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1. Introduction. Let S denote the class of functions f(z)=z+a,z>+-
which are analytic and univalent in the unit disc K, and let M denote a non-
empty subclass of S. Then we define the Koebe domain of M to be the
point-set (M) = ﬂ f(K). In this note we determine Koebe domains for

feMm

some well-known subclasses of S.

Since M above may consist of elements of S chosen in an arbitrary manner
no general statements concerning ¢ (M) can be made apart from some trivial
ones. However, important subclasses M of S satisfy the following two con-
ditions. (i) M 1is compact. (ii) For each r, 0<r<1, if feM, then
£{2) =1/ f(rz) belongs to M. For M satisfying those two conditions, we
can say that 2#(M) is a simply connected domain that is starshaped with respect
to the origin such that (a) the open disc with center at the origin and radius }
is contained in (M), and (b) #'(M)c< K. The assertion (a) follows from
the well-known Koebe i-theorem, and the assertion (b) follows from the fact
that f(z) = z is a member of M because M is compact. To prove the remaining
part of the assertion, we reason as follows. If w, ef(K) for all fe M, then
w,ef(K) for all fe M and all r, 0 <r < 1. Hence rw, e f(K) for all feM
and all r, 0 <r < 1. Hence #(M) is starshaped and simply connected.

If Sy denotes the subclass of S all of whose Taylor coefficients are real,
then #°(Sy) is not only simply connected and starshaped with respect to the
origin, but it is also symmetric with respect to the coordinate axes and its
boundary 8.4(Sg) meets the coordinate axes at w= 1 and w = + }i. This
last result is due to Jenkins [2]. In a recent note, McGregor [5] determined
the Koebe domains for the following subclasses of Sg: (i) the convex functions,
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(ii) the functions starlike with respect to the origin, and (iii) the functions
convex in the direction of the imaginary axis.

In this note we determine the Koebe domains for the following subclasses
M of S: (i) M =7 is the class of circularly symmetric functions with real

coefficients, introduced by Jenkins [1], (i) M = S* is the class of func-
tions f(z), with real coefficients, such that [wlImw > 0] f(K) is convex

in the direction ¢™, 0 < a <1, (iii) M = Ly is the class of close-to-convex
functions, with real coefficients, (iv) M = S| is the class of odd convex func-
tions, with real coefficients, and (v) M = ST is the class of odd starlike func-
tions, with respect to the origin, with real coefficients.

2. The class Y. For the class Y of normalized univalent functions
with real coefficients and circularly symmetric with respect to the positive

real axis, we have the following result.

Theorem 1. The Koebe domain H(Y) is a domain that is symmetric
with respect to the real axis and whose boundary 04 (Y) has the equation

()] r = 31+ cosi0)?, -nL0< ,
where (r,0) are polar coordinates.

Proof. Since for each fe Y the set f(K) is circularly symmetric with
respect to the positive real axis, we can make the following statement. If
re ¢ f(K), then the arc T' of the circle |w|=r the endpoints re”, re”®,
and bisected by the negative real axis is contained in the complement of f(K)
too. Because of symmetry, we may restrict 8 to the range 0 < 8 < =. Since
f(K) is simply connected, it follows that the ray [ — co, —r] lies in the comple-
ment of f(K). Now we can apply the principle of subordination, just as
McGregor did [5], to conclude that for each r, there exists a minimum for 0
such that the union of I" and the ray lie in the complement of f(K). If we
call this minimum 0, = 8,(r), then 6, is uniquely determined by the condi-
tion that the inner radius of f(K) at the origin is unity. The mapping func-
tion for this last domain can be given explicitly [6], and from it we obtain

n—0, = 2arcsin(2\/;-l) }=r<l,
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which implies that the open arc
P Jargw| < 8, = 7 — 2arcsin(2\/r — 1)

is contained in f(K) for each fe Y and for each r, } <r < 1. The Koebe
3 < r < 1] and the open

domain is then seen to be the union of the set U [y,
disc of radius one quarter with center at the origin. Since 6(r) is monotonic
inr, we then find (1) for 0 < 6 < r, from the relation 7 — 8, =2arc sin(2\/r-"— 1),
}=sr<l1,

An elementary calculation shows that the argument of the tangent vector
T
2
ary of #(Y) is a convex arc, with an angular point ¢ where one-sided

at the point re® is 20 + = . Hence it follows that the upper half of the bound-

tangents meet at right angles,

3. The subclasses S*. We recall that the class $§%, for a fixed,
0=<a <1, consists of the functions f(z) = z + a,z? + --- which are analytic
and univalent in the unit disc K, have real coefficients, and have the property
that if w; ¢ f(K) and if Imw,; = 0, then the ray [w]arg(w —w,) =] lies
in the complement of f(X). It follows from a result due to Lewandowski [4]
that S* is a subclass of Ly, certain close-to-convex functions we defined in
§1. If 0 <a < %, then it follows from Kaplan’s notion of close-to-convexity
[3] that for each feS® there exists a Carathéodory function
p(z)=1+ p,z+ p,z> + -+, with real p, and positive real part in K, and a
normalized convex function ¢(z) = z + ¢,z> + +++ such that f'(z) = p(z)¢'(z)
in'K. Elementary geometric considerations show that ¢(z) may be chosen
to be independent of fe S*: indeed, we find

1 1—z 1-2a-
9 = 57 7% [l“ (I+z) J
which maps K onto an angular domain with vertex at 1/[2(1 — 2a)] and in~-

terior angle (1 — 2&). Hence f(z) has the form

0= [ 105 (i—i—g)dc

0
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where p(z) is analytic and has a positive real part in K. It is easy to verify
that this last formula is valid for the cases « = 0 and « =1 too.

In order to determine the Koebe domain #£'(S%), we first determine certain
curves I',, 0 £ a £ 1. These curves are obtained by moving two symmetric
points W, and W, (with Im W, = 0) in such a way that the two symmetric
and infinite rays /, and g that emanate from W, and W, and have directions
e™ and e respectively, determine a simply connected domain whose
boundary is the union of I, and /¥ and whose inner radius with respect to
the origin is unity. If the prolongations of I, and I§ toward the origin meet
at the origin, then the corresponding domain is starshaped and the mapping

function has the form

z 1+ z\*
@ w=o@) = i ()
In this particular case W, = a(z,) = w,, where z, satisfies ¢'(zy) =0, with
Imz, =0, so that we find

ino
e

zo=1—2a+12\/a(1_a)a WO=W

If the prolongations of I, and I§ meet at uq on the real axis, then the func-
tion fe S that maps K onto the slit domain determined by [, and I§ has
the form

AL -l =o (F).

where x is real, —1 < x < 1, 4 is real and satisfies

A=01-xo'(x) = i(xfl [(1 - x)*+4ax] =

1+ %\ —x)* + dax
(l—x 1+x2

and where u, = — [0(x)/A]. Here o(z) is the particular star function (2).
Since f(K) and ¢(K) can be mapped onto one another by a linear transforma-
tion of the form A(W —uy) = w, it follows that the endpoint W, of the ray
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Iy is connected to the point w, by the relation W, = (wy/4) + u,. Hence
we have the following equation for the upper half of I',:

1— X)Za (1 + x)2 1 eina x
(

Wo = Wo(x) = (1+x T—x)2 +dox da(l—w)i-2 (1 —x)2+ dax’

—-1=2x=<1.

For x=1 and x= —1 we obtain the vertices Wy, = 1/[4(l — «)] and
Wy = —[1/(42)] of two angular domains whose interior angles are 2zn(1 — )
and 2no, respectively. Obviously #£7(S%) lies in the intersection of these two
angular domains. Since the inner radius with respect to a point is a monotonic
function of domains, it follows that the upper half of I', has at most one point
in common with each line parallel to the direction ™.

. 1 2 :
If we make the change of variable T= (i-—_l_:%) in the equation for the upper

half of I',, then we obtain

3) W = e™A(7) + B(1), 0<7< o,
where
1 gl 1
Al) = 41—a+ar a1l —ar-e’
1 1—7
B(z) = 41~oa+at

To show that the upper half of I', is convex, it is sufficient to show that
arg W'(r) = Imlog W'(z) is monotonic, that is, to show
wW'(z) (e™A” + B")(e” ™A’ + B’) sinto(A"B’ — A'B")
Im ’ = Im 3 ’ t|2 = 112
W'(2) |ei=A" + B’ | W’

>0

holds. But this last is easy to show, because 4’(7)/B’(t) is monotonic increasing.
Hence the upper half of I', is convex.
For the particular case « = 0 we see that the inner radius of the strip domain
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[Imwl < nf4 with respect to the origin is unity, so that I'y must be contained
in this strip. It is easy to see that the function

1 14z 2z
fo(2) = 4 [1081 — Z+ {a +z)2]

satisfies the identity [fo'(2)/¢'(2)] = (1 + zH)/(1 — z?), with ¢(2) = z/(1 + z)
a convex univalent function in K. Hence fy(z) is close-to-convex and univalent
in K. A calculation now shows that f,(K) is the plane slit along two rays that
are parallel to the positive real axis and have endpoints } 1 i(n/8). If we use
the methods of the preceding discussion, then we can show that the upper
half of I'y has the equation

i E o)
@ w2 B tter—clogrint (o (14x\2_
T A-x)f(x) 4 1+ R VY

For the case « =1, we can get I'; by reflecting I'y about the imaginary
axis. The equation for I', is

tlogt — 1 — 7 + inz

075 0.
147

1
The following result asserts that we have obtained the boundary of (5%,
0sas=l.

Theorem 2. The Koebe domain A (S*), 0<a <1, is a domain that
is symmetric with respect to the real axis; its boundary consists of the convex
arcl’, and the refiection of T, in the real axis. Equations for T, are given

by (3), (4) and (5).

Proof. Let W, eI, and consider the plane minus the rays from W, and
W, toward infinity and in the directions ™
be the function that maps K onto this slit domain. It follows from the de-
finitions of I', that the inner radius of this slit domain with respect to the
origin is unity. Now let fe S*. If the prolongations of those slits, from W,

{4 i

and e™'™, respectively; let ge S*
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and W, “‘toward the origin,”’ did not lie wholly in f(K), then the inner radius
of f(K) with respect to the origin would be less than unity; this last assertion
follows from the monotonic character of the inner radius. But the inner radius
of f(K) with respect to the origin is unity. Hence we may conclude that the
prolongations of the slits from W, and W, ‘‘toward the origin’’ lie in f(K),
for each fe S®. This completes the proof of the theorem.

4. The class Ly. We now determine the Koebe domain for the class
of normalized close-to-convex functions f(z)=z + a,z?>+ -~ with real
coefficients.

Since Ly is compact, it follows that to each point wy of 0.4 (Lg), the boundary
of A (Lg), there corresponds at least one ge Ly such that w, ¢ g(K). More-
over, it follows from the starshapedness of #"(Lg) that all points on the ray
from wg to the origin, except for wy, belong to f(K) for each fe(Lg). The
intersection of ' (Lg) with the real axis is the open segment (—4,1); hence
we may assume Imw, > 0. Now it follows from Biernacki’s characterization
of close-to-convex functions [4] that the complementary set of g(K) contains
two infinite non-intersecting rays I, and I§ with endpoints w, and 1w, which
are parallel to the directions ™ and e” '™, respectively; here 0 S a < 1. If
we let h(z) denote the function that maps K conformally onto the domain
bounded by I, UlF subject to the conditions h(0)=0 and h’(0) > 0, then
we see that g(z) is subordinate to h(z). If A'(0) = A > 1, then the functions
h(z) is not only a member of L, but h(z)/A does not take on the value wy/A.
This contradicts the basic property of w,. Hence h(z) = g(z). It follows that
for each §, 0 < f <1, with argw, = fn, there exists a function gge S*= S8
such that X' (Lg) = Q gs(K); this last implies ) #(S%) < A (Lg). On the

@

other hand, for each o, 0 <a =<1, we have S*< L;, so that

() f(K) = # (Lo < ,Qaf(K) = A'(5%)

feLr

and A (Lp) < ﬂ A(S%) hold. Hence A(Lg)= ﬂ A(S*). Now it follows

from this last statement and Theorem 2 that the upper half and the lower
half of A'(Lg) are convex domains.
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An equation for the boundary of 2 (Lg) can be obtained in the following
way. For W = U 4 iV on the boundary of (8%, it follows from (3) that

oS o 7i-e 1—1
4W=U, = oca(l—oc)l-“l—oc+ocr+1~oc+ocr’
Q) .
H -
V=V, = sin ot T

ol — o)t-2 1 —a+ar

hold. We can assume 0 < « < 3 and that U and V are positive because (L)
is symmetric with respect to the coordinate axes. We find

— 1-1
= - 2 -
U =V1-Vi+i—rs =

We now wish to find the value of

. 1—-2 _
inf [m I Vl = constant, 0< V1 < 2] .

If we use the method of Lagrange multipliers and use the function

1—1
—_—t 1
T—atoc T logV;,
and if we then differentiate with respect to « and t and then eliminate 1, we
obtain

ot + (@ -1DA—-a+ar)

) log =2 + - = mcotma.

The derivative of the left-hand member of (7) with respect to  is
-Tl—z(t + 1)(1 — a + at), which is positive for t>0 and 0 <o <%. Hence

the left-hand member of (7) increases monotonically as 7 increases. Hence
for each o, 0 < & < } there exists a unique © = () for which (7) holds. Since
the left-hand member of (7) is negative for t=1 and 0 <a <%, it follows
that t =t() > 1.
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An examination of the preceding discussion shows that we have proved

the following result.

Theorem 3. The Koebe domain A (Lg) is a domain symmetric with
respect to the coordinate axes and whose upper and lower halves are convex
domains. An equation for that part of the boundary of A" (Lyg) that is situated
in the first quadrant is given by (6), where 0 <a <3} and where T = 1(x)

is the unique solution of equation (7) for each such a.
5. Odd convex and odd starlike functions.

Theorem 4. The Koebe domain A(SS) for the class of normalized
odd convex functions with real coefficients is a convex domain that is sym-

metric with respect to the coordinate axes such that the part of that lies
in the first quadrant has as supporting lines the lines

x y
3) + = = k(o) =
cosmax  sinmo 4 \/;c

reIrE—ao. O<ax<l,

and the (limiting) lines x = nf4 and y = n/4.

Proof. It follows from the symmetry and the convexity of each set f(K),
for fe S{, that J(S7) = ﬂ Sf(K) is both convex and symmetric with respect
feSe

to the coordinate axes. Now llet B befixed, 0 < f < 1, and let w, € 04°(S9) such
that the supporting line I/, of #(S7) at w; has direction ¢™ as its norma]
direction and p(f) as its normal intercept. On the other hand, if fe S5, then
the supporting line to f(K) that has ¢ as its normal direction has a nor-
mal intercept of, say, p(f;f); it is clear that p(f)=min[p(f;f) | fesi],
which follows from the compactness of S;. Now let R; denote the rhombus
with angles 27n(1 — ) and 278 determined by I, the reflection I;* of I; in
the real axis, and the reflection of I and I} in the imaginary axis, and let
fy(z) be the element of S{ that minimizes the normal intercept p(f;f), with
B fixed. We see that fy(K) =R, f'4(0)=1. Now suppose that R; — f3(K)
contains interior points. Then the inner radius of R, with respect to the origin
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would be, say, A > 1. Hence if ¢;(z) is the convex univalent function that
maps K onto R;, with ¢4(0) =0 and ¢4(0) > 0, then ¢4(2)/4 is a member of
S¢, and the distance from the origin to the supporting line would be p(B)/A
which is less than p(f). But p(f) is the minimum such distance. Hence we
conclude that all the supporting lines of #(S$) that are not parallel to the
coordinate axes must be sides of rhombi with angles 2z(1 — ) and 278 and
whose inner radius with respect to the origin is unity. The members of S
that map K onto these rhombi are given by

z

0

We find
| 640) — d4(D)| = —— T@WTG - )
i

i3

as the length of the sides of the rhombi. It now follows that the equation of
the side I, in the first quadrant is given by (8). The limiting cases @ =0 and
=1 yield x=n/4 and y =m=/4, as supporting lines. This completes the
proof.

The analogous result for starlike maps is the following one.

Theorem 5. The Koebe domain H(ST) for the class of normalized
odd starlike functions with real coefficients is again a domain that is symmetric
with respect to the coordinate axes and is starlike with respect to the origin.
That part of the boundary of A'(SY) that lies in the first quadrant has
the polar equation W = Re®, where

R = %(cos0)_°°’2°(sin6)'““29 s
€))
o = gsnfe 0<0< a2

Proof. If we use the method of subordination as used by McGregor
[5], then we find that the boundary 8. (S?) is the set of endpoints of groups
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of four slits I,, k=1,2,3,4; these slits are infinite, lie on the lines
argw =nFo(n/2) and argw = + a(n/2), 0L a <%, have endpoints that
are equidistant from the origin, and are so chosen that the inner radius of
the slit domain so determined, with respect to the origin, is unity. The cor-
responding mapping function, for each a, 0 S0 <1, is

0=V = 5 (15

where o(z) is the starlike function (2). To find the endpoints of the slits, we
use the equation ¢'(z)=0, and we find that they satisfy the equation
2=1-20+i2./a(1 — o). Hence o =sin’0, where z = ¢” is the endpoint

of the slit in the first quadrant. This yields (9), for 0 < 6 < —71. For the lim-
iting cases § =0 and 8 = —;f-, we find w; = % and w; = }{, respectively. This

completes the proof.

6. Concluding remarks. In a subsequent publication we shall give
characterizations of the Koebe domains for certain other classes of univalent
functions; these will include certain classes of bounded functions, and certain
classes of meromorphic univalent functions.
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