ABELIAN QUOTIENTS OF THE TEICHMÜLLER MODULAR GROUP*

Ву

DAVID MUMFORD

in Cambridge, Mass., U.S.A.

Let D be the Teichmüller space of genus g: it is a 3g-3-dimensional complex analytic manifold isomorphic to a bounded and contractible domain of holomorphy in \mathbb{C}^{3g-3} . Let Γ be the Teichmüller modular group: it is a discrete group acting discontinuously on D. This is the analytic side of the moduli problem.

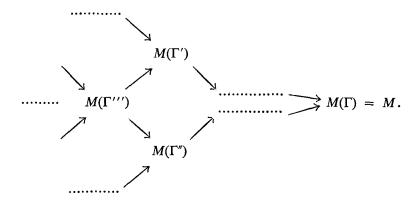
On the other hand, let $M=D/\Gamma$: this analytic space has a canonical structure of algebraic variety. In fact, it turns out to be a Zariski-open subset of a projective variety: a so-called *quasi-projective* variety. Therefore, for all subgroups $\Gamma' \subset \Gamma$ of finite index, the analytic spaces $M(\Gamma') = D/\Gamma'$, being coverings of M, are also quasi-projective algebraic varieties. This follows from the

Generalized Riemann existence theorem**. If X is any normal algebraic variety, Y any normal analytic space, and $f: Y \to X$ is a proper holomorphic map with finite fibres, and if there is a Zariski-open set $U \subset X$ such that $f^{-1}(U)$ is dense in Y and res $f: f^{-1}(U) \to U$ is unramified, then Y has one and only one structure of algebraic variety making f into a morphism.

Thus from the algebraic standpoint, one has an inverse system of quasiprojective varieties:

^{*} This work was supported by a Sloan Foundation Grant.

^{**} In this form, the theorem is due to J. P. Serre and M. Artin. It can be reduced to the comparison theorem of GAGA [9], using either the paper of Grauert-Remmert [2], or resolution of singularities and elementary arguments; or, by methods of Artin and Grothendieck it can be reduced to the 1-dimensional case where it is classical.



Moreover all sufficiently small $\Gamma' \subset \Gamma$ of finite index act freely on D, hence all $M(\Gamma')$ sufficiently "far up" in this inverse system are non-singular varieties, with D as their common universal covering space. The purpose of this note is to prove two closely related results:

Theorem 1. If $[\Gamma, \Gamma]$ is the commutator subgroup of Γ , then $\Gamma/[\Gamma, \Gamma]$ is a finite cyclic group, whose order divides 10. (?!)

Theorem 2. The Albanese variety of M is trivial, i.e. there are no non-trivial rational maps from M to an abelian variety.*

Moreover, in the terminology of [6], these results are also equivalent to:

Theorem. The Picard group of the moduli problem is a finitely generated abelian group isomorphic to $H^2(\Gamma, \mathbb{Z})$.

(Cf. §7 of [6]). Analogy with the many calculations that have been made for arithmetic groups acting on symmetric domains, as well as the general feeling that M should be quantitatively similar to projective space, leads me to conjecture that the rank of $H^2(\Gamma, \mathbb{Z})$ is one.

I want to thank Professor Magnus for a very informative letter acquainting me with the literature on the Teichmüller modular group and explaining what seems to be really proven, and what is not too clear. I also want to

^{*} It is equivalent to consider morphisms or rational maps from M to abelian varieties 0, since M is locally a quotient of a non-singular variety by a finite group.

thank Professors Maskit and Grothendieck for helpful comments and for checking my computations.

§1. The connection between Theorem 1, 2.

Recall that if V is any algebraic variety, and $x \in V$ is a base point, then among all morphisms:

$$\phi: V \to A$$

$$\phi(x) = 0$$

where A is an abelian variety, O its origin, there is a "universal" one, i.e. one such morphism:

$$\phi_0 \colon V \to A_0$$

such that if $\psi: V \to B$ is any other, there is a unique morphism $\chi: A_0 \to B$ (which is necessarily a homomorphism) such that $\psi = \chi \circ \phi_0$. A is called the *Albanese* variety of V. We want to describe the Albanese variety of M.

Theorem 3. Let V be a non-singular projective variety and let

$$f: V \to V_0$$

be a birational morphism of V onto a normal projective variety V_0 . Let $Z \subset V$ be a Zariski closed subset such that

$$\operatorname{codim} f(Z) \geq 2$$
.

Then

$$H_1(V-Z,Q) \xrightarrow{\sim} H_1(V,Q).$$

Proof. Since $H_1(V-Z, \mathbb{Z})$ and $H_1(V, \mathbb{Z})$ are finitely generated abelian groups, it suffices to show that for almost all primes p,

$$H_1(V-Z, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\sim} H_1(V, \mathbb{Z}/p\mathbb{Z}).$$

But, for any reasonable topological space X,

$$H_1(X, \mathbb{Z}/p\mathbb{Z}) \cong \pi_1(X)/\pi_1(X)^p \cdot [\pi_1(X), \pi_1(X)].$$

Therefore the isomorphism we need amounts to showing:

- (a) all p-cyclic unramified coverings of V-Z extend to p-cyclic unramified coverings of V
- (b) a p-cyclic unramified covering of V that splits over V-Z (i.e., restricted to V-Z, it is isomorphic to the disjoint union of p copies of V-Z), also splits over V.

However, p-cyclic unramified topological coverings of V and V-Z are canonically algebraic varieties in view of the generalized Riemann Existence Theorem already quoted. Therefore if V is normal, connected coverings of V are obtained by taking the normalization of V in suitable finite extension fields L of the function field $\mathbb{C}(V)$. But such coverings do not split over any Zariski-open subset of V. Therefore (b) holds for all p.

To prove (a), we need a preliminary step:

Lemma (Matsumura). If D_1, \dots, D_n are the components of Z of codimension 1, then the fundamental classes of the D's are independent in $H^2(V, \mathbb{Z})$.

Proof. Suppose there was a relation

$$\sum_{i=1}^{n} n_i \cdot \text{class}(D_i) = 0.$$

Assume $n_i \neq 0$, if $1 \leq i \leq k$, and $n_i = 0$, i > k. Let $Z^* = f(D_1 \cup \cdots \cup D_k)$. Then so long as $\dim(Z^*) > 0$, cutting V_0 by a sufficiently general hyperplane H, we can replace V_0 by $V_0 \cap H$, V by $f^{-1}(V_0 \cap H)$, and Z by $f^{-1}(f(Z) \cap H)$, and obtain the same pathology with a V of lower dimension. If $\dim Z^* = 0$, then so long as $\dim(V) \geq 3$ we can cut V by a sufficiently general hyperplane H, replace V by $V \cap H$, V_0 by the normalization of $f(V \cap H)$ and Z by the exceptional locus of

$$\operatorname{res} f \colon V \cap H \to f(V \cap H)$$

(which still includes $D_1 \cap H, \dots, D_k \cap H$ since they are collapsed to point in V_0). Finally, we obtain a situation contradicting the lemma, with $\dim V = \dim V_0 = 2$. Then by [7], p. 6, the intersection matrix (D_i, D_j) is negative definite, hence the D's must be homologically independent. Q.E.D.

To complete the proof of (a), we use Kummer Theory. If

$$\pi: W' \to V - Z$$

is an unramified algebraic p-cyclic extension, it is obtained by normalizing V-Z in the extension of $\mathbb{C}(V)$ given by $\sqrt[p]{f}$, some $f \in \mathbb{C}(V)$. Define W to be the normalization of V in this extension field. Let D_1, \dots, D_n be the divisor components of Z, and let

$$(f) = \sum_{i=1}^{n} n_i D_i + \sum_{i=1}^{m} m_i E_i.$$

Since $\sqrt[p]{f}$ defines an unramified covering outside of Z, it follows that $p \mid m_i$ all i. Therefore in $H^2(V, \mathbb{Z})$,

$$0 = \operatorname{class}((f)) = \sum n_i \cdot \operatorname{class}(D_i) + p \cdot \operatorname{class}\left(\sum \frac{m_i}{p} E_i\right).$$

But since by the lemma, class (D_i) , $1 \le i \le n$, in $H^2(V, \mathbb{Z})$ are independent, for almost all primes p this relation implies that p divides all the n_i as well. In that case

$$(f) = p \cdot D$$

for some divisor D on V, and $\sqrt[p]{f}$ defines an everywhere unramified covering of V, i.e. W/V is unramified. Q.E.D.

Corollary 1. Let V be a non-singular algebraic variety. Assume that V is isomorphic to V^*-Z^* where V^* is a projective variety and codim $Z^* \ge 2$. Let

$$\phi: V \to A$$

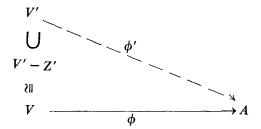
be the Albanese morphism of V. Then

$$\phi_*: H_1(V, \mathbf{Q}) \xrightarrow{\sim} H_1(A, \mathbf{Q}).$$

Proof. Let V' be a desingularization of V^* obtained by blowing up only points of Z^* , and let

$$f: V' \to V$$

be the birational morphism. Let $Z' = f^{-1}(Z^*)$. Then $V' - Z' \cong V$. The morphism ϕ extends to a morphism ϕ' :



since V' is non-singular ([3], p. 20), and ϕ' is the Albanese morphism for V'. Then it is well-known# that

$$\phi': H_1(V', \mathbf{Q}) \xrightarrow{\sim} H_1(A, \mathbf{Q}).$$

This, plus the Theorem applied to $f: V' \to V$, and Z', imply the Corollary. Q.E.D.

This Corollary does not apply directly to the moduli variety M since M is not non-singular. However, if $g \ge 3$ M does meet the other condition of the Corollary. In fact, let M_A denote the moduli variety for g-dimensional principally polarized abelian varieties, and let M_A^* denote the Satake compactification of M_A . Let

$$\theta: M \to M_A$$

$$H_1(V', \mathbb{R})/\text{Image} [H_1(V', \mathbb{Z})]$$

and constructing ϕ' by integrating the differentials $H^0(V', \Omega_V^{1}')$ cf. [10], p. 82.

[#] This is proven, for example by constructing A as

be the morphism induced by associating the Jacobian variety and its Θ -polarization to each curve of genus g. In [8], A. Mayer and I determined the set $\overline{\theta(M)} - \theta(M)$ (closure in M_A^*). It turns out to be what you expect — g-dimensional products of lower dimensional jacobians in M_A itself, as Matsusaka and Hoyt had shown; h-dimensional products of lower dimensional jacobians (h < g), in $M_A^* - M_A$. In particular, for each type of product decomposition we get a locally closed subset of $\overline{\theta(M)} - \theta(M)$. There is no piece of dimension 3g - 4 (codimension 1). The only piece of dimension 3g - 5 is the locus corresponding to products

$$J_1 \times J_{g-1}$$

 J_1 , J_{g-1} being 1 and (g-1)-dimensional jacobians respectively. The other pieces, such as:

- a) $J_i \times J_j$, i + j = g, 1 < i, j < g
- b) J_{g-1} (giving a point in $(M_A^* M_A) \cap \overline{\theta(M)}$) have codimension at least 3.

To make the Corollary apply, choose a normal subgroup $\Gamma' \subset \Gamma$ of finite index that acts freely on the Teichmüller space D. Let $M' = D/\Gamma'$ and let $\pi: M' \to M$ be the canonical morphism. Then M' is non-singular and compactifiable in codimension 2 (take the normalization of $\overline{\theta(M)}$ in the function field of M'). Therefore, we get

$$(\Gamma'/[\Gamma',\Gamma'])\otimes Q \cong H_1(M',Q) \cong H_1(A',Q)$$

if $\phi': M' \to A'$ is the Albanese morphism. Furthermore, the finite group (Γ/Γ') acts on $\Gamma'/[\Gamma', \Gamma'] \otimes Q$, on M', and hence on A'.

(I). The canonical homomorphim

$$(\Gamma'/\Gamma', \Gamma']) \otimes Q \rightarrow (\Gamma/[\Gamma, \Gamma]) \otimes Q,$$

is surjective and its kernel is generated by elements

$$x - x^{\gamma}$$
, $y \in \Gamma/\Gamma'$, $x \in (\Gamma'/[\Gamma', \Gamma']) \otimes Q$.

(This is well-known; for example, use the Lyndon Spectral Sequence, [4], p. 354, formula (10.6)).

(II). If $\phi: M \to A$ is the Albanese of M, there is a canonical diagram:

$$\begin{array}{ccc}
M' & \xrightarrow{\phi'} & A' \\
\pi & \downarrow & \downarrow & \chi \\
M & \xrightarrow{\phi} & A
\end{array}$$

for some homomorphism $\chi: \chi: A' \to A$ can be characterized as the universal homomorphism $\psi: A' \to B$, B abelian, such that $\psi(x^{\gamma}) = \psi(x)$, all $x \in A'$, $\gamma \in \Gamma/\Gamma'$. Therefore

 $A \cong A'/[$ Subgroup generated by points $x^{\gamma} - x$, $x \in A'$, $\gamma \in \Gamma/\Gamma']$.

Using this, it is easy to see that

 $H_1(A, Q) \cong H_1(A', Q)/[$ Subgroup generated by points $x^{\gamma} - x$, $x \in H_1$, $\gamma \in \Gamma/\Gamma']$.

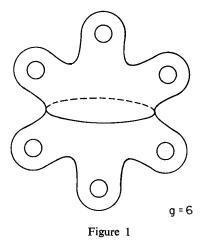
Putting all this together, we finally conclude:

Corollary 2. If $\phi: M \to A$ is the Albanese morphism of the moduli variety M and $g \ge 3$, then there is a canonical isomorphism:

$$(\Gamma/[\Gamma,\Gamma])\otimes Q \xrightarrow{\sim} H_1(A,Q).$$

§2. Dehn's presentation of Γ .

Everything that follows depends on the fundamental paper [1] of Dehn. Let F be a fixed differentiable surface of genus g. We shall picture F as follows:



The first basic fact is that:

$$\Gamma \cong \frac{\{\text{Group of orientation preserving homeomorphisms of } F\}}{\{\text{Those homotopic to identity}\}}$$

$$\cong \frac{\{\text{Group of automorphisms of } \pi_1(F, p), \det = +1\}}{\{\text{Inner Automorphisms}\}}.$$

Here the determinant of an automorphism $\alpha:\pi_1(F)\to\pi_1(F)$ refers to the determinant of the induced map on $\pi_1/[\pi_1,\pi_1]$, which is a lattice of rank 2g. To obtain generators of Γ , Dehn introduced particular homeomorphism classes of F into itself that he called "Schraubungen" — we shall call them "screw maps". Let γ be a simple closed curve on F: Draw a small collar around γ , i.e. choose a continuous injective orientation-preserving map $f:[0,1]\times S^1\to F$ such that $\gamma=f[(\frac{1}{2})\times S^1]$. The screw map S_γ associated to γ is defined by

$$\begin{cases} S_{\gamma}(x) = x & \text{if } x \notin \text{Im}(f). \\ S_{\gamma}(f(\alpha, \theta)) = f(\alpha, \theta + 2\pi\alpha). \end{cases}$$

In other words, if γ_{α} is the curve $f[(\alpha) \times S^1]$, we rotate γ_{α} through an angle $2\pi\alpha$, ranging from 0 on γ_0 , to π on γ itself, to 0 again on γ_1^* . The main theorem

^{*} Note that this screw map depends, modulo homotopy, only on γ and the orientation of F, and not on an orientation for γ .

of his paper is that Γ is generated by a finite number of these screw maps (p. 203). To get more precise information about the group Γ — we should have called it Γ_g , where g = genus — it is not enough to refer to the groups Γ_h , where h < g. More generally, we have to look at an oriented surface $F_{g,n}$ of genus g with n holes. For all g,n the appropriate Teichmüller modular group $\Gamma_{g,n}$ is:

$$\Gamma_{g,n} = \begin{cases} \text{Group of homeomorphisms of } F_{g,n} \text{ leaving the} \\ \frac{n \text{ boundary curves pointwise fixed}}{\text{Those homotopic to identity, leaving the boundary pointwise fixed along the way}} \end{cases}.$$

Note that whenever we choose a continuous, injective orientation preserving map $f: F_{h,n} \to F$, we obtain a map $f_*: \Gamma_{h,n} \to \Gamma$, since homeomorphisms of $F_{h,n}$ extend uniquely to homeomorphisms of F which are the identity on $F - f(F_{h,n})$.

Dehn's main result is that $\Gamma_{g,n}$ is generated by the screw maps along the set of curves β_k and γ_{ij} :

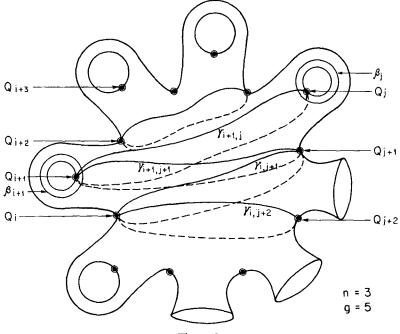
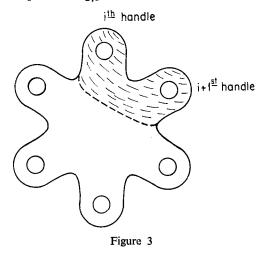


Figure 2

This result can easily be improved. On our surface F, consider the following piece homeomorphic to $F_{2,1}$:



For all i, $1 \le i \le g$, this defines $f_{i,*}: \Gamma_{2,1} \to \Gamma$.

Theorem 4. Γ is generated by the images of $\Gamma_{2,1}$ under $f_{1,*}, \dots, f_{g,*}$. Before beginning to prove this, let me list what is known about the groups $\Gamma_{g,n}$ for low g and n:

- (a) $\Gamma_{0,0} = \Gamma_{0,1} = (e)$
- (b) $\Gamma_{0,2} = \mathbf{Z}$: $F_{0,2}$ is just a collar, and $\Gamma_{0,2}$ is a free group on the screw map along its midline.
- (c) $\Gamma_{0,3} = \mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z}$, with generators given by screw maps along curves which are the 3 boundary curves, pulled slightly in:

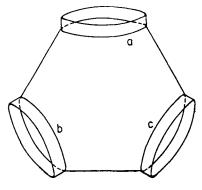


Figure 4

(d) $\Gamma_{1,1} =$ free group on screw maps Δ_a , Δ_b along a,b, modulo the relation

$$\Delta_b \Delta_a \Delta_b \Delta_a^{-1} \Delta_b^{-1} \Delta_a^{-1} = e$$

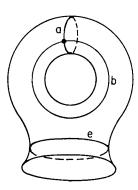
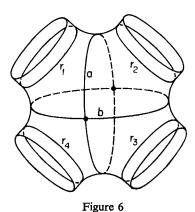


Figure 5

Moreover, $\Delta_e = (\Delta_a \Delta_b \Delta_a)^4$. (Dehn, pp. 156 and 172).

(e) $\Gamma_{0,4}$ is generated by screw maps Δ_a , Δ_b , Δ_{r_1} , Δ_{r_2} , Δ_{r_3} , Δ_{r_4} where the Δ_{r_i} 's are in the center. It appears that there are no other relations, i.e. $\Gamma_{0,4} \cong Z^4 \oplus$ (free group on 2 elements).



(f) $\Gamma_{1,2}$ is generated by screw maps Δ_a , Δ_b , Δ_c , Δ_e and Δ_f :

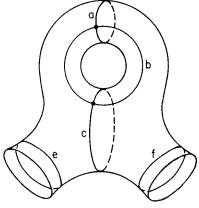


Figure 7

(Dehn, p. 188). The relations among these were worked out by Magnus [5], in a somewhat different form. To begin with, one has the obvious relations:

$$\Delta_e, \Delta_f \in \text{Center}$$

$$\Delta_a \Delta_c = \Delta_c \Delta_a$$
.

Much subtler is the following*

$$\Delta_{e}\Delta_{f} = (\Delta_{a}\Delta_{b})^{2}\Delta_{c}\Delta_{b}(\Delta_{a}\Delta_{b})^{2}\Delta_{b}\Delta_{c}\Delta_{b}\Delta_{c}^{-1}.$$

There are still further relations that we will not list. $\Gamma_{1,2}$ is the first really complicated group and it is related to Artin's Braid group.

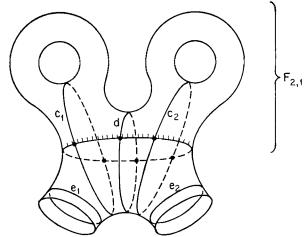
Proof of Theorem 4. Because of (f), the mapping class group $\Gamma_{1,2}$ is generated by Δ_a , Δ_b , Δ_c and either Δ_e or Δ_f , whichever is convenient. We use this to prove:

Lemma. $\Gamma_{2,2}$ is generated by

- (a) $\Gamma_{2.1}$
- (b) Δ_{c_1} or Δ_{c_2} , whichever you want
- (c) Δ_{e_1} or Δ_{e_2} whichever you want (cf. Figure 8).
 - * This can be readily derived from the formula

$$\left[\Theta^{-1}u\,\Theta,\;\Theta^{-1}a\,\Theta,\;\Theta^{-1}b\Theta\right]\;\doteq\;s^{-4}\rho\tau^{-1}\rho^{-1}\tau$$

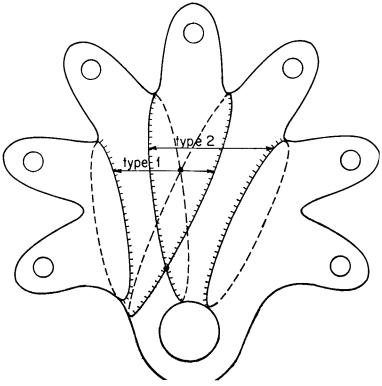
on p. 638 of Magnus' article.



Proof. According to Dehn's result, $\Gamma_{2,2}$ is generated by $\Gamma_{2,1}$, Δ_{c_1} , Δ_{c_2} , Δ_d , Δ_{e_1} and Δ_{e_2} . But first of all Δ_{c_1} and Δ_{c_2} are conjugate with respect to a suitable element of $\Gamma_{2,1}$ (Dehn, §10, (1), p. 200; it is not hard to work this case out explicitly). Secondly, suppose you cut the surface open along d: then $F_{2,2} = F'_{1,2} \cup F''_{12}$. Applying the results of (f) to each piece, it follows that

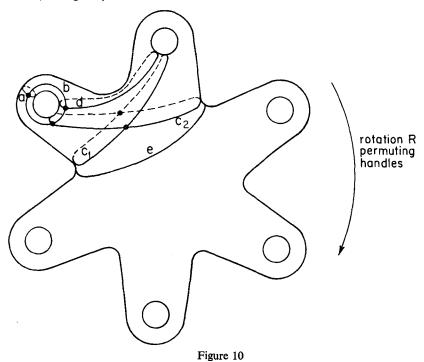
Figure 8

1) $\Delta_{e_1} \cdot \Delta_d \in \text{group generated by } \Delta_{e_1}, \Gamma_{2,1}$

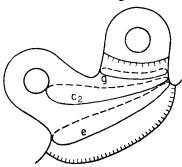


Apply this lemma to the $\Gamma_{2,2}$'s of types 1, 2 in Figure 9. It follows that any of the screw maps $\Delta_{\gamma_{ij}}$ of Fig. 2 can be written successively as products involving various elements of the $f_{k,*}(\Gamma_{2,1})$'s and screw maps $\Delta_{\gamma_{i'},j'}$ where |i'-j'| < |i-j|. Loosely speaking, modulo terms in the $f_{k,*}(\Gamma_{2,1})$'s, one replace $\Delta_{\gamma_{ij}}$ by $\Delta_{\gamma_{i'j'}}$'s with $\gamma_{i',j'}$ wrapping round a smaller part of F. This evetually eliminates the Δ_{γ} 's altogether.

Corollary 1. Γ is generated by the four homeomorphisms Δ_a , Δ_b , Δ_d and R (cf. Fig. 10).



Proof. According to the Theorem, R plus Δ_a , Δ_b , Δ_{c_1} , Δ_{c_2} , Δ_d and Δ_e certainly suffice. On the other hand, cutting out an $F_{1,2}$ as follows:



it follows from (f) that Δ_e can be expressed as a product of the elements Δ_a , Δ_b , Δ_{c_2} and Δ_g ; and Δ_g is a product of the elements $R\Delta_a R^{-1}$, $R\Delta_b R^{-1}$. This gets rid of Δ_e . Secondly, cutting out an $F_{1,2}$ like this:

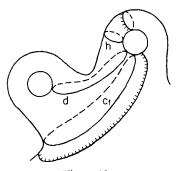


Figure 12

it follows that Δ_{c_1} can be expressed as a product of the elements Δ_a , Δ_b , Δ_d and Δ_h . But $\Delta_h = R\Delta_a R^{-1}$. Q.E.D.

Finally, if a_1 , a_2 are any 2 simple closed curves on F neither of which divides F into 2 components, it is clear that $a_1 = T(a_2)$ for some orientation preserving homeomorphism T of F (i.e. since there must be an orientation preserving homeomorphism of $F - a_1$ and $F - a_2$). Therefore Δ_{a_1} and Δ_{a_2} are always conjugate in Γ in this case.

Corollary 2. Γ is generated by Δ_a and its conjugates (cf. Figure 10).

Proof. In fact, Δ_a , Δ_b , Δ_d all lie in the same conjugacy class by the remark just made, since none of the curves a, b, d decomposes F. And looking at the proof of Corollary 1, we see that we generated Γ by conjugates of Δ_a , Δ_b , Δ_d with respect to powers of R. Q.E.D.

Therefore, $\Gamma/[\Gamma,\Gamma]$ has one generator, the image of the conjugacy class δ of screw maps with respect to non-decomposing simple closed curves. Now refer back to the relation in (f) on $\Gamma_{1,2}$. We can embed $F_{1,2}$ in any surface F of genus $g(g \ge 2)$ so that a, b, c, e, f go into non-decomposing curves. Then Δ_a , Δ_b , Δ_c , Δ_e and Δ_f all have image δ in $\Gamma/[\Gamma,\Gamma]$, and the relation says that $10\delta = 0$. This completes the proof of Theorem 1.

Theorem 2 follows from Theorem 1 by the results of §1 if $g \ge 3$. If g = 2, Theorem 1 is known from the results of Igusa [11].

Actually, when g = 2, it is not hard to check that $\Gamma/[\Gamma, \Gamma]$ is exactly $\mathbb{Z}/10\mathbb{Z}$. Closely related to this is the fact that the Picard group $\operatorname{Pic}(\mathscr{M})$ of the moduli problem of genus 2 is also $\mathbb{Z}/10\mathbb{Z}$.

Proof. The methods in [6], §7 carry over without modification to prove that

{Torsion subgroup of
$$Pic(\mathcal{M})$$
} $\cong Hom(\Gamma/[\Gamma, \Gamma], Q/Z)$.

(cf. 1st Corollary, p. 77; Corollary, p. 81, [6]). On the other hand, if M is the moduli space of genus 2, then, modulo torsion, Pic(M) and Pic(M) are isomorphic. Igusa showed ([11], p. 638) that there is a finite morphism $\pi: A^3 \to M$. So if $d = \text{degree}(\pi)$, and D is any Cartier divisor on M, then

$$d.D = \pi(\pi^{-1}(D))$$

$$= \pi((f)), \text{ some } f \in \Gamma(A^3, o_A)$$

$$= (Nmf).$$

Therefore Pic(M) is torsion and $Pic(\mathcal{M})$ and $\Gamma/[\Gamma,\Gamma]$ are dual finite abelian groups. But we can easily check that 2 and 5 divide the order of $Pic(\mathcal{M})$. To do this, use the element $\delta \in Pic(\mathcal{M})$ gotten by attaching to each curve C of genus 2 the one-dimensional vector space:

$$\delta(C) = \Lambda^2 [H^0(C, \Omega_C^1)]$$

 $(\Omega^1 = \text{sheaf of 1-forms on } C; \text{ cf. [6], §5)}$. Taking C_1 to be the curve $y^2 = x^5 - 1$, the automorphisms

$$\begin{cases} x \to \eta x \\ y \to y \\ \eta^5 = 1, \ \eta \neq 1 \end{cases}$$

of C_1 all act non-trivially on $\delta(C_1)$. Therefore 5 order(δ). Taking C_2 to be the curve $y^2 = x \cdot (x^4 - 1)$, the automorphisms

$$x \to \eta^2 \cdot x$$
$$y \to \eta \cdot x$$
$$\eta^8 = 1, \, \eta^4 \neq 1$$

all act non-trivially on $\delta(C_2)$, although their squares act trivially. Therefore $2 \mid \text{order}(\delta)$. Q.E.D.

BIBLIOGRAPHY

- 1. M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math., 69 (1938), p. 135.
- 2. H. Grauert and R. Remmert, Komplexe Räume, Math. Ann., 136 (1958), p. 245.
- 3. S. Lang, Abelian varieties, Wiley-Interscience, N. Y., 1959.
- 4. S. MacLane, Homology, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- 5. W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, *Math Ann.*, 109 (1934), p.617.
- 6. D. Mumford, Picard groups of moduli problems, Proc. Symp. Arith. Alg. Geom., Harper and Row, N.Y., 1966.
- 7. D. Mumford, The topology of normal singularities of an algebraic surface, *Publ. Inst. Hautes Et. Sci.*, No. 9, Paris, 1960.
- 8. D. Mumford, article in Supplementary notes to the Woods Hole Summer Institute of the AMS, 1964.
- 9. J.-P. Serre, Géométrie analytique et géométrie algébrique, Ann. Inst. Fourier, 6 (1956), p. 1.
 - 10. A. Weil, Variétés kählériennes, Hermann, Paris, 1958.
- 11. J.-I. Igusa, Arithmetic variety of moduli: for genus 2, Annals. of Math., 72 (1960), p. 612.

HARVARD UNIVERSITY

CAMBRIDGE, MASS., U.S.A.

(Received May 3, 1966)