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1. I n t r o d u c t i o n .  Let S denote the class of func t ions f ( z )=z+azzZ+ .." 

which are analytic and univalent in the unit disc K ,  and let M denote a non- 

empty subclass of S. Then we define the Koebe domain of  M to be the 

point-set JY('(M) = N f (K ) .  In this note we determine Koebe domains for 
f e M  

some well-known subclasses of S. 

Since M above may consist of elements of  S chosen in an arbitrary manner 

no general statements concerning • ( M )  can be made apart from some trivial 

ones. However, important subclasses M of  S satisfy the following two con- 

ditions. (i) M is compact. (ii) For each r ,  0 <  r < 1, if f ~ M ,  then 

f,(z) = (1/r)f(rz) belongs to M.  For M satisfying those two conditions, we 

can say that ~g'(M) is a simply connected domain that is starshaped with respect 

to the origin such that (a) the open disc with center at the origin and radius �88 

is contained in ~f'(M), and (b) ~ f ' (M)c  K .  The assertion (a) follows from 

the well-known Koebe �88 and the assertion (b) follows from the fact 

'that f (z )  -- z is a member of M because M is compact. To prove the remaining 

part of the assertion, we reason as follows. If  wl ~f(K)  for all f ~  M, then 

wt ef,(K) for all f ~  M and all r ,  0 < r < 1. Hence rwl ~ f (K)  for all f ~  M 

and all r ,  0 < r < 1. Hence Y ( M )  is starshaped and simply connected. 

If  SR denotes the subclass of S all of whose Taylor coefficients are real, 

then Y(SR) is not only simply connected and starshaped with respect to the 

origin, but it is also symmetric with respect to the coordinate axes and its 

boundary ~S(SR) meets the coordinate axes at w = + 1 and w = _ �89 This 

last result is due to Jenkins ['2]. In a recent note, McGregor ['5] determined 

the Koebe domains for the following subclasses of SR: (i) the convex functions, 
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(ii) the functions starlike with respect to the origin, and (iii) the functions 

convex in the direction of  the imaginary axis. 

In this note we determine the Koebe domains for the following subclasses 

M of  S: (i) M -- Y is the class of  circularly symmetric functions with real 

coefficients, introduced by Jenkins [1], (ii) M -  S ~ is the class of  func- 
tions f (z) ,  with real coefficients, such that [-w IIm w > 0-1 n f (K)  is convex 

in the direction e i~, 0 _< ~ < 1, (iii) M---LR is the class of  close-to-convex 

functions, with real coefficients, (iv) M = S~ is the class of  odd convex func- 

tions, with real coefficients, and (v) M - S* is the class of odd starlike func- 

tions, with respect to the origin, with real coefficients. 

2. T h e  c l a s s  Y. For the class Y of normalized univalent functions 

with real coefficients and circularly symmetric with respect to the positive 

real axis, we have the following result. 

T h e o r e m  1. The Koebe domain jyr(y) is a domain that is symmetric 

with respect to the real axis and whose boundary ~ l ( Y )  has the equation 

(1) r = �88 + cos �89 0) 2 , - rc _< 0 < re, 

where (r,O) are polar coordinates. 

P r o o f .  Since for each f ~  Y the set f (K)  is circularly symmetric with 

respect to the positive real axis, we can make the following statement. If  

re'~162 then the arc F of  the circle Iwl--r the endpoints re '~ re -~e, 

and bisected by the negative real axis is contained in the complement o f f ( K )  

too. Because of  symmetry, we may restrict 0 to the range 0 < 0 __< re. Since 

f (K)  is simply connected, it follows that the ray [--  oo, - r] lies in the comple- 

ment of f (K) .  Now we can apply the principle of  subordination, just as 

McGregor did [5-1, to conclude that for each r ,  there exists a minimum for 0 

such that the union of  F and the ray lie in the complement of  f (K).  I f  we 

call this minimum 0 o = Oo(r), then 0 o is uniquely determined by the condi- 

tion that the inner radius o f f ( K )  at the origin is unity. The mapping func- 

tion for this last domain can be given explicitly ['61 and from it we obtain 

zc - 0o = 2 a r c s i n ( 2 x / r -  1) �88 < r < 1, 
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which implies that the open arc 

7 /  Iargwl < 0o = n - 2 a r c s i n ( 2 x / r -  1) 

is contained in f ( K )  for each f ~  Y and for each r ,  k <-r < 1. The Koebe 

domain is then seen to be the union of the set w [Yr 1�88 < r < 1] and the open 

disc of radius one quarter with center at the origin. Since Oo(r) is monotonic 

in r ,  we then find (1) for 0 < 0 < n, from the relation zc - 0o = 2 arc s in(2x/r-  1), 

� 8 8  

An elementary calculat ion  shows that the argument of  the tangent vector 

point re i~ is ~ 0 + 2" Hence it follows that the upper half of at the the bound- 

ary of J{'(Y) is a convex arc, with an angular point ~e where one-sided 

tangents meet at right angles. 

3. The  s u b c l a s s e s  S ' .  We recall that the class $ ' ,  for ~ fixed, 

0 < ~ ~< I,  consists of the functions f ( z )  = z + a2z  z + ... which are analytic 

and univalent in the unit disc K,  have real coefficients, and have the property 

that if w~ e l ( K )  and if Imw, > 0, then the ray [wlarg(w - wl) = n~] lies 

in the complement o f f (K) .  It follows from a result due to Lewandowski [4] 

that S" is a subclass of LR,  certain close-to-convex functions we defined in 

w If 0 < ~ < �89 then it follows from Kaplan's notion of close-to-convexity 

[3] that for each f ~ S  ~, there exists a Carath~odory function 

p(z )  = 1 + p l  z + p2 z2 + . . . ,  with real Pk and positive real part in K ,  and a 

normalized convex function (D(z) = z + c2 z2 + ... such that f ' ( z )  =- p(z)c~'(z) 

i n ' K .  Elementary geometric considerations show that ~b(z) may be chosen 

to be independent of f 6 S ' :  indeed, we find 

1 [ [1 - z] 1-2"] 
--- 2 ( t  - 1 -  I--TS] j '  

which maps K onto an angular domain with vertex at 1/[2(1 - 2 e ) ]  and in- 

terior angle n(1 - 27). Hencef(z)  has the form 

f 1 1 + (  2~ 
f ( z )  = P(~)(1 + ~)2 ( ] - ~ _  ~) d(,  

0 
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where p(z) is analytic and  has a positive real pa r t  in K .  I t  is easy to verify 

tha t  this last fo rmula  is valid for  the cases c~ = 0 and ~ = �89 too.  

In  order to determine the Koebe  domain  ~ ( S ' ) ,  we first determine certain 

curves F , ,  0 < ~ _< 1. These curves are obta ined by moving two symmetr ic  

points  Wo and Wo (with I m  W o > 0) in such a way that  the two symmetr ic  

and  infinite rays lo a n d / * t h a t  emana te  f rom W o and  W o and  have  directions 

e i~" and e - ~ "  respectively, determine a s imply connected domain  whose 

boundary  is the union o f  lo and l* and  whose inner radius with respect  to 

the origin is unity. I f  the prolongat ions  of  l o and l~ toward  the origin meet  

at  the origin, then the corresponding domain  is s tarshaped and  the mapp ing  

funct ion has the f o r m  

: (i + z]'" 
(2) w = a(z) - (1 + z) 2 \i---Z-7- z]  ' 

In  this par t icular  case Wo = a(Zo)=-Wo, where z o satisfies a'(zo)= 0,  with 

I m z o  > 0,  so that  we find 

Zo = 1 - 2~ + i2x/a(1 - a) ,  
el,tot 

Wo = 4 ~ (  1 _ a ) l - ~  

I f  the pro longat ions  of  lo and lo* meet  at Uo on the real axis, then the func- 

t ion f ~  S" tha t  maps  K onto the slit domain  determined by 1 o and l~ has 

the fo rm 

I z + x ~  
A[f(z) - Uo] = a \1 + xz] '  

where x is real, - 1 < x < 1, A is real and satisfies 

(1 + x]2"(1  - x)  ~ + 4 ~ x  
A = (1 - xZ)#(x)  _= G(x_~)x [(1 - x) 2 + 4ex]  - \ i - L - ~ )  (1 + x) 2 

and  where u o = -  [a(x)/A]. Here a(z) is the part icular  star funct ion (2). 

Since f(K) and a (K)  can be mapped  onto  one another  by a l inear t ransforma-  

t ion o f  the fo rm A ( W -  Uo) = w, it follows tha t  the endpoint  Wo o f  the ray 
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1 o is connected to the point w o by the relation W o = (wo/A) + Uo. Hence 

we have the following equation for the upper half  of  F,:  

"1 x "2~ (1 + x) 2 
W~ = W~ ( 1 - - ~ )  ( 1 - - x ) 2 + 4 ~ x  

1 e i~a x 

4 e'(1 - c~)t-" (1 - x) 2 + 4~x ' 

- l < x < l .  

For  x = l  and x = - i  we obtain the vertices Wo = 1/[4(1 - a)]  and 

Wo = - [1/(4~)] of  two angular domains whose interior angles are 2n(1 - a) 

and 2ha, respectively. Obviously J{'(S ") lies in the intersection of  these two 

angular domains. Since the inner radius with respect to a point is a monotonic 

function of domains, it follows that the upper half  of  F, has at most  one point 

in common with each line parallel to the direction e i~" . 

[1 + x \  2. 
I f  we make the change of variable v = [ ] - - z x J  m the equation for the upper 

half  of  F , ,  then we obtain 

(3) W = e~'~'A(~) + B(z) ,  0 < �9 < oo, 

where 

1 z 1 -~' 1 

A ( z ) - ~  1 - c t + ~ z  ~z~(1-c~)l-~ '  

1 l--z 
B ( z )  - 4 1 - -  c~ + o~'c 

To show that the upper half of  F~ is convex, it is sufficient to show that 

arg W'(z)  = Imlog  W'(z) is monotonic, that is, to show 

W"(z) (ei'~'A " + B")(e-~'~'A ' + B')  sin na(A"B' - A'B")  
Imw---- ~ = Im [ei ,A , + B,12 - i W, 12 > 0 

holds. But this last is easy to show, because A'(z) /B'(z)  is monotonic increasing. 

Hence the upper half of  F ,  is convex. 

For  the particular case ~ = 0 we see that the inner radius of  the strip domain 
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[Imw[ < hi4 with respect to the origin is unity, so that F o must be contained 

in this strip. It is easy to see that the function 

l l ' ,  l + z  2z "] 
fo(z) - a Ll~ + ~ ( 1  J 

satisfies the identity [fo'(Z)/dp'(z)] -~ (1 + z2)/(1 - z2), with r _-__ z/(1 + z) 

a convex univalent function in K .  Hencefo(z ) is close-to-convex and univalent 

in K .  A calculation now shows that fo(K) is the plane slit along two rays that 

are parallel to the positive real axis and have endpoints �88 __+ i(zc/8). If  we use 

the methods of the preceding discussion, then we can show that the upper 

half of  Fo has the equation 

1 n ~1 + x ~ 2 <  
~ + i ~ - f o ( x )  1 l + z - z l o g ~ + i n ~  0 = < z =  oo. 

(4) W = ( 1 - x 2 ) f o ' ( X )  = -4 1+ ~ ' k ~ -  x] = 

For the case 0c = 1, we can get F 1 by reflecting F o about the imaginary 

axis. The equation for F 1 is 

1 z l o g z -  l - z +  in~ 
- 0 < z <  oo. (5) W = 4 1 + -c ' - - 

The following result asserts that we have obtained the boundary of -~(S~), 

0 < ~ < 1 .  

T h e o r e m  2. The Koebe domain ocF(S~), 0 < ~ < 1, is a domain that 

is symmetric with respect to the real axis; its boundary consists of the convex 

arcF~ and the reflection of F~ in the real axis. Equations for F~ are given 

by (3), (4) and (5). 

P r o o f .  Let W o e F,  and consider the plane minus the rays from W o and 

Wo toward infinity and in the directions e ~" and e - '~ ,  respectively; let g e S ~ 

be the function that maps K onto this slit domain. It follows from the de- 

finitions of F,  that the inner radius of  this slit domain with respect to the 

origin is unity. Now let f ~  S ". I f  the prolongations of those slits, from Wo 
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and ff'o " toward the origin," did not lie wholly in f (K) ,  then the inner radius 

o f f ( K )  with respect to the origin would be less than unity; this last assertion 

follows from the monotonic character of  the inner radius. But the inner radius 

o f f ( K )  with respect to the origin is unity. Hence we may conclude that the 

prolongations of  the slits from Wo and ff'o " toward the origin" lie in f (K) ,  

for each f e  S ". This completes the proof  of the theorem. 

4. T h e  c l a s s  L R. We now determine the Koebe domain for the class 

of normalized close-to-convex functions f ( z )  = z + a2 z2 + ... with real 

coefficients. 

Since LR is compact, it follows that to each point Wo of aSC(L~), the boundary 

of  JF(LR), there corresponds at least one g e LR such that Wo ~ g(K). More- 

over, it follows from the starshapedness of  ~f'(LR) that all points on the ray 

from wo to the origin, except for w o , belong to f ( K )  for each f ~  (LR). The 

intersection of  JF(LR) with the reaI axis is the open segment (- �88188 hence 

we may assume Im Wo > 0. Now it follows from Biernacki's characterization 

of  close-to-convex functions [4] that the complementary set of  g(K) contains 

two infinite non-intersecting rays l o and l* with endpoints w 0 and ~o which 

are parallel to the directions e ~"~ and e - ~ ,  respectively; here 0 < a < 1. If 

we let h(z) denote the function that maps K conformally onto the domain 

bounded by lo u l* subject to the conditions h(0)=  0 and h ' ( 0 )>  0, then 

we see that g(z) is subordinate to h(z). I f  h'(O) - 2 > 1, then the functions 

h(z) is not only a member of L, but h(z)/2 does not take on the value Wo/2. 

This contradicts the basic property of  w 0 . Hence h(z) = g(z). It follows that 

for  each fl, 0 < fl < 1, with argwo = fin, there exists a function gr S ~= S ~(~) 

such that ~ ( L R ) =  1") ga(K); this last implies 0 Yf(S~) ~ ~r On the 

other hand, for each a ,  0 < a < 1, we have S" ~ L R, so that 

0 f (K)=  ,Y~"(LR)~ ['7 f(K) = ,Yf(S ~) 
f eLR f ~S O~ 

and ~r [")~g'(S ") hold. Hence ..r 0 ~(S~) �9 Now it follows 
gg 

f rom this last statement and Theorem 2 that the upper half and the lower 

half of ~T'(L~) are convex domains. 
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An equation for the boundary of ~"(LR) can be obtained in the following 

way. For  W = U + iV on the boundary of  f ( S ~ ) ,  it follows from (3) that 

(6) 

COS 7~(~ T 1 - a  1 - -  "C 
4 U -  U 1 a ~ ( 1 - a ) t - ~  1 - a + a z  + 1 - a + a ~ '  

4 V -  V 1 - 
sin ~r~ z t -  ~ 

a=(1-  a)l-= l - a + a z  

hold. We can assume 0 < ~ < �89 and that U and Vare positive because o~r(La) 

is symmetric with respect to the coordinate axes. We find 

u, = 41-v + 

We now wish to find the value of  

1 - a + a z "  

[ 1 - z  ] V ~ - c o n s t a n t ,  0 < V l < 2 ] .  inf 1 - [ a + ~  

If we use the method of  Lagrange multipliers and use the function 

I --a+az 
+ 2log V1, 

and if we then differentiate with respect to ~ and z and then eliminate 2, we 

obtain 

az + (z - 1)(1 - a + az) = ncotrc~. (7) log 1 - �9 + x 

The derivative of the left-hand member of  (7) with respect to z is 

1 
-~-i(z + 1)(1 - ~ + az), which is positive for ~ > 0 and 0 < a < �89 Hence 

the left-hand member of (7) increases monotonically as �9 increases. Hence 

for each a,  0 < ~ < �89 there exists a unique z = ~(~) for which (7) holds. Since 

the left-hand member of (7) is negative for z -- 1 and 0 < ct < �89 it follows 

that �9 = ~(a) > 1. 
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An examination of the preceding discussion shows that we have proved 

the following result. 

T h e o r e m  3. The Koebe domain 9f'(LR) is a domain symmetric with 

respect to the coordinate axes and whose upper and lower halves are convex 

domains. An equation for that part of the boundary of ~r(LR) that is situated 

in the first quadrant is given by (6), where 0 < ct < �89 and where z = z(~) 

is the unique solution of equation (7)for each such ~. 

5. Odd c o n v e x  and odd s t a r l i k e  f u n c t i o n s .  

T h e o r e m  4. The Koebe domain ~'~(S~) for the class of normalized 

odd convex functions with real coefficients is a convex domain that is sym- 

metric with respect to the coordinate axes such that the part of that lies 
in the first quadrant has as supporting lines the lines 

(8) x + y = h ( ~ ) =  1 F(0c) F(�89 0 < 0 ~ < 1 ,  
cos lr0~ sin zc0c 4 x/~ 

and the (limiting) lines x = re~4 and y = ~/4. 

P r o o f .  It follows from the symmetry and the convexity of each set f (K) ,  

for f ~  S~, that J,('(S~) = 0 f (K)  is both convex and symmetric with respect 

to the coordinate axes. Now let fl be fixed, 0 < fl < �89 and let w, ~ (~J~t~(S~) such 

that, the supporting line Ip of ~f'(S~) at w, has direction e i~p as its normal 

direction and p(fl) as its normal intercept. On the other hand, i f f e  S~, then 

the supporting line to f (K)  that has e ia~ as its normal direction has a nor- 

mal intercept of, say, p(f;fl); it is clear that p(fl)=min[p(f; f l)[f~S~],  

which follows from the compactness of S~. Now let Rp denote the rhombus 

with angles 2rc(1- fl) and 2rcfl determined by Ip, the reflection l~* of Ip in 

the real axis, and the reflection of Ip and l~ in the imaginary axis, and let 

fa(z) be the element of S~ that minimizes the normal intercept p(f; fl), with 

fl fixed. We see that fp (K)c  Rp, f 'p (0)=  1. Now suppose that Rp- fa(K)  

contains interior points. Then the inner radius of Rp with respect to the origin 
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would be, say, 2 > 1. Hence if ~bp(z) is the convex univalent function that 

maps K onto Rp, with ~bp(0) = 0 and qS~(0) > 0, then ~bp(z)/2 is a member of 

S~, and the distance from the origin to the supporting line would be p([3)/2 

which is less than p(fl). But p(fl) is the minimum such distance. Hence we 

conclude that all the supporting lines of ~(S~)  that are not parallel to the 

coordinate axes must be sides of rhombi with angles 27:(1 - f l )  and 2rcfl and 

whose inner radius with respect to the origin is unity. The members of S] 

that map K onto these rhombi are given by 

We find 

- 

0 

dE 
1 ~ ~ 2 ~  

I Ca(i)  - 1 - 1 - - -  r( )r(�89 - 

as the length of the sides of  the rhombi. It now follows that the equation of 

the side la in the first quadrant is given by (8). The limiting cases ~ = 0 and 

= 1 yield x = re/4 and y = re/4, as supporting lines. This completes the 

proof. 

The analogous result for starlike maps is the following one. 

T h e o r e m  5. The Koebe domain ~T'(S*) for the class of  normalized 

odd starlike functions with real coefficients is again a domain that is symmetric 

With respect to the coordinate axes and is starlike with respect to the origin. 

That part of the boundary of .,T'(S*) that lies in the first quadrant has 

the polar equation W = Re ~', where 

(9) 

R = cos sin , 

�9 2 = ~sm 0 0 < 0 <  1r/2. 

P r o o f .  If  we use the method of subordination as used by McGregor 

[5], then we find that the boundary O~(S*) is the set of endpoints of groups 
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of  four  slits lk, k = 1 , 2 , 3 , 4 ;  these slits are infinite, lie on the lines 

arg w = zc + 0~(rc/2) and  arg w = + 0~(7r/2), 0 -< 0~ < �89 have endpoints  tha t  

are equidistant  f rom the origin, and are so chosen that  the inner  radius o f  

the slit domain  so determined,  with respect  to the origin, is unity. The cor-  

responding mapp ing  function,  for  each ~, 0 < ~-< �89 is 

z ~1 + z2] ~ 
r  = ~ - 1  + z 2 ~ - ~ - ~ z  2] 

where a(z) is the starlike funct ion (2). To  tinct the endpoints  o f  the slits, we 

use the equat ion ~b ' (z )=  0 ,  and we find tha t  they satisfy the equat ion  

z 2 = 1 - 20~ + i2~/~(1 - 00. Hence ~ = sin20, where z = e i~ is the endpoin t  

7g 
of  the slit in the first quadrant .  This yields (9), fo r  0 < 0 < -~-. F o r  the l im- 

it 
Ring cases 0 = 0 and  0 = ~--, we find wl = �89 and  wl = �89 respectively. This 

completes  the proof .  

6 .  Concluding remarks. In  a subsequent  publicat ion we shall give 

characterizat ions o f  the Koebe  domains  for  certain other  classes o f  univalent  

funct ions;  these will include certain classes o f  bounded  functions, and  certain 

classes of  meromorph ic  univalent  functions.  
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