concentration of solute atoms (including the particle) is 
the same in all cells and equal to Co. Figure 1 gives a 
two-dimensional (2-D) picture of  the particle/cell ar- 
rangement. For further discussions about the assump- 
tions in Model 1, the reader is referred to Appendix A. 

In order to use the model on a real material, one has 
to know the particle size distribution in space. This can 
be obtained by the Schwartz-Saltykov analysis, as de- 
scribed by Underwood, t2~ which gives the size distri- 
bution of spheres in space from a particle size distribution 
in a planar section. Because the volume fraction of par- 
ticles in each class is known at the start of  the dissolution 

Model I 
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Fig. 1--Schemat ic  2-D diagram of the particle/cell arrangement in 
Model 1. 
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process, the total volume fraction of particles in the alloy 
as a function of dissolution time can be calculated. 

B. M o d e l  2 

As coarsening proceeds, the simple correspondence 
between the particle size and the cell size is gradually 
lost. For instance, when one particular particle has dis- 
solved completely during the coarsening process, its cor- 
responding cell volume is then included in the neighboring 
cells, and in the extreme case, there will be no simple 
correspondence between the particle size and the cell size. 
In Model 2, we retain the assumption that initially the 
size distributions of  the particles and the cells have 
the same shape, but there is no correspondence between 
the size of  the particles and the size of the cells. This 
model is shown schematically in Figure 2. The particles 
from each size class are randomly distributed in cells of 
different sizes. There are in total (NC) 2 (NC = number 
of size classes) different particle/cell systems, and the 
computing time thus increases rapidly with increasing 
number of  size classes. The average concentration in the 
material is Co, but contrary to Model 1, the average con- 
centration in the different cells will vary in Model 2. 

It is obvious that the smallest particles in the largest 
cells will have the shortest dissolution times. When the 
particles in one system ( i . e . ,  particles of  one particular 
size in cells of  one particular size) have dissolved, the 
volume and mass from this system are transferred to all 
of the other systems. The volume of the cells and the 
total mass of  the solute elements are then added equally 
to the remaining cells as shells outside existing cells. 
The solution concentration in the transferred volume is 
taken as the average concentration in this particular cell. 
The volume of an existing cell will thus increase as the 
particles are dissolving. When few particles are left, each 
particle will have a large volume to dissolve into, but 
the solute concentration in this volume has also in- 
creased and the dissolution process is thus slowed down. 
A large particle in a small cell may temporarily stop dis- 
solving, because the cell is saturated with solute. How- 
ever, when other particles have dissolved, the volume of 
this cell will increase and the particle will again start to 
dissolve. This method of  distributing particles among the 
different cells is meant to simulate the situation that some 
particles are clustered together and that the dissolution 
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Model 2 

Fig. 2 - - S c h e m a t i c  2-D diagram of the particle/cell arrangement in 
Model 2. 

process in these clustered regions is slowed down rela- 
tively more than in other regions of the material. 

An essential part of  both Models 1 and 2 is the cal- 
culation of the rate of  dissolution of one spherical 
particle in the center of a spherical cell. The calculation 
is done numerically by a method that closely follows the 
methods described by Patankar t2~ and is given in some 
detail in Appendix B. For convenience, assumptions 1 
and 2 in Section I are used in these calculations. The 
introduction of a concentration-dependent diffusion 
coefficient and a nonequilibrium, time-dependent inter- 
face concentration would cause no major computational 
problems. Assumption 3 is relaxed and the moving inter- 
face solution is applied instead, as explained in 
Appendix B. Because of the small influence of curvature 
of the particles on the dissolution kinetics, the effect is 
not included in the calculations. Finally, the chemical 
composition of the particle is assumed to be the same at 
all temperatures, thus no diffusion occurs within the par- 
ticle. The temperature dependence of the composition of 
intermetallic phases is small for many binary systems so 
this is a reasonable assumption. 

I I I .  R E S U L T S  

Before presenting the results, it is necessary to define 
the parameters used in the equations presented 
subsequently. 

In the theory of  the diffusion-controlled rate of  growth 
of an isolated particle in a supersaturated solid solution, 
the growth rate d R / d t  can be expressed in the following 
simple way: 

- -  = 2 a  2 [ 1 ]  
d t  

where a,  often referred to as the growth constant, is a 
function of the relevant concentration of the diffusion 
field. It is convenient to write 

where 

a = a ( k )  [21 

C ~ / a  _ C m 

k = (]t3/~, _ C,~/t3 [3] 

where the different concentrations are defined in 
Figures 3(a) and (b) and C ~/~ = Ct3/~(V~, /V~) .  A small 
value of k means that the concentration of B atoms in 
the particle is so large compared to the solubility of  B 
atoms in the matrix that atoms can diffuse away from 
the particle without causing a rapid movement  of  the 
particle/matrix interface,, As shown by Whelan, [31 the rate 
of  dissolution of a spherical particle in an infinite matrix 
under the stationary interface approximation can be writ- 
ten in the following way: 

d R  - k D k [4] 
d t  R 

The fLrst term on the right-hand side of  this equation arises 
from the part of  the concentration field which gives the 
dissolution rate as the reverse of  the growth rate. This 

METALLURGICAL TRANSACTIONS A VOLUME 23A, FEBRUARY 1992--435 



Fig. 3 - - ( a )  Schematic diagram of the solute concentration in the vi- 
cinity of  a dissolving particle initially in equilibrium with the matrix. 
(b) Schematic binary phase diagram. 

part of  the field is referred to by Whelan as the steady- 
state part. The second term on the right-hand side of  
Eq. [4] is seen to decrease with increasing dissolution 
time, and the corresponding part of the concentration field 
is referred to as the transient part. The value of k is also 
a measure of  the effect of  the transient part on the dis- 
solution process. For small values of  k, the dissolution 
process is dominated by the stationary part, while for 
larger values, the transient part is more important. Large 
values of  k mean that the solubility of  B atoms in the 
matrix is comparable to the concentration of B atoms in 
the particle. This means that a large part of  the particle 
can be dissolved before the B atoms have to diffuse a 
long distance away from the particle. 

When an alloy containing many particles is consid- 
ered, the volume fraction of the particles must appear as 
a parameter in the rate of  dissolution. However,  instead 
of introducing the volume fraction as this characterizing 
parameter, it is more convenient to introduce the parameter 

Co - C m  

b = C~/~ _ Cm [5] 

The value of b varies from 0 to 1. When b = 0, i .e.,  
Co = Cm, the volume fraction is zero. This is the case 
discussed by Whelan. When b = 1, i.e., Co = C ~/~, the 
alloy contains the maximum volume fraction of particles 
that can be dissolved at the temperature considered. 

The dissolution time t is normalized against the dis- 
solution time to for a particle of  size R ~ dissolving in an 
infinite matrix. 

(R~ 2 
to -- [6] 

2 D k  

thus the normalized time 7 becomes 

2 D k t  
~- - [7] 

(R~ 2 

A. Dissolution of  One Particle 

In all of the results presented in this investigation, the 
movement  of  the particle/matrix interface is included in 
the calculations. In Figure 4, a comparison is made be- 
tween the concentration field calculated by this method 
and the stationary interface approximation. In 
Figure 4(a), the concentration profiles are shown for k = 
0.01 and b ~ 0. This means that the stationary part o f  
the concentration field is dominating and that the solute 
atoms can diffuse away from the particle without causing 
a rapid movement  of  the interface. As can be seen, in 
the early stage of  the dissolution process, the concentra- 
tion profiles predicted by the stationary interface ap- 
proximation coincide rather well with profiles predicted 
by our model, in which the movement  of the interface 
is included. When the radius of  the particle approaches 
zero, the deviation increases. In Figure 4(b), k = 0.25 
and b = 0, the difference between the profiles predicted 
by the stationary interface approximation and our model 
is considerable even at short dissolution times. 

Followin~g Whelan, we have plotted the variation of  
p2 = (R/RU)2 with annealing time ~" for different values 
of  b, as shown in Figure 5. The time r*  to dissolve the 
particle completely increases with increasing b. The rea- 
son for this is as follows: the average concentration of  
solute atoms in the matrix increases with the increasing 
value of b. This means an increasing tendency for a 
buildup of solute atoms close to the dissolving particle. 
The rate of  dissolution is thus slowed down, particularly 
when the radius approaches zero. The effect of  the tran- 
sient part of the concentration field is also evident from 
Figure 5. When k = 0.25 (Figure 5(b)), the curvature 
of  the curves is more pronounced than when k = 0.01 
(Figure 5(a)). This can easily be seen when comparing 
the curves for b = 0.01 in the two cases. 

In Figure6,  the time ~-* needed to dissolve the particle 
completely is plotted against b for different values of  k. 
As can be seen, when b approaches unity, r* approaches 
infinity. Because k is included in the normalized time z, 
the differences in the curves are only due to the effect 
of the transient part of  the dissolution process, which is 
more pronounced for large values of  k. 

B. Dissolution o f  an Assembly o f  Par t i c l e s - -Mode l  1 

The input to Models 1 and 2 is the distribution of par- 
ticles in space. The Schwartz-Saltykov analysis gives the 
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Fig. 4 - -  (a) and (b) Concentration profiles in the vicinity of a spher- 
ical particle predicted by the stationary interface approximation and 
our model, in which the moving interface is included. 

y(R) = 

with 

number of  particles in size classes from measurements 
on a metallographic specimen. These data can be put 
directly into the models. However,  in order to present 
our results in such a way that practical applications are 
easily obtained, a type of standardized particle size dis- 
tributions has to be used. The log-normal distribution is 
one of the most frequently observed distributions of  small 
particles, and our results are presented for this type of 
particle size distribution. The log-normal size distribu- 
tion can be written in the following way: 

1 ~ exp ( -  ( l n R - l n / ~ g ) 2 ~  

R I n  OrgV27r  2-(1-nN O ' g )  2 / [ 8 ]  

where R is the radius of  the particle, o- 3 is the geometric 
standard deviation of the distribution, and Rs a n d / ~  are 
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Fig. 5 - - ( a )  and (b) The variation of p2 = (R/RO): with annealing 
time r plotted for different values of b and two values of k. 
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the geometric and arithmetic means, respectively. In 
practice, a convenient way to check whether an experi- 
mental particle distribution matches a log-normal distri- 
bution is to plot the cumulative frequency in a probability 
paper with logarithmic size axes, as described by Exner. [221 
If this plot gives a line that is roughly straight, the size 
distribution is approximately log-normal and our dia- 
grams are applicable. 

The size distribution of the particles is described by a 
continuous function. The numerical calculations are, of 
course, limited to a finite number of particles distributed 
among different size classes. This requires upper and lower 
limits for the particle sizes in the distributions. These 
limits were decided by requiring 99 pct of the number 
of particles to be within these limits. This cutoff is sim- 
ilar to obtaining an experimental size distribution, and 
the error introduced is thus negligible. 

Since k is included in the normalized time ~-, the dif- 
ferences in the curves in Figure 6 are moderate for a 
wide range of k values. The same was found to be the 
case for the dissolution kinetics of  an assembly of  par- 
ticles. Thus, all calculations have been made with k = 
0.01. However, for other k values, one can still use the 
curves, but the values of ~- have to be corrected if more 
precise estimates of  the volume fraction as a function of 
time ~- are needed. A more correct value of the time z 
becomes 

-- . 0 . 0 5  

where ~- is the value read from the curves and % is the 
corrected value. This correction makes the curves valid 
for all k values. 

In Figures 7(a) through (d), the relative volume frac- 
tion of particles f i f o  is plotted as a function of time r 
for four different values of b and a range of  different 
values of o-g in the interval of 1 to 2. Frequently observed 
o'g values for distributions of small particles in a planar 
section are between 1.4 and 1.6 and somewhat smaller 
when the planar distribution is transferred to a spatial 
distribution. There is a clear tendency for the dissolution 
rates to level out at the end of the dissolution process 
for large b values. This is also illustrated in Figure 8, 
where the relative volume fraction of particles f i fo  as a 
function of time ~- is shown for o'g = 1.5 and four dif- 
ferent values of b. The effect of b on the dissolution 
kinetics is small for b values less than about 0.4. 

In Figures 9(a) and (b), the relative arithmetic mean 
radius ~7 as a function of time ~- for Model 1 is shown 
for b = 0.4 and b = 0.99 for different values of crg. For 
b = 0.4, f7 first decreases and subsequently increases 
with time for large values of O-g. The reason for this is 
that after a comparatively short time, the smallest par- 
ticles disappear, thus leading to an increase in the mean 
radius. For particle size distributions with medium val- 
ues of o-g, the mean radius as a function of time is seen 
to reach a plateau before it decreases to zero. For b = 
0.99, ~7 decreases more smoothly with annealing time r. 

C. Dissolution of an Assembly of Particles--Model 2 

Results obtained by Model 2 are shown in 
Figures 10(a) and (b). When comparing these results with 

the corresponding results obtained by Model 1 
(Figures 7(a) through (d)), the two models seem to give 
very similar results. However, a close examination re- 
veals essential differences: in general, Model 2 predicts 
a lower rate of dissolution than Model 1. This tendency 
increases with increasing values of  b and o-g, as shown 
in Figures 1 l(a) and (b). 

IV. DISCUSSION AND C O N C L U S I O N S  

The basis of Model 1 is the assumption that a one to 
one correspondence exists between the particle sizes and 
the cell sizes, as shown in Figure 1. In Model 2, on the 
other hand, this correspondence is completely lost. The 
two models thus represent two extremes: Model 1 rep- 
resents the case where no particle coarsening has taken 
place before dissolution, while Model 2 is introduced to 
determine an upper limit for the volume fraction as a 
function of annealing time. Model 2 is thus comparable 
to the case where extensive coarsening has taken place. 
Therefore, in practice, the volume fraction as a function 
of annealing time therefore lies in between the volume 
fractions predicted by these two models. 

In addition, the assumptions are made that each par- 
ticle is located at the center of  the corresponding cell and 
that the cells are spherical. Neither of  these assumptions 
is strictly correct. This means that our models probably 
slightly overestimate the dissolution rates. One final as- 
sumption in the model is that the particles are all spher- 
ical. This seems to be a restrictive assumption, but if the 
dissolution rate is determined by volume diffusion, the 
shape of the particles is likely to have a minor influence 
on the dissolution kinetics. Whelan TM proposed that the 
shape of the diffusion field a long distance away from 
the precipitate is approximately spherical even for a thin 
disc-like precipitate. The influence of  the shape of  the 
particle on the rate of dissolution has also been studied 
by Brown. t231 He solved the diffusion equation numeri- 
cally in two dimensions and found that the total disso- 
lution times were the same for circular and square 
precipitates. He concluded that if the dissolution is con- 
trolled by volume diffusion, the precipitates will become 
spherical as they shrink, and that the dissolution time is 
the same as for a sphere of  equal volume. 

The main difficulties related to determining the dis- 
solution rates for particles of irregular shapes are asso- 
ciated with the transformation of the particle distribution 
obtained in a planar section to a distribution in space. 
The methods for making such transformations are valid 
only for spheres or for particles of regular shapes. 

As pointed out by Whelan, TM the transient part of the 
concentration field has a significant influence on the dis- 
solution tirfie ~'* of a spherical particle in an infinite ma- 
trix. This effect is illustrated in Figure 6, with b ~ 0. 
For a very concentrated particle (k ~ 0), ~'* ~ 1, while 
for k = 0.25 (equivalent to p -: 0.2 in the article of 
Whelan), ~-* = 0.82. Whelan calculated a dissolution 
time r* = 0.57 for the same k value. This difference in 
dissolution time is due to the stationary interface ap- 
proximation used by Whelan. He also advances argu- 
ments for the correct value of r* to be somewhat higher 
than 0.57. His arguments are supported by our calcu- 
lations shQwn in Figure 4(b). For k = 0.25 and b = 0, 
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Fig. 7 - - ( a )  through (d) Volume fraction f / f  ~ against time z for four different values of  b and a range of  different values of  trs (Model 1). 
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Fig. 8 - - E f f e c t  of b on the dissolution kinetics for a fixed particle 
size distribution with o'~ = 1.5. 

the stationary interface approximation gives too steep of 
a concentration gradient at all annealing times and a cor- 
respondingly too short dissolution time. 

When an estimate of  the time r* to dissolve one par- 
ticle completely is sufficient, an acceptable relationship 
would be the value obtained by curve fitting: 

( 046 
T* ~ 0 . 4 5  -I- b)0.69 / 

~, (1  - 

0 <-- b -< 0.95 [11] 

When the assumption of equal size of the particles is 
relaxed and a log-normal particle size distribution is in- 
troduced in its place, a great effect on the calculated dis- 
solution kinetics is observed. 

In Figure 12, the time ~'o9 to dissolve 90 pct of  the 
initial volume fraction of particles is plotted against the 
geometric standard deviation O-g of the log-normal dis- 
tribution. The time ~- can be normalized against the arith- 
metic as well as the geometric mean radius. For a constant 
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geometric mean radius, the arithmetic mean increases with 
increasing ~r 8. Figure 12 clearly shows why the calcu- 
lations done by Baty et  al. 091 of the volume fraction of 
CuA12 against annealing time, assuming all particles of 
equal size (O-g ~ 1), did not agree with the experimental 
observation. In Figure 13, the distribution of particles in 
space is shown for several values of  the relative volume 
fraction f i f o .  As can be seen, the radius of the smaller 
particles decreases at a higher rate than the radius of  the 
larger particles. Thus, the assumption made by Baty et  al. 
that the particle distribution is moving rigidly to the left 
is not correct. 
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Fig. 1 3 - - T h e  evolution of a particle size distribution with crg = 1.5 
as the volume fraction of particles decreases. The radius of the small 
particles decreases at a higher rate than the radius of the large particles. 

As discussed previously, Eq. [11] can be used to es- 
timate the dissolution time for a particle of  size R ~ In 
Model 1, the time T* to dissolve all of the particles in 
the material is identical to the time to dissolve the largest 
particle in the particle-size distribution. This is due to 
the assumption in this model that there are no inter- 
actions between the particles. 

For a given alloy, with an experimentally determined 
particle size distribution, the dissolution kinetics can be 
evaluated rather precisely from Figures 7 and 10. In gen- 
eral, the results are expected to lay in between the curves 
represented by Models 1 and 2. When only limited 
coarsening has taken place before up-quenching, 
Model 1 will describe the dissoluion rates most cor- 
rectly, while after extensive coarsening, the dissolution 
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kinetics should approach the kinetics given by Model 2. 
Often it is more practical to estimate the time needed to 
dissolve a certain volume fraction of the particles. I f  one 
is satisfied with describing the dissolution process by 
giving the time needed to dissolve 90 pet of  the initial 
volume fraction of particles, this can be obtained from 
the curves in Figure 12. 

An equation for r09 as a function of b and O-g can be 
obtained from Figure 12 by curve fitting. One obtains 

1"0. 9 ~ [0.3(1 - b )  -0"54 + 0.3(1 - 0.85 In O-g) -4 
.0 .05  oo,) 

+ b2(o '~ -  1)1 - -  

0 < - b ~ 0 . 9  1 <o 'g -<  1.8 [12] 

The deviation between the values predicted by Eq. [ 1 2] 
and the simulated values of  r0.9 is always less than 14 pct 
for the given ranges of  b and o- e. 

To test the model, we have studied the dissolution ki- 
netics of  silicon particles in an A1-Si alloy. The results 
are presented in an accompanying article. ~241. 

A P P E N D I X  A 

Figure A1 shows a Dirichlet tessellation around points 
randomly distributed in a plane. If  the points are as- 
sumed to be the center of  particles that are nucleated 
simultaneously, the size of  each particle is proportional 
to the size of  the corresponding cell. A similar construc- 
tion can be made for particles in space. In Model 1, this 
correspondence between the cell size and particle size is 
assumed to persist until the dissolution process starts. In 
addition, the following assumptions are made. 

(1) Each particle is located at the center of  the corre- 
sponding cell. 
(2) The cells are assumed to be spherical. 
(3) The cells are closed, i.e., no solute is transferred 
between the cells. 

As can be seen in Figure A 1, the particles are often lo- 
cated near one of the boundaries of  the cell. The same 

Fig.  A 1 - - A  r andom dis t r ibut ion  of  points  in a p lane,  wi th  the cor- 
r esponding  Dir ichle t - tesse l la t ion .  t251 

will be the case for particles in space. However,  there 
is a tendency for the larger particles to be located near 
the center of the cell. This is a consequence of the growth 
process: a large particle is likely to have no close neigh- 
bors in order to grow big. I f  the particle has a close 
neighbor at one side, the probability for the particle to 
grow big will be reduced. In Figure A1, the large cells 
are also seen to be more circular than the small ones. In 
three dimensions, the larger cells will be rather spheri- 
cal. This suggests that the assumptions in Model 1 are 
best satisfied for the larger particles. Because these par- 
ticles also represent the majority of the volume fraction 
of particles, the assumptions in Model 1 are reasonable 
for dissolution of particles. 

It is also worth noting that there is a correlation be- 
tween the size of  one particle (and its corresponding cell) 
and the size of  its neighboring particles (cells). I f  the 
particle size is larger than the average, the distances to 
its nearest neighboring particles are likely to be larger 
than the average interparticle spacing. A consequence of 
this is that the nearest neighbors probably have no close 
neighbor in one direction. Thus, the probability for a 
neighboring particle to grow big is larger than random. 
The inverse is the case for a small particle and its neigh- 
boring particles. The tendency for large cells and the 
corresponding particles to cluster and small cells to do 
the same is clearly seen in Figure A1. I f  the particles 
are nucleated on a string and the diffusion occurs in one 
dimension, the correlation coefficient between the size 
of a particle and the size of  its neighboring particles is 
0.5. In two and three dimensions, the  correlation is re- 
duced by a factor of  approximately 2 and 4, respectively. 
The effect of  clustering is not included in our model. 

A P P E N D I X  B 

In order to calculate the rate of dissolution of  a spher- 
ical particle at the center of  a sphere, it is convenient to 
use spherical coordinates. The concentration outside the 
particle is then a function of r and time only, and the 
calculations can thus be performed in one dimension. 
The solution method chosen for this linear transient 
problem (D independent of  concentration) is a finite dif- 
ference method, using a backward Euler time-integration 
method. This method is fully implicit and therefore we 
have no problems with numerical instability which can 
occur for other time-integration methods. The discreti- 
zation method used closely follows the methods used by 
Patankar. [zl] The boundary conditions for the present 
problem are 

VC(Rw, t) = 0 [B1] 
and 

t 

C(R,  t) = C ~/~ [B2] 

where Rw is the radius of  the cell and R is the radius of  
the particle. The N grid points are placed from the center 
of the particle to the cell wall, and each grid point is 
given a control volume that is shaped like a spherical 
shell. The number of  grid points that are located inside 
the particle is k. The distance between each grid point 
can be varied so that the spacing is fine where the con- 
centration gradients are steep and coarser where the con- 
centration varies rather slowly. Control volume faces are 
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placed midway between the grid points. The first and 
last control volumes are consequently only half. If  the 
particle/matrix interface had been fixed at all times, this 
would have been a very easily solved problem, but the 
moving interface makes the task more complicated. 

Fick's first law in spherical coordinates gives the flux 
of atoms through a spherical surface: 

D OC 
J ( r )  - [B3] 

Vm Or 

where Vm is the molar volume and D the diffusion coef- 
ficient. The concentrations that appear are in atomic per- 
cent. The mass balance for solute flow through the 
spherical shell in Figure B 1 is given by 

V OC 
JwAw - JeAe - [B4] 

VmOt  

where V is the volume of the shell and Aw and Ae are 
the area of the control volume faces at the inside and the 
outside, respectively. Equation [B4] can, after substi- 
tution of Fick's first law, be integrated over the control 
volume by assuming a piecewise linear profile for the 
concentration and by using a backward Euler time- 
integration method. The resulting equation takes the fol- 
lowing form: 

0 0 
a p f p  =- awCw + a E C E  -4- a p f  p [B5] 

where C ~ is the concentration at point P at time t and 
Cp, Cw, and Ce are the concentrations at the actual grid- 
point at time t + A t. The coefficients in front of the 
concentrations are given by 

r2w 
aw r2Ar6r  w [B6] 

2 
r e  

[B7] 
ae r 2A r t~r  e 

0 _ a p  m m  

D A t  

a p  = a~ + aw + a E  

[B81 

[B91 

Fig. B1 - - A  2 - D  m o d e l  o f  a sphe r i ca l  cel l  at  d i s t ance  r f r o m  the cen-  
ter o f  a sphe r i ca l  par t ic le .  

There is one equation for each control volume. The N-k  
linear equations outside the particle are coupled equa- 
tions. As a consequence, if one of the boundary con- 
centrations is known, all of the equations can be solved, 
for instance, by the special algorithm called TriDiagonal- 
Matrix Algorithm. 

For the last control volume, the boundary conditions 
of Eq. [B1] require that the amount of solute flowing 
into this control volume is accumulated. This causes a 
buildup of solute at the cell wall, causing the concen- 
tration gradients to level out, which again makes the 
dissolution rate of the particle slow down. 

At the start of the dissolution process, the concentra- 
tions at grid points inside the particle are all equal to 
C ~/'~ and the concentrations outside the particle are all 
Cm. At the particle surface, the concentration is C '~/~. 
To solve the equations, the concentration in at least one 
boundary point or the flux across the corresponding 
boundary has to be known. The problem is that the mov- 
ing particle surface is never located exactly at a grid point, 
which means that no boundary concentrations are di- 
rectly known. This problem has been solved by esti- 
mating the concentration at the grid point k + 1 just outside 
the particle/matrix interface at time t + At. The velocity 
of the interface is calculated from the previous iteration, 
and the location of the interface at time t + At is cal- 
culated by assuming the velocity to be constant within 
the time interval t - A t to t + A t. The concentration at 
the grid point k + 1 is then calculated by assuming the 
concentration gradient between the interface and grid point 
k + 1 at time t + At to be the same as the gradient 
between grid points k + 1 and k + 2 at time t. The value 
of Ck+l is then used as a boundary value to solve the 
N-k  equations for the other concentrations at time t + A t. 

This method to solve the moving interface problem is 
very accurate when the interface velocity is nearly con- 
stant within two time steps and when the concentration 
gradients used in the interpolation are approximately equal. 
The method does not require iterations within the time- 
step and thus is very fast. The number of grid points 
used in the calculations varied from 400 to about 700, 
with at least 100 grid points located inside the particle 
at the start of the dissolution process. Some runs with 
about 1000 grid points were also carried out, but there 
was almost nothing to gain in accuracy by this increase. 
The time step could be varied in order to adjust the ra- 
dius reduction from iteration to iteration. 

According to Whelan, the time r* to dissolve a very 
concentrated particle (k ~ 0) in an infinite matrix 
(b ~ 0) is very close to unity. This was used to test the 
accuracy of the numerical calculations in our model. One 
run w i t h k  = 10 -5 a n d b  = 10 -3 gave ,the result r* = 
0.9986, which must be~very close to the exact dissolu- 
tion time. 

In Model 1, we were able to reduce the overall com- 
puting time by almost a factor equal to the number of 
size classes without reducing the accuracy of the results. 
Calculations were carried out on one particle only, and 
the values of the relative radius Pl as a function of nor- 
malized time r~ were stored in a table. The radius of a 
particle in size class i can be obtained by noting that the 
relative radius Pi = Pl if zi = "r 1 (valid as long as b has 
the same value). Thus, the value of Pi was obtained by 
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a linear interpolation of  the ~'1 values and the correspond- 
ing Pl values. Five hundred size classes could be handled 
without increasing the computing time by a factor of  2 
as compared to the computing time for dissolution of  one 
particle. 

In Model 2, the number of  size classes and the number 
of  grid points had to be reduced in order to avoid un- 
realistic long computing times. A number of  15 size 
classes and 150 to about 500 grid points were used at 
the start of  the dissolution process, which means that the 
accuracy in the results obtained in this model were not 
quite as good as those obtained in Model 1. 

The size of the particle was found from the difference 
between the total number of  alloying atoms and the num- 
ber of  solute atoms in the matrix. 

R E F E R E N C E S  

1. G. Thomas and M.J. Whelan: Phil. Mag., 1961, vol. 6, 
pp. 1103-14. 

2. H.B. Aaron: Met. Sci. J., 1968, vol. 2, pp. 192-98". ~ 
3. M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95-97. 
4. H.B. Aaron and G.R. Kotler: Met. Sci. J., 1970, vol. 4, 

pp. 222-25. 
5. F.V. Nolfi, P.G. Shewmon, and J.S. Foster: Trans. AIME, 1969, 

vol. 245, pp. 1427-33. 
6. Frank V. Nolfi, Jr., Paul G. Shewmon, and James S. Foster: 

Metall. Trans., 1970, vol. 1, pp. 789-800. 

7. Frank V. Nolfi, Jr., Paul G. Shewmon, and James S. Foster: 
Metall. Trans., 1970, vol. 1, pp. 2291-98. 

8. S.N. Singh and M.C. Flemings: Trans. AIME, 1969, vol. 245, 
pp. 1803-09. 

9. S.N. Singh and M.C. Flemings: Trans. A1ME, 1969, vol. 245, 
pp. 1811-19. 

10. S.N. Singh. B.P. Bardes, and M.C. Flemings: Metall. Trans., 
1970, vol. 1, pp. 1383-88. 

11. E.G. Fuchs and A. Ro6sz: Metall. Trans., 1972, vol. 3, 
pp. 1019-20. 

12. R.A. Tanzilli and R.W. Heckel: Trans. A1ME, 1968, vol. 242, 
pp. 2313-21. 

13. J. /~gren: J. Phys. Chem. Solids, 1982, vol. 43, pp. 385-91. 
14. J. /~gmn: Acta Metall., 1982, vol. 30, pp. 841-51. 
15. J. /~gren: Mater. Sci. Eng., 1982, vol. 55, pp. 135-41. 
16. J. /~gren and G.P. Vassilev: Mater. Sci. Eng., 1984, vol. 64, 

pp.~ 95-103. 
17. J. Agren, H. Abe, T. Suzuki, and Y. Sakuma: Metall. Trans. A, 

1986, vol. 17A, pp. 617-20. 
18. J. /~gren: Scand. J. Metall., 1990, vol. 19, pp. 2-8. 
19. D.L. Baty, R.A. Tanzilli, and R.W. Heckel: Metall. Trans., 1970, 

vol. 1, pp. 1651-56. 
20. E.E. Underwood: Quantitative Sterelogy, Addison-Wesley, 

Reading, MA, 1970, pp. 119-23. 
21. S.W. Patankar: in Numerical Heat Transfer and Fluid Flow, M.A. 

Phillips and E.M. Millman, eds., Hemisphere, New York, NY, 
1980. 

22. H.E. Exner: Int. Metall. Rev., 1972, vol. 17, pp. 25-42. 
23. L.C. Brown: Metall. Trans. A, 1984, vol. 15A, pp. 449-58. 
24. U.H. Tundal and N. Ryum: Metall. Trans. A, 1992, vol. 23A, 

pp. 445-49. 
25. G. Burger, E. Koken, D.S. Wilkinson, and J.D. Embury: in 

Advances in Phase Transitions, J.D. Embury and G.R. Purdy, 
eds., Pergamon Press, New York, NY, 1988, p. 257. 

444--VOLUME 23A, FEBRUARY 1992 METALLURGICAL TRANSACTIONS A 


