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ABSTRACT 

This paper is concerned with global solutions of the initial value problem 

(1) du/dt + Au ~ O, u(0) = x 

where A is a (nonlinear) accretive set in a Banach space iX'. We show that 
various approximation processes converge to the solution (whenever it exists). 
In particular we obtain an exponential formula for the solutions of (1). 

Assuming X* is uniformly convex, we also prove the existence of a solution 
under weaker assumptions on A than those made by previous authors (F. 
Browder, T. Kato). 

1. Introduction 

Let  X be a real Banach  space and let X* be the dual  space o f  X .  The value 

o f  x* ~ X* at  x ~ X will be denoted by (x, x*) .  The  duali ty m a p  o f  X is the subset 

F o f  X x X* defined by 

(1.1) F = { [x ,x* ] ;  x ~ X ,  x * ~ X *  and ( x , x* )=  Ixl  2 = I x , 1 2 )  

where Ix  [ ( respect ively  [x* [) denotes the n o r m  o f  x (resprctively x * ) i n  X (res- 

pectively X*).  I f  S is a nonvoid  subset o f  X we define [[ S [] = Infx¢ s Ix  [ 

A subset A o f X  x X is called accretive if  for  each 2 > 0 and [xi,yi] E A ,  i = 1,2, 
we have 

(1.2) [xl + ayl-(x~ + ~Y2)[ > Ix1- x~[ 

or  equivalently (see Ka to  [6] L e m m a  3.2) A is accretive if  and only if for  every 

I x .  y~] e A ,  i = 1 ,2 ,  there exists f e  F(x~ - x2) such that  (Yl - Y2,f) > O. 
I f  A is a subset o f  X x X and x e X  we define Ax = {z; [ x , z ] e A } ,  D(A) 

= {x; Ax # 0} and R(A) = [,.J x~o(a)Ax. 

Received January 25, 1970. 
* Results obtained at the Courant Institute of Mathematical Sciences, New York Uni- 

versity, with the National Science Foundation, Grant NSF-GP-1 I600. 

367 



368 H. BREZIS AND A. PAZY Israel J. Math., 

This paper is concerned with global solutions of the initial value problem 

(1.3) ~ + Au ~ 0 a.e. on (0, + oo) 

u ( 0 )  = x 

where A is a given accretive set in X x X.  A function u(O defined on [0, + ~ ]  

with values in X is a solution of (1.3) if u(t) 5s lipschitz in t, u(t) is differentiable 

a.e. on (0, + ~ ) ,  u(t)~ D(A) a.e. on (0, + ~ )  and u satisfies (1.3). (Note that if 

X is reflexive and u(t) is lipschitz then u is differentiable a.e. on (0, + oo); see 

Komura [7] appendix). From the accretiveness of A it follows easily that the 

solution of (1.3) is unique. 

We start Section 2 with some preliminary results concerning accretive sets in 

X x X and the initial value problem (1.3). Assuming that (1.3) has a solution 

we show that various approximation processes converge to this solution. 

In Section 3 we suppose that X* is uniformly convex and obtain the existence 

of a solution (1.3) under a condition on A (condition I) which is weaker than the 

"m-accretive" assumption made by previous authors (see F. Browder [2] and 

T. Kato [6]). 

The authors are indebted to M. Crandall for several improvements over an 

earlier version of this paper. 

2. Approximation Processes for the Initial Value Problem (1.3) 

If  A is accretive one can define for each 2 > 0 a single valued operator 

Jz = (I + 2A) -1 with D(J~)= R(I + 2A) and R(J~)= D(A). It follows from 

(1.2) that Ja is a contraction i.e. 

IJzx-Jayl  < Ix - -y l  for every x,y~D(Jx). 

We set A~ = 2-1(1 - J~) for every 2 > 0. Clearly A~ is lipschitz (with constant 

2,~-1), D(Az) = O(Sa) = R(I + 2A) = O~. 

In the two following lemmas we collect some elementary properties of Jz, Aa 

and the solution of (1.3). 

LEMMA 2.1. Let A be accretive then 

(i) A~ is accretive, 

(ii) For x ~D~, A~x ~AJ~x and ]1 Ajax [1 < [A~xl, 
(iii) For x~DzoD(A) ,  [Jzx -x[  < 2[[Ax[[ and hence [Aax[ < IIAxli" 

For a proof of Lemma 2.1 see Kato [6]. 
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LEMMA 2.2. Let A be accretive and let u(t) be the solution of  the initial 

value problem (1.3) with x ~ D(A). Then 

(2.I) ~ ( t )  t = I[Au(t)ll <= IAxl  a.e. on (0, +oe) 

PROOF: Let ~ be the set of all values of t for which u is differentiable, u(t) ~ D(A) 

and du/dt + Au ~ O. 

We shall show that (2.1) holds for all teg~. Let s > 0 be fixed such that 

u(s) e D(A). Then we have 

m ~ / , ~ d u  

for almost all t > 0 and all fEF(u( t )  -- u(s)) (see Kato [5] Lemma 1.3). Let 

Y(O = - du(t)/dt e Au(t).  For every y e Au(s) there exists fo e F(u(t) - u(s)) such 

that 

(2.2) ½(d/dt)]u(t)-u(s)12 = -(y(t),fo) <= -(Y,fo) <= lYl lu ( t ) -  u(s)l 
From (2.2) we deduce that [ u ( t ) - u ( s )  I < l y l ( t - s )  holds true for every 

y e Au(s) and t > s. Hence 

(2.3) lu( t ) -u(s) l  ~ ItAu(s)lf(t-s) for t ~ s. 

If  s e f~, (2.3) implies I du(s)/dtl < [[ Au(s)II but du(s)/dt ~ -Au( s )  and therefore 

Idu(s)/dtl = II/u(s)l[ for all s e f~ .  

Let h > 0 and let v(t) = u(t + h). Clearly v(t) satisfies 

dr~dr + Av ~ 0 a.e. on (0, + oo), v(0) = u(h). 

We have for almost all t > 0 

½ d / d t [ v ( t ) - u ( t ) p  = Iv(t) = u(t) [ d/dt I v ( t ) -  u(t)[ = ( y ( t ) -  z(t), f)  <= 0 

where y(t) e Au(t),  z(t) e Av(t) and j:e F(u(t) - v(t)). Therefore Iv(t) - u(t) l is a 

momotonically nonincreasing function of t.  In particular 

]u(t + h ) - u ( t ) l  = Iv ( t ) -u ( t ) ]  < Iv (0) -  u(0)l -- [ u ( h ) -  x I < hl[Ax H. 

The last inequality follows from (2.3) taking s = 0. Thus for all t ~ )  we have 

du(t)/dt I =< 1[ Ax I1 

The accretiveness of A assures the uniqueness of the solution of (1.3). In order 

to define approximation processes and prove the existence of a solution we impose 

further conditions on A. We shall usually assume that A is accretive and satisfies 
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CONDITION I. For every x ~ D(A) there exist a neighborhood Ux of x and a 

sequence 8, ~, 0 such that 

(2.4) ('~ R(I  + ~,A) = Ux t~ O(A). 
t l  

Condition I is weaker than the notion of locally m-accretive sets introduced 

by T. Kato [6] (an accretive set A is locally m-accretive on D(A) if for every 

x ~ D(A), there exists U~ and ~.~ 0 such that f-].R(1 + e,A) ~ U~). Note, for 

example, that the set {Ix,0]; x ~D} where D is any subset of X,  D # X,  satisfies 

condition I but is not locally m-accretive. In the rest of this paper we shall assume 

that the neighborhood U~ is an open vaU B(x,p(x)) .  For some of our results 

we shall need a condition stronger than condition I, namely 

CONDITION II. For every 2 > 0, R(I  + 2A) D convD(A). 

Condition II was used previously by the authors [1] in Hilbert space. 

LEMMA 2.3. Let A be accretice and satisfying condition I .  I f  x ~ D(A) then 

u, ~ = (I + ena)-~x is defined for  every n and 0 < j < p(x)/e, ]1Ax H" Moreover 

u,,j E U x N D(A) and 

(2.5) [u.d -- x [ <= j~, [I Ax I[" 

PROOV. We fix n and prove (2.5) by induction on j .  For j = 1, (2.5) follows 

from Lemma 2.1(iii). Assume (2.5) is true for j and that j + 1 < p(x)/e. [[ Ax [I, 

then u,d+ t - x = (I + e , A ) - l u . j  - x .  By the induction hypothesis u , j+l  is well 

defined and 

I(i + 8nA)-lun,j - x] =< l(I + ~na)-Xun,,.-(I + ~nA)-lx] 

+ ](I + ~ . A ) - X x  - x I <= lu . : i -  x[ + 1(1 + 8.A)-'x - x[ 

<= Js.llaxl[ +  .llAxll =< (J + 

Thus (2.5) is true for j + 1. 

Let A be accretive and satisfying Condition I. Let x ~ D(A). We define a sequence 

of step functions u,(t) on the interval [0, T] where T < p(x)/[[ Ax [1 by 

(2.6) u,(t) = (I + e.A)-tt/"'lx. 

By Lemma 2.3 u.(t) is well defined for 0 < t < T and u.(t)¢ D(A). We define 

on [0, T] a second sequence of functions v,(t) as follows 

If 0 < t < 8,[T/~.] let 
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(2.7) v,(t) = u.(je.) + 1/e.( t - j~,)[u.(( j  + 1)~.) - u,(je,)] 

for  je ,  ~ t ~ ( j  + 1)e,, j = 0,1, .--, [Tie,] -- 1, 

and if ~,[T/~,] < t <_ T let v,(t) = u,(t). 

Clearly v.(t) is differentiable on [0, T]  except for a finite number of  points and 

we have 

(2.8) dv,/dt(O = 1/,.[u.(j + 1)5,) - u,(je.)] = - A ,  u,(je,) 

= -A~u . ( t )  = - A , v , ( j e , )  for je.  < t < ( j  + 1),.. 

From the definitions of A~. and u. we have A~un(je,,)EAu,((j + 1)~n) and by 

induction, using Lemma 2.1, it is easy to show that 

I A=.un(j .)I <= I1 Ax 11" (2.9) 

Therefore 

(2.10) 
L dv, [ II Ax 11 a.e. on  (0, T) .  

Finally using Lemma 2.1 again we also obtain 

(2.11) ]Vn(t)-u.(t)[ <=  .IIAxll for 0 < t < T. 

THEOREM 2.1. Let A be accretive satisfying Condition I and let x~D(A) .  

I f  the initial value problem (1.3) has a solution u(t) then the sequences u,(t) 

and v,(t) converge uniformly to u on [0, T ] .  

PROOF. From the definition of  u,( 0 we have for ~, < t < T 

(2.12) an l(u,(t) - u , ( t -  e,)) + y.(t) = 0 where Y,(O ~ Au,(O. 

In order for (2.12) to hold for all 0 < t _< T it is convenient to define u.(t) for 

t < 0 as u.(t) = x + ~.y with any y e Ax .  Let y(t) = - du(O/dt, y(t) ~ Au(t) a.e. 

on (0, T) .  We extend u(t) as x for t < 0. The accretiveness of A implies that a.e. 

on (0, T) 

l~t(t) _ u ( t ) -u ( t - e . ) ]~  = u.(t)-u.(t-e.)_~. - u ( t ) -u ( t - e" )+Y"( t ) - y ( t ) e .  

>= u.(t)e..-- u(t) + y.(t) -- y(t) -- u . ( t - e . )  --en u(t--e.)]  
i 
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Integrating this inequality on (0, 0) with e. < 0 < T we obtain 

o r  

(2.13) 

Israel J. Math. ,  

4'lu.(o-u(ol,. + 4'lu.(o- u(ol,. 

[o fo d~ u(t) - u(t-e.)  [ e; 1 ] u.(t) - u(t)[ dt< dt 

+ s: '  [ u.(t) -- x [ dt 

<= [.o "~ u(o-.(,-~.)~. " ,  + ~.1,1 

Adding these inequalities for 0 = e., 2e.,..., Ne., N = [T/e.] yields 

u,, I 
e~ ~ [u.( t ) -u( t)[dt  < N -s2 at + Ne.ly I 

dO 
and therefore 

f fo r a~ u(o- u(,-e.) I N.° l u.(t) _ u(t) ldt <= T 
j o  e. 

dt+e.T[Y I 

Since [u(t)-u( t-s , )] /en~du/dt  a.e. on (0, T) as e, ~ 0 and [du/dt-[u( t )  
- u(t-e,)-[/e,I <_ 211Axl[ by Lemma 2.2 we conclude that u , ~  u in D(O,T;X). 
Therefore also v, ~ v in D(0, T ;X)  by (2.11). But v. is differentiable a.e. and 

dlv , ( t ) -u( t )[  < d (v,(t)-u(t)) <= 2llAxll a.e. 

here we used (2.10) and Lemma 2.2. Therefore 

1 d 
2 dt Iv"(t)-u(t)12 <= 2[]Axl[ ]v"(t)-u(t)[ a . e .  

o r  

]v,(t)-u(t)[ 2 _-< 4[]Ax [I I, I j.T v.(s)- u(s) lds =< 4 II Ax II [v.(s) _ u(s) lds 
o o 

f o r O < t _ < T  

which implies v.(t)~u(t) uniformly in [0, T] .  By (2.11) the same holds for u . .  
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REMARK. If  the initial value problem (1.3) has only a local solution i.e. a 

solution for 0 <_ t <- T x then the conclusion of Lemma 2.2 (respectively Theorem 

2.1) holds on the interval [0, Tx] (respectively [0, T1] with T 1 = min(T, Tx)). 

COROLLARY 2.1. Let A be accretive and satisfying Condition II. I f  for x ~ D(A) 

the initial value problem (1.3) has a solution u(t), then for every sequence ~n ~, 0 

we have 

u(t) = lim (I + e,A)-Ct/~"lx 
n - ~  + oo 

and the limit is uniform on bounded intervals. In particular for e n = tin we 

have the exponential formula 

u(t) = lira I + n A  x .  
n - ~ +  oo \ 

Let A be accretive and satisfy Condition II. Let x ~ D(A). A standard method 

to solve the initial value problem (1.3) is to approximate A by lipschitz operators 

A2, then solve the equation 

(2.14) ~ dd--~+A2u2=O 

~-u2(0) = x 

and let 2 tend to zero. This method was used by K. Yosida [11] for the linear 

case and by Y. Komura [7], T. Kato [6] and others in the nonlinear case with 

A being m-accretive (i.e. R(I + 2 A ) =  X for every 2 > 0). Our next theorem 

shows that if A is accretive and satisfies Condition II, then the approximated 

equation (2.14) has a solution u 2 which converges to u,  the solution of (1.3), 

as 2 ~ 0 (assuming u exists). 

THEOREM 2.2. Let A be accretive, satisfying Condition II  and let x ~D(A). 

For every 2 > 0 the initial value problem (2.14) has a solution u2(t ). I f  the initial 

value problem (1.3) has a solution u(t) then 

u(t) = limu2(t ) f o r  every t >=0 
4 - - 0  

and the limit is uniform on bounded intervals. 

In the proof  of Theorem 2.2 we shall use the following lemma. 

LEMMA 2.4. Let C be a closed convex subset of X and let T be a contraction 

defined on C into C. Then for every x ~ C the equation 
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du 
f ~i + (t - T)u = 0 

(2.15) 
u ( O )  = x 

has a solution u( t )~ C for  all t > 0 and 

(2.16) [ u ( n ) -  Z"x[ <= 4~lx- T x [ .  

We prove first the following observation. 

LEMMA 2.5. 

Co(t) < t and 

(2.17) 

then 

(2.18) 

PROOF OF LEMMA 2.5: 

for n -  1 then 

Israel J. Math., 

Let d?, be a sequence of functions in L~.c(0 , + ~ )  satisfying 

f: ¢.(t) < ne - t  + e~-'¢,_t(s) ds 

¢ . ( t )  < [ (n  - t) ~ + t] ~/~. 

Inequality (2.18) clearly holds for n = 0. I f  it is true 

¢.(t) <= ne -t  + e~-t[(n - 1 - s) z + s]l/~ds = ~.(t)e - t .  

In order to complete the proof by induction we show that 

~.(t) =< et[ '(n-t) 2 + t] 1/2 . Since ~.(0) = n it is sufficient to prove that 

~'.(t) = et[(n l 1 - 0 2 + t] 1/2 ~ e t [ ( n - t )  2+ till2 

+ ½e'[(n -- t) z + t]-t/2(1 - 2n + 2t). 

The last inequality can be easily checked noting that the right hand side is positive 

and comparing the squares of both sides. 

PROOF OF LEMMA 2.4. Clearly equation (2.15) is equivalent to 

;o (2.10) u(t) = e - tx  + e~-tT(u(s)) ds. 

Equation (2.19) can be easily solved by the Picard fixed point theorem noting 

that the mapping 

Io Cxu(t) = e- ix  + e~-tT(u(s)) ds 

maps the closed convex set 
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nto itself and that • x is lipschitz with constant 

accretiveness of (I - T) it follows from Lemma 2.2 that 

(2.20) [u(t)-xl _-< , l ( f -  r> l .  
In addition 

u(O - Tnx = e-t(x - T~x) + 

which implies 

[ u ( t ) -  T~x[ < e - f i x -  r'x I + fl 
Also 
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{ueC(0 ,  T o ;X) ,  u(t) eC  for 0 < t_< To} 

( 1  - e-r°) .  Using the 

fo e=-'[T(u(s))- Tnx]ds 

e ' - ' lu ( s ) -Tn- 'x las .  

[ x - T.xl _- ~C I r ~ - , x _  Tkx] <= n l ( I -T)x  I 
k = I  

Using Lemma 2.5 with dpn(t ) = I u(t) - T x I 1 ( I -  T)x [-t  and substituting 

t = n in (2.17) yields (2.16) 

REMARK. Inequality (2.16) for nonlinear contractions T o n  X is due to Miya- 

dera and Oharu [9] (extending a previous result for linear contractions by P. 

Chernoff [3]). The existence of  a solution u under the condition of  Lemma 2.4 

was noticed independently by M. Crandall and the authors. The simple proof  

that we have brought here is due to M. Crandall (see [4]). 

PROOF OF THEOREM 2.2. Restricting da to C = conv D(A) we obtain a con- 

traction defined on C into C and by Lemma 2.4 the equation 

{ ~ + (x- s~)~ : o 

v~(0 )  = x 

has a solution vx(t) which satisfies 

[vz(n ) - Jy, x I <= x / h i ( I -  d~)x[ <= x/n2lAxx[  

Obviously uz(t) = vz(t/2) is a solution of  (2.14) and we have 

lu~(n~)- J~x[ <= ~/n2[Aax 1. 

Let 2, ~L 0 and let nk = [t/2k] then nk2k ~' t, and from Corollary 2.1 we have 
J,~ x ~ u(0 as & -~ 0. Also 

t 
[ u~.(n,&) - JZ:x [ <= , / .A~ I A , x  l S , / ~  fl Ax ll . 
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Finally 

iUz~(nk2k)-- Uxk(t) I <= [I Ax[I( t - -  nk2k). 

Thus uz~(t) ~ u(t). Since {2k} was arbitrary we have uz(0 --) u(t) as 2 -~ 0. 

3. An Existence Thearem 

In the main results of  this section we assume that X* is a uniformly convex 

Banach space. The uniform convexity of  X* implies in particular that the duality 

map F of X is uniformly continuous on bounded sets of  X .  We start with a lemma 

of T. Kato.  

LEMMA 3.1. Let X be a reflexive Banach space and let u,(t) be a sequence 

of LP(O,T;X),  p >  1, such that u,(t) is bounded Jbr almost all t~ (O,T) .  Let 

V(t) be the set of all weak cluster points of u,(O. I f  u, converges weakly to u 

in if(O, T ; X )  then u(t) econv  V(f) a.e. on (0, T) .  

The proof  of  Lemma 3.1 is given in Kato [6]. 

DEFINmON. A set A in X x X is called demiclosed if [x,,yi] cA ,  xc-*x and 

y~ --~ y imply Ix, y] c A  (--~- denotes weak convergence). 

LEM~A 3.2. Let X* be uniformly convex; let A be an accretive set satisfying 

Condition I and let x ~ D(A).  The sequence of functions v, defined by (2.7) con- 

verges uniformly to u. I f  furthermore A is demiclosed then u(t)~ D(A) for  every 

t [0, T]. 

PROOF. We define for 0 -< t _< M i n { T -  e,, T -  em}, 

Then 

(3.1) 

Xnm(t ) ~---- Vn(t ) -- v,.(t) 

Ynm(t) : Un(t "{- I~n) -- Um(t Jc ~m)" 

2 dt ]xnm(t) = (vn(t) - Vm(t))' F(x"m(t)) 

= -- (AcUn(t) - A~mum(t), F(Xnm(t))) 

-- (A. un(t ) - As um(t), F(Xnm(t)) - F(Ynm(t)) ) 

< 2 [1 a x  II[ F(xnm(t)) -- F(Ynm(t))[; 

here we used the accretiveness of  A and Lemma 2.1. Next by (2.10) 

1Xnm(t ) __ Ynm(t) l ~ [ Vn(t)_ u.(t + ~.)1 + [ vm(t) - um(t n t- •m) I 

--< + Ax II- 
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Since F is uniformly continuous on bounded sets 

I F x . ~ ( t ) - F y n , . ( t ) l - - O  as n ,m  ~ + o o .  

Integrating (3.1) over (0, t) we obtain Ix.,.(t) l ~ 0 as n, m ~ + oo. Thus v. is 

a Cauchy sequence in C ( O , T ; X ) .  Let  v . -~  u in C ( O , T ; X ) .  Assuming that  A 

is demiclosed we now prove that  u ( t ) e D ( A )  for t E [0, T) .  Le t  j . e . - ~  t then 

v.(jne.) ~ u( t) , t A~v , ( j . e , ) l  < II Ax  II and J~ v,(j ,e.)  ~ u( t) . But J~ v,(j ,e.)  ~ D( A) 

and A~v, ( j . e . )  ~ AJar ( i , e , )  which by the demiclosedness of  A implies u(t) ~ D(A) 

and [] au(t)][ < ][ a x  []. Using again the demiclosedness of  A and the demi- 

continuity o f  u we have u ( T ) ~  D(A).  

LEMMA 3.3. Let X be a Banach space and let A be accretive and closed. 

Let  .4 be an accretive extension of  A such that for  every x ~ D(.4) there exist a 

neighborhood U,  of  x and a sequence e, ~ 0 with ["],R(I + e,A) = U x n D(.,t). 

Let  u(t) be a funct ion such that u ( t ) e  D(,4) for  all t E [0, T ] ,  u is dif ferentiable 

a.e. on (0, T)  and 

(3.2) du d ~ + _ 4 u ~ O  a.e. on (O,T) .  

Then u ( t ) ~ D ( A )  a.e. on (0, T) and 

du 
(3.3) d-t + Au ~ 0 a.e. on (0, T) .  

PROOF. Let  0 < t o < T be such that  u is differentiable at t o and 

du(to)dt + _4U(to) ~ O. We set U(to) = x and q~(t) = [u(t) - U(to)]/( t -  to) - du(to)/dt 

For  I t - t o I small enough,  u(t) ~ U. .  Hence there exist x.  ~ D(A) and y .  ~ A x . ,  

such that  U(to - e.) = x .  + e .y . .  By the accretiveness of  .4 at x and x.  we have 

But 

Thus 

and 

- - y . ,  F ( x -  x . )  > O.  

¢ ( t o _ e , ) _  x - x .  du 
en Yn -- ~ ( t o ) .  

(de( to -  ~.) x - x . ,  F ( x -  x.)) >= 0 
8n 

Ix-x°l 
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Consequently 
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y. + ~-~(to) < 2[(b(to-e.) 1. 

We conclude by the closedness of  A that U(to)eD(A) and du(to)/dt + Au(to)~ O. 

THEOREM 3.1. Let X* be uniformly convex and let A be demiclosed, accretive 

and satisfying Condition I .  Then for every x e D(A) there exists a unique func- 

tion u such that u(t)eD(A) for every t > O, u is lipschitz continuous and 

~ t  + A u t O  a.e. on (0, + ~ )  
(3.4) 

L u ( 0 )  = x 

PROOF OF THEOREM 3.1. Define a set B in X x X as follows; D(B) =D(A) and 

Bx = conv(Ax). B is accretive since 

(Yi - y 2 , F ( x l - x 2 ) )  > 0 for every [x l ,yJ  6A,  i = 1,2; 

implies 

hence 

(Yi - rlz,F(xl '-  x2)) > 0 for every x~eD(A), Yl e A x l ,  

~/2 ~ conv(Ax2); 

(rh - r/E,F(xt - x2)) > 0 for every [xi,~/i] e B ,  i = 1,2. 

By Lemma 3.2, v ,~u  in C(0, T ;X)  and u( t )eD(A)= D(B) for all t 6 [0, T] .  

Since I v'(t)l <= lAx [ a.e. on (0, T) and v, -~ u' in ~ ' (0 ,  T;X)  we conclude that 

v',--~u ' in LP(0, T; X) for every 1 < p < + ~ .  In addition the set of all weak 

duster points of  v'(t) is contained in -Au( t )  (since A is demiclosed) and by 

Lemma 3.1, 
- u'(t) e conv Au(t) = Bu(t) a.e. on (0, T). 

From Lemma 3.3 we have 

du 
d--{ + Au ~ 0 a.e. on (0, T). 

To complete the proof we have to show that u can be extended to a solution of 

(3.4) for all t # 0. Let u be a solution of  (3.4) on [0, T1) where T1 is maximal. 

I f  T1 ~ + ~ let t, ~ 7"1, tn < 7"1 then u(t,) -~ Uo since ] u(t , ) -  u(t~) [ ____ I t . -  t. I 
llaxfl. Also IIAu(t.)ll _-< IIAxll implies that uoeD(A) and by the first part of 

the proof u can be extended beyond T1; this contradicts the maximality of T~ 
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COROLLARY 3.1. Let X and X* be uniformly convex and let A be demiclosed, 

accretive and satisfying Condition I .  Then for every x ~D(A) 

(i) The set Ax has a unique element of minimum norm which is denoted by 

A°x. 

(ii) There exists a unique function u(t)~D(A) for every t >= 0 which is lip- 
schitz continuous and everywhere differentiable from the right satisfying 

( "d+u + A ° u = O  for every t > O  
(3.5) ~ dt = 

L u(0) = x 

PROOF. Let x ~ D(A) then 

x = x~, + enA~x = x~ + e~B~x, 

[As.x[--< [IAx][ by Lemma 2.1 and therefore x ~ x ,  as n ~ + oo. Let e'n be 

a subsequence of  e~ for which A~,x-~  ~ then Ix, 4] ~ A by the demiclosedness 

of A. But [A~,ox [=  I B~.°x ]< [B°x [where B°x is the (unique) element of  mini- 

mum norm in Bx and therefore [~[ <=l Box [ which implies ~ = BOx LAx.  Con- 

sequently Ax has a unique element of minimum norm A°x = BOx. Therefore 

du 
(3.6) -~ + A°u = 0 a.e. on (0, ~ ) .  

Next  we prove that u is differentiable from the right for all t => 0 and that 

d+u/dt + A°u = 0 for all t __> 0. First note that 

(3.7) lim A°u(t) = A°x.  
t -+0  

Indeed using Lemma 2.2 we have 

[A°u(t)[ = IlAu(t)ll =< llAxll = [A°x[ a.e. on (0, + oo) 

which implies by the demiclosedness of  A that 

[A°u(t)[ ____ IA°xl for all t >  0. 

Every sequence tk~O has a subsequence tk, for which A°U(tk ,) ---~rl, U(tk,)~ X 

and 1"1 Z [a°x  I' t h u s ,  and r/ = A°x.  By the uniform convexity of  X ,  

A°u(tk,) ~ A°x. From the uniqueness of  the limit (3.7) follows. Integrating (3.6) 

over (0, t) we obtain 

lifo (3.8) u( -- x + Aox < -~ [A°u( t ) -  A°x ld t .  
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Letting t -+O and using (3.5) we conclude that d f  uldt(0) exists and that 

d f  u(0)ldt + AOx = 0 .  Since we could start with any u(t)  E D(A) as x , the proof 

is concluded. 

COROLLARY 3.2. Let X and X* be uniformly convex. Let A be closed accretive 

and satisfying 

(3.9) R(I  + AA) 2 D(A) for all A > 0 

Then  for every X E D ( A )  we have the same conclusion as in Corollary 3.1. 

PROOF. Since A is closed and accretive it is easy to see that (3.9) implies 

R ( I + L A )  3 D(A) for all A > 0 .  

Let A" be the strong-weak closure of A ,  i.e. the smallest demiclosed extension 

of A .  Clearly D(A) c ~ ( 2 )  c D(A) and 

R(I + LA") 3 D(A)  for all A > 0 .  

This implies that A" satisfies Condition I and since A" is obviously accretive 
Theorem 3.1 shows that the initial value problem 

C u(0) = x 

has a solution. 

Next we prove that D(A) = D(A) and ( 4 '  = A'. Let x E ~ ( 2 ) ;  by the assump- 

tion (3.9) there exists [x,, y,] E A c A" such that 

x = x,+Ay,, A > 0 .  

Since x E D(A"), x, -+ x and y, -+ x and y, = A",x -+ AOX as 1 -+ 0 .  From the 

closedness of A we deduce that x E D(A) and A"Ox E A x .  Therefore ~ ( 2 )  = D(A) 

and for every x E D(A) A x  has an element norm AOX = ( 2 ) ' ~ .  This concludes 

the proof of Corollary 3.2. 

REMARK. If we do not assume X is uniformly convex in Corollary 3.2 it is 

not clear whether D(A") = D(A). However one can still prove using Lemma 3.3 

that for every x E D(A) there exists a unique function u on [0,  + co) which is 

lipschitz continuous such that u(t)  E D(A) a.e. on (0 ,  + a) and satisfying 
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COROLLARY 3.3. Let X* be uniformly convex and let A be demiclosed (res- 

pectively closed) and accretive. Let C be a closed convex set, D(A) c C, satis- 

f y ing  

(3.10) for  every x ~ D(A) (respectively x e D(A)) there exist a neighborhood 

Ux(= B(x,p(x)))  of x and a sequence e, ~ 0 such that 

R(I  + e,A) :z C C3 Ux. 

Then R(I  + 2A) ~ C for  all 2 > O. 

PROOF. We assume first that A is demiclosed and satisfies (3.10) for every 

x e D ( A ) .  Let z e C  and 2 > 0 .  We define the set B by D ( B ) = D ( A )  and 

Bu=u + ,~Au - z. B is accretive, demiclosed and satisfies condition I. Indeed if 

x ~ D(B) and y ~ D(B) (3 B(x, p(x)/2) equation 

g'n 
(3.11) u + c~,Bu ~ y ,  ~" - 2 - e,, 

has a solution for n large enough since it can be written as 

u + e , A u 9  1 -  Y + T z "  

Thus the initial value problem 

du ~ -dt + u + 2 A u - z ~ O  a.e. on ( 0 , + o o )  

u(O) = u o ~ D(A) 

has a solution by Theorem 3.1. In addition a standard argument shows that 

du < e_  t dt = IIz- 2Auo uoll a.e. on (0, + oo). 

Hence limt_,+o~U(t ) = 1 exists and satisfies 

l + 2 A l -  z ~ O. 

For  the case where A is closed, but (3.10) holds for every x ~ D(A), we consider 

the strong-weak closure X of A and we def ine/ t  by D(/~) = D(~) ,  ~u = u + 2.4u 

- z.  Clearly/~ is accretive demiclosed and satisfies condition I. Thus the initial 

value problem 
du 

f --dt+Bu~O a.e. on ( 0 , +  oo) 

u(0) = u o 6 D(/~) 

has a solution by Theorem 3.1. By Lemma 3.3 u(t)ED(B) a.e. on (0, +oo)  and 
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du 
d--] + B u ) 0  a.e. on  (0, + oo) 

i.e. 

and 
u(t) e D(A) a.e. on (0, + oo) 

du 
3-[ + u + 2Au - z ~ 0 a.e. on (0, + oo). 

The proof is concluded as in the previous case. 

REMARKS. 1. Theorem 3.1 extends some results of T. Kato [6] and F. Browder 

[21 who obtained essentially the same conclusion assuming A is m-accretive (or 

locally m-accretive). Their technique which consists of solving the equation 

f du~ = A~u~ = O, t > 0 
(3.12) .~ dt = 

t .  u~(0)  = 0 

and passing to the limit as 2 ~ 0  cannot be applied under condition I since it is 

not clear whether or not equation (3.12) has a solution at all. 

J. Mermin [8] has used, for single valued m-accretive operators, a techniqne 

similar to the method we used in Section 3. 

2. For a general Banach space X we do not know any existence result analogous 

to Theorem 3.1 unless we make further assumption on A. For example if A is 

accretive closed, locally uniformly continuous on D(A) and satisfies Condition II 

then the initial value problem (1.3) has a C~-solution for every x ~ D(A) .  Also if 

A is m-accretive everywhere defined and continuous the initial value problem 

(1.3) has a Ct-solution for every x e X (see Webb [10]). 

3. Assumption (3.9) is clearly stronger than Condition I but is weaker than 

Condition II. If  X is uniformly convex, Condition II implies that D(A)  is convex 

which is not the case for condition (3.7). Indeed let 

D =  {xeconvD(A): d x x ~ x  as 2 - ~ 0 } .  

Since D is closed and D(A)  c D it is sufficient to show that D is convex. Let 
x , y ~ D ;  we have 

x - - y  
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Choos ing  a sequence 2 , ~ 0  such tha t  d~,( (x+y) /2)- - -~t l  we ob ta in  

[ q -  x I < [ ( x - y ) / 2 1  and  I t l -  y] < I ( x - y ) / 2 [ .  Thus  rl = (x  + y)/2 and 

Yx((x + y ) / 2 ) ~  (x  + y)/2 as 2 ~ 0 by  the uniqueness o f  the l imit .  Moreover ,  

limsup l jx(x-2~)-J~xl ~--~[ 
and consequent ly  

j a ( x + y ~ _ j x x ~  y - - x  
\ 2 1  2 

as 2 - ~ 0 .  

So (x  + y)/2 ~ D.  (This a rgument  is due to M. Crandal I . )  
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