
DECAY AT INFINITY OF SOLUTIONS TO HIGHER ORDER 
PARTIAL DIFFERENTIAL EQUATIONS" REMOVAL OF 

THE CURVATURE ASSUMPTION 

BY 

WALTER LITTMAN 

ABSTRCT 

In an earlier paper a generalization of Rellich's theorem on the Helmholz 
equation was obtained for a large class of higher order equations P(1/ia/Ox)u=f, 
subject to the condition that the Gaussian curvature of P(~) = 0 never vanish. 
This restriction is removed in this note. 

For a complex function u(x) defined in R N set D = - i 8 / 8 x  

Then the main goal of this note may be stated as follows: 

THEOREM. Let P(~a,~2,'",~N) be a polynomial with real coefficients each 

of whose (complex) irreducible factors Pj(~) has an N - 1  dimensional real 

solution set Sj on which g r a d P ( ~ ) ~  0. Suppose P(D)u = f ,  f has compact 

support, and [I u [IR = °(R~) as R approaches infinity; then u has compact support. 

NOTE. The gradient may be allowed to vanish at isolated points on the Sj 

(cf. [3], Section 8.) 

In an earlier version of the theorem, proved in [3], it was necessary to assume 

in addition that the Gaussian curvature of the Sj did not vanish. The main point 

of the present note is the removal of this restriction. 
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Let us remark that an analogous theorcm for systems follows from the theo- 

rem stated above for a single equation. 

Originally we had a different proof of the theorem stated above, which was 

more differential geometric in nature. However, we have since noticed that the 

methods of Peetre [4], where his theory of interpolation spaces is used to estimate 

the fundamental solution of elliptic equations, can be combined very efficiently 

with our proof in [3] to give a heater proof of the theorem. This is the proof 

presented here. 

Apart from the definition of I] ]]R introduced earlier, we need some additional 

notation. We let Hs = Hs(R N) be the usual Sobolev spaces (s real) with norms 

] Is, defined as usual by means of Fourier transforms. We shall also need a 

number of other spaces. H ~'°° is the space of functions u belonging to L2(R N) 

and satisfying [u(x + h) - u(x)Iv < C[h [~, and the space H -~ ( = ( A -  I)~H ~'°°) 

of sums of functions and first derivatives of functions in H ~'°° . Alternately, f 

belongs to H-~ '°° i f  and only if K( t , f )  < Ct ½, (0 < t < 1), where K( t , f )  is defi- 

ned as the infimum of the quantity [g[-1 + t  [h 1o, the infimum being taken 

over all decompositions f = g + h. 

NOTE. For the relevant information on the spaces introduced above the reader 

may refer to example to [1] (especially section 4.3), or to the original papers 

of Peetre and Lions referred to there and in [4]. 

LEMMA 1. Suppose u and v are infinitely differentiable functions satisfying 

I lu/IR = I[D'vlIR = O(R ) for  [J I  --< m, a s  g approaches infinity, m 

being the degree of P(~); then 

(P(D)v,u) = (v,P(D)u) 

provided both sides exist as finite L z inner products. 

PROOF. Let 0(t) be an infinitely differentiable function of a single variable 

equaling one for t < 1/3 and zero for t > 2/3. Set qS(x)= v(x)~,h(x), where 

~kh(x ) = O(r/h), r = ]x l .  Setting P(D) - L, we have 

L(v~bh) = Lv " ~Ph + ~ a~s Ds v " Dt~lh, 

where 1, J are multi-indices, and where the summation is extended for [Jl < m 

[I I > O, [I I + IS[ =< m. It follows that 
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L(c~) - L(v) = Lv" (~h - 1) + ]~ aHDSv • Ot~h, 

(L(q~ - v) ,u)  = ((~k h - 1)Lv,u) + ]~ als(Olv • Dt~kh, U). 

N o w  since DrCh = O(h- l I I ) ,  

(DSv • DiSh, u) = O(h~) • O(h- lq )  • o(h ~) = o(1) as h ~ oo, 

since l ! l > 0 in the above summation.  It  follows that  

(L~p ,u) - (Lv ,  u ) ~ O  as h ~  oo. 

But 

(LqS, u) = (vlph, Lu ) ~ (v, Lu) as h ~ oo, 

which yields the conclusion of  the lemma. 

Let us note that  the cut-off  funct ion ~h used here us similar to the one used 

by Gru~in [2].  

Denot ing the Fourier  t ransform of  a funct ion (or tempered distribution) v 

by ~, we state 

LEMMA 2.* 5 6 H  -~ '~  ~ Ilvll. = O(R~); and, if in addition 5 has compact 

support, I[OSv[[R = O(R ~) for any fixed multi-index J ,  as R ~ Go. 

PROOF. We shall not  prove the estimate for D%, since it is an immediate 

consequence o f  the estimate for  v. I f  

K( t , f )  = i n f i m u m ( ] g l _  1 + t l h lo )  
f=g+h 

then t3 belongs to H -~'°° if and only if K(t , f )  < Ct ~ (0 < t < 1); hence for each 

0 < t = R - 1  < 1 there exists a decomposi t ion b = b_l + 5o such that  

R~(I~_aI_ l+R-1l~olo) < C. 

On the other  hand,  for  any real s, 

(f ; Ilvll. <= cR-" (~+lx l2; l~(x) l 'd~  _-< cR-'l~l~, 
and  thus 

Itvl[. =< lip-, [I. + Itvo 1[. =~ C(RI~-,I-, + [~olo) = O(R~) 
LE~MA 3. Let S be an in,~nitely differentiable N -  1 surface embedded 

smoothly in R N, and let c~ = ~(¢) be a C °~ function defined on S having compact 

support there; then the distribution i ~ (having compact support) defined by 

• The proofs of lemmas 2 and 4 are essentially contained in Peetre [4]. However since these 
lemmas are not stated explicitly there, and as a convenience to the reader, we present them here. 
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= f $(~)~(~)dS¢ 
,/¢ ~ S  

belongs to H ~~'~° . 

PROOF. It suffices to prove this lemma for /~ with sufficiently small support 

(since we can always decompose # into a finite sum of such, using a partition of 

unity). Hence we may assume that the support of # is contained in a local coor- 

dinate system in which the first coordinate vanishes on S. Since H -½'°° is in- 

variant under smooth changes of coordinates, it suffices to show that 3(~x)qS(~') 

belongs to H -~'~°, where qSe~,  and where ¢' = ( ~ 2 , ' " , ~ n ) .  Denoting by fl 

the Heaviside step function, this is implied by the statement fl(~t)$(~') 

H~o~(RS). The latter inclusion follows from the fact that w ~ H ¢'® is equiva- 

lent to w e L 2 and [w(¢ + h) - w(¢)[L2 < C lh which is easily checked for the 

particular function in question. 

COROLLARY 1. The function v(x) defined by the formula 

v(x) - f e~X~a(¢)dS~ 
e S  

satisfies the estimate II D' ll. = O(R~), for any fixed multi-index J.  

If the function f is smooth in the complement of the smooth surface S, and 

has a Cauchy type singularity on S, we may define a distribution P.V. f by 

(P.V. f ,  ~b) = P.V. f f(~)~b(~) de, 

where by "P.V." is meant the Cauchy principal value of the integral. Such inte- 

grals are discussed in [3]. 

LEMMA 4. Let ~(~)~.~. Then the distribution (with compact support) 

p ,  ~(~) 

where P(~) is the polynomial of the theorem, belongs to H -½'°° . 

PROOF. The proof of this lemma can be reduced to that of the previous lemma, 

as is done in a somewhat analogous situation in [3], or can be done directly 

as in Lemma 3 (cf. Peetre [4]), relying ultimately on the fact that in one dimension 

the distribution P.V. 1/4 is the derivative of the function log] ~ [; and on the 

convergence of the improper integral f [log[1 + ¢ - ' [  [Zd¢, integrated over R 1. 
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COROLLARY 2. Suppose ~(~)E~.  Then the function 

P.V. . I  gx¢ P--~°~(~) de ~(x) 

satisfies [IV(X) UR = O(R*). 

PROOF OF THEOREM: The proof of the theorem now follows the proof of 

theorem 1 in [3], replacing lemmas 1, 2 and 3 of that paper with Lemma 1, 

and Corollaries 2 and 1 of this paper respectively. We give the simple proof for 

the case f  --- 0. For ~ ,  let v be given as in Corollary 2. It is easily established 

that v(x) satisfies the equation P(D)v = w. Then by Lemma 1 and Corollary 2, 

we have (w,u) = (v, Lu) = 0 for all w with ~ in ~ .  Since these are dense, u must 

vanish identically. 
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