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A. I n t r o d u c t i o n  

A quasicon[ormal group of an open set D C/~" = R n U {~}, n => 2, is a group of 

quasiconformal homeomorphisms of D such that every g E G is K-quasiconformal 

for some fixed K. If we wish to specify K and D we can say that G is a 

K-quasiconformal group of D. 

We are here mainly concerned with the question, first posed by Gehring-Palka 
[8, p. 197], when a quasiconformal group G of /~n is of the form 

(A1) G = [HI -1 

for some group H of M6bius transformations of /~"  and for some quasiconformal 

homeomorphism [ of /~n; clearly, all groups of this form are quasiconformal 

groups. 

Our method to study this question is based on measurable conformal structures 

of /~n (Section D). Such a structure tt assigns to a.e. x ~ R" a positive definite 

n • n matrix ~t (x) with determinant one. This is similar to the idea of a measurable 

Riemannian structure but since quasiconformality is unaffected by a change of scale 

we can normalize and require that the determinant is 1. A quasiconformal map [ of 

/ ~  is conformal in ~ (or preserves i t )  if for a.e. x E R n 

tt (x ) = f ' tx  )[t~ (f tx ))] = [ det f ' (x ) J-2/"f'(x )Ttz (f(x ))f'(x ), 

T being the transpose and det ['(x) the determinant of the derivative. 

We first establish that, given a quasiconformal group G of aft" (or more 

generally, of an open subset of/~ "), then there is a G-invariant conformal structure 

tt of/~n, that is,/x is preserved by every g E G (Theorem F). This has been first 

proved by Sullivan [17] in the discrete case. Our proof is different and applies to all 
groups. 

If n = 2, then one can realize this G-invariant conformai structure as a pull-back 

of the ordinary structure. Hence, for n = 2, every quasiconformal group of/~2 is a 

quasiconformal conjugation of a M6bius group [17, 18]. 

The situation is different for n > 2. One knows that there are quasiconformal 

groups which cannot be obtained in this manner [15, 19]. However, there are some 

conditions guaranteeing this conclusion. For instance, it follows from [22, Section 6] 
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that if a quasiconformal group contains enough M6bius transformations, for 

instance all orientation preserving M6bius transformations, then it is actually a 

M6bius group. Here we give some additional conditions for a quasiconformai group 

to be of the form (A1). 
These conditions involve the notions of a radial point (see (GO)) and a limit point 

(see (HI) and (H2)) of a quasiconformal group. These are generalizations of the 

corresponding notions for M6bius groups (in which case radial points are some- 

times called radial limit points or conical limit points). We show that if there is a 

conformal structure /~ invariant under a quasiconformal group G, and if /z is 

approximately continuous (see (A2)) at a radial point of G, or if/z is continuous at a 

limit point of G, then G is a quasiconformal conjugation of a M6bius group 

(Theorems G and H2). We can do this since we can transform the action of G by 

elements of G into neighbourhoods of a limit point or of a radial point x. If/~ is 

sufficiently constant near x, then G acts like a M6bius group near x. By blowing up 

neighbourhoods of x into /~" we now get our theorems. 

We get as a corollary that if the action of G can be extended to the hyperbolic 

space H "§ = R ~ • (0, o0) in such a way that the extension is a quasiconformal group 

of H "+' for which Hn+'/G is compact, then G is again of the form (A1). More 

generally, G is of this form (Corollary C) if T"/G is compact when T" is the 

so-called triple space (Section C) whose elements are triples of the form (u, v, w) 

(/~ n)3 and to which the action of G naturally extends. We can establish our theorem 

since in both of these cases every x E iff" is a radial point of G. A similar theorem 

has been indicated by Gromow [9, p. 209]. 
Finally, we prove that radial points of quasiconformal groups have the same kind 

of properties as radial points of M6bius groups. Either they have zero measure or 

full measure in/~" and the latter case occurs if and only if the action of the group in 

iff" x / ? "  is ergodic (Theorem I). 

We remark that the central idea of this paper is that of Theorem G which is 

closely related to that of [21]. We proved in [21] that if G is a M6bius group of /~"  

such that no x E /~"  is fixed by every g E G, and if f is a G-compatible map of /~ ~ 

which is differentiable at a radial point x of G, then f is a M6bius transformation. In 

this theorem, like in Theorem G, one first went to neighbourhoods of x and then 

blew up. This was the starting point of the present paper. 

It is worth noting that Lelong-Ferrand's study [13] was based on a somewhat 

similar idea. 
The situation in dimension n = 1 is quite different from the higher-dimensional 

case. We only mention Hinkkanen's result [11] that a uniformly quasisymmetric 

group of R is a quasisymmetric conjugation of an affine group of R. 

Most df our theorems are valid (or even meaningful) only for n > 2. The major 

exception is Section C whose theorems are valid also for n = 1. 

Finally, we remark that we prove in the course of the paper some auxiliary results 
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on quasiconformal mappings of which some may have independent interest. The 

most important of these is the generalization of the so-called good approximation 

theorem for quasiconformal mappings from dimension n = 2 to all dimensions 

n _-> 2 (Corollary D). 

N o t a t i o n  a n d  t e r m i n o l o g y .  Ouasiconformal maps and M6bius transforma- 

tions may be here also orientation reversing. The group of M6bius transformations 

of / ~  is M6b(n) ,  and a M6bius group is a subgroup of M6b(n) .  A map 

g ~ M6b (n) can be extended in a unique manner to a M6bius transformation of the 

closed hyperbolic space A "§ = H n+' U/~"  ; we do not distinguish between g and its 

extension to /~n+t. 

Our reference for quasiconformal mappings is V/iis/il/i [23] and we refer to it for 

terms occurring in connexion with quasiconformal mappings, such as ACL, 

K-quasiconformal,  etc. 

The hyperbolic metric of H "§ = R" • (0,~) is given by the element of length 

I dx I/x~+,, x = (x~ . . . . .  x,+,), and it is denoted by d. The euclidean distance of two 

points of R n is Ix - y [ and we set I oo - x I = oo, x E R ' .  The  spherical metric of /~  ~ 

is obtained by means of the stereographic projection and is denoted by q. The 

distance of a point x from a set X in a given metric d is denoted by d(x, X); this 

notation is used also for the euclidean metric. 

The derivative of a map f : U--> R n U C R ~ open, at a point x is f '(x) and we 

regard it as an n x n matrix. The operator  norm of [f ' (x)[  is 

f ' tx)  = sup I f ' (x) tu) l .  

The Jacobian at x is Jr(x). If fi : S . _ , ~ n  are said to converge uniformly to 

f:X--+ R~, we mean uniform convergence with respect to the spherical metric. 

We denote by m the (euclidean) Lebesgue measure of measurable subsets of /~  n 

and mq is the measure obtained from the spherical metric q. 

A map f : U ~ X, where U C/~ ~ is open and X is a metric space with metric d, is 

approximately continuous at x • U if we have for all e > 0 

(A2) mq({y ~ B~(x,r)tq U :d(f(x),f(y))<-<_eJ)/mq(B~(x,r))~ l 

as r ~ 0 ;  here B~(x, r) is the open ball in the spherical metric with radius r and 

center x. If x ~ ~, we can clearly use here instead the euclidean metric and measure. 

If X is a separable metric space and if f is measurable with respect to the Borel sets 

of X and Lebesgue measurable sets of U, then [ is a.e. (with respect to mq) 

approximately continuous (Federer [4, 2.9.13]). 

If a group G acts in X and Y CX, then Y is G-invariant if g(Y)  = Y for every 

g E G .  
The open euclidean ball with center x and radius r is B'(x,  r), Bn(r) = B'(r,O), 

and B ~ = B ' (1 ) .  
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An affine map ot of R" is extended to /~" by a(oo)= 2. 

We denote by id the identity map of a set X. 

The determinant of a matrix A is det A. 

The unit n • n matrix is L 

The standard basis of R "§ is et . . . . .  e.+,. 

The closure and boundary of a set X are denoted cl X and OX, respectively. 

Usually they are taken in /~". 

B. L e m m a s  on quas iconformal  mappings  

While we assume the usual theory of quasiconformal mappings, we now give 

some more special lemmas needed in the sequel. 

In our first lemma, a family ~ of embeddings U ~ / ~ ,  U C / ~ "  open, is 

topologized by means of the topology of uniform convergence on compact subsets 

of U (with respect to the spherical metric). The family ~ is compact if and only if it 

is possible to pick from every sequence f E ~ a subsequence f,, such that f,, ~ f 

uniformly on compact subsets of U for some f E ~. 

The next result is an application of Gehring-Kelly [7] (cf. also Gehring [5, 

Sections 5 and 6]). 

L e m m a  B1.  Let ~ be a compact family of K-quasiconformal embeddings 

U ~ R~, U C R" open. Let F C U be compact. Then there are positive a = a(n, K), 

a' = a'(n, K), b = b(n, K, ~ )  and b' = b'(n, K, ~ )  such that we have in the spherical 

measure 

b'mq(E) a'< - mq(f(E))_-  < bm~(E) ~ 

for all measurable E C F and f E J;. 

P r o o f .  We can reduce the situation so that U and f (U) ,  f E ~, are contained 

in some fixed bounded set of R"  and thus we can use the euclidean measure rather 

than the spherical measure. We can also assume that every [ is orientation 

preserving. It is also clear that it suffices to prove the right-hand inequality. 

Fix r > 0 such that B"(x, r) C U for all x E F which is possible by compactness, 

Let r" = r"(x, r , f )> 0 be the biggest number such that B"(f(x) ,  r")Cf(B"(x ,  r)). 

Let then r '=r ' ( x , [ , r )>O be the biggest number such that f (B"(x , r ' ) )C 

B"(f(x) ,r") .  Obviously r' and r" are continuous functions of x, r and [. By 

Gehring-Kelly [7, Theorem 2] we can assume that r is so small that if E C B" (x, r') 

is measurable, then 

(B1) m(fE)/r"" <= b[m(E)/r"] a 

for some positive b = b(n ,K)  and a = a(n, K). By continuity and compactness, 

r' _-> r~ > 0 and r" = < ro" < ~ for some ro' = ro(F,' ~ )  and ro " -- rg(F, ~) .  If E C F and 
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d ( E ) <  r[~, (B1) implies that m(fE)<= (r'~;"/ra")bm(E) a for all f E  ft. We now get 

the right-hand inequality by compactness of F. The lemma follows. 

We next turn to the convergence properties of quasiconformal maps. The 

dilatation K(f, x) of f at x is the dilatation of the differential f '(x) at x if f is 

differentiable with a non-vanishing Jacobian at x ; if this is not the case, then K(f, x) 
is undefined. 

In the next lemma I am indebted to T. Kuusalo and J. Vais~ii/i for some helpful 

comments. 

L e m m a  B2. Let f : U ~ R", U C R ~ open, be a family of K-quasiconformal 
embeddings such that f --~ f for some embedding f : U ~ R". Suppose that there is 
K' >- l such that for every e > 0 the spherical measure 

mq({X ~ U : K(f~, x)>= K' + e})---+ 0 

as i ~ oc. Then f is K'-quasiconformal. 

P roo f .  A ring A is an open set A C/~ n such that/~" \ A has two components. 

Let us recall that the conformal capacity of a ring A is 

= inf ~ IVu l~dm qC(A) 
A 

where dm is the Lebesgue measure and u ranges over all continuous functions 

u : cl A ~ R taking the value 0 on one component of aA and the value 1 on the 

other and such that u is sufficiently regular. Either one may take u to be C'  in A or 

a so-called admissible function (Mostow [16, p. 64]). 

We prove the lemma using this notion. It is clear that we can assume that all tile 

sets U, f (U) ,  f ( U )  are in some bounded set of R n. Let A be a ring such that 

c l A C U  and set for r > 0  

A '  = {z ~ f ( A  ): Bn(z,r)C f (A  )} 

which is, at least for small r, a ring such that cl A',Cf(U).  Suppose that r > 0 is 

given such that this is true. Since f --~ f uniformly on compact subsets of U (V~iis/il/i 
[23, 21.1]), there is i, such that f ( A ) D  A" if i => i,. 

Let u', be a differentiable admissible function for A',. Extend u', to /~" by the 

requirements that u', is continuous in /~" and constant on each of the two 

components of /~  n \ A. Then Mostow [16, Lemma (3.4)] implies that u; is ACL and 
that V u ; = 0  a.e. in Rn \ A ' .  Hence 

f IVu',t"dm = f [Vu:["dm 
A' ,  A '  

whenever A '  D A ', is measurable. 
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Define now 

Ui = u r ~  

Clearly, u, I cl ]T'(A ;) is admissible for [/I(A',) and hence [16, Lemma (3.4)] again 
implies that u, is admissible for A, Furthermore, one easily sees that 

I X7u,(x)[ ~ ~lVu'(f(x))["K(f,, x)[ Jr,(x) I 

a.e. in A when Jr, is the Jacobian (cf. [16, p. 92] and [23, 34.6]). 

Choose e > 0 and set 

We now estimate 

E, = {x E A :K(f~,x)>= K ' +  e}. 

~(A)<-- f tVu'l ~drn< f IVu'(r(x))l'K(f~'x)lJr,(x)ldrn(x) 
A A 

Since m(E~)~O as i---~oo by assumption, the uniform absolute continuity of [~ 

(Lemma B1) implies that also m(:(E~))---~ 0 as i ~  oo. Hence the second term in 
(B3) tends to zero as i ~ oo. Suppose that u '  has been chosen in such a way that 

f lVu;l'dm <= C~(A;)+e. 
A', 

Letting i---~ oo and remembering (B2), we get now 

~ ( A ) - _  < ( K ' +  e)(~(A' , )  + e). 

This is true for every e > 0. Hence ~(A)<_ - K'CC(A',) for all small r. If we let r--+0, 
Cr cr ([16, Theorem 6.1]) and we finally get the conclusion that 

~r < r ' ~ ( f ( A ) )  

for all rings A such that cl A C U. 

One can also obtain the conformal capacity of A by the modulus of a path family 

~ ( A )  = M(Fn)  

when M ~ A )  is the modulus of the path family FA whose elements are paths in A 

joining the components o f / ~  \ A (Gehring [6], see also V/iis/il/i [23, 11.11]). Hence 
[23, 36.1] implies that the outer dilatation of f is K'. 
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Using Lemma B1, we see that the assumptions of the lemma are valid also for f? '  

and f-t  (or, more precisely, for their restrictions to some suitable subsets of /~") .  

Hence the outer dilatation of f- '  is also K'. It follows that f is K-quasiconformal 

[23, Section 13]. 

Finally, we record the following well-known 

L e m m a  !13. Let f : R ~ --~ Rn, n >= 2, be a conformal homeomorphism, that is, 

f is l-quasiconformal. Then f is a M6bius transformation. 

For a proof, see Mostow [16, Lemma (12.2)]. Later Gehring gave a simpler proof 

of it and [22] gives a half-page proof of it. 

For n = 3, this follows also from the much deeper Gehring-Resetnjak theorem 

which asserts that 1-quasiconformal embeddings of a domain of /~" into / ~  are 
restrictions of M6bius transformations. 

C. T h e  space  of triples T" 

A M6bius group of /~n has the most useful property that the action of such a 

group can be extended to the hyperbolic space H ~+~. This seems to be difficult for 

general quasiconformal groups but we now introduce a substitute for the hyperbolic 

space to which the action of any group of homeomorphisms of /~" naturally 
extends. 

We remark that in this section, unlike in other sections, we can also have n = 1. 

Of course, we must then define K-quasiconformal maps o f / ~  in a suitable manner 
and here we follow the convention of [20, IF]. 

The substitute for the hyperbolic space is the triple space T n which is a 
3n-manifold defined by 

T n = {(u, v, w) E (lffn)3 : u, v, w distinct}. 

There is a natural projection p : T n ---> H T M  defined by 

p(u, v, w) = the orthogonal projection of w (in hyperbolic geometry) 

onto the hyperbolic line joining u and v. 

If f is a homeomorphism of/~ n, it induces a homeomorphism of T n, also denoted by 

f, by the formula ( u, v, w ) ~ (/(u), f (v ), f (w )). Note that if f is a M6bius transforma- 
tion, p commutes with f, that is, the following maps T n --* H n+l are equal: 

(CO) fp = pf. 

This space was studied in [20]. We now give the properties of T n needed in this 

paper. If z ~ H ~§ then p- ' ( z )  is homeomorphic to the set of 2-frames of R ~+~ 
which is a compact space. It follows that if C C H n§ is compact, then also 
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(c1) p-'(c)c T" 

is compact. Hence, in a sense, T" and H "+~ are not very much different. It is also 

easy to see that if u = (u~, u2, u~)E T", p(u) is near x ~ / ~ "  if and only if at least 

two u~ are near x. More precisely, simple calculations [20, Lemma 3.2] show that if 

] u~ - x 1-<_ r for at least two i, then 

(C2) I p ( u ) - x  I-<- (~/2 + 1)r 

and if [ u, - x I--- r for at most one i, we have 

(C3) I p ( u ) -  x I>= r/(N/2 + 1). 

M6bius transformations of /~" define hyperbolic isometries of H n§ This fact 

generalizes as follows. Given n and K = I ,  there are m = m ( n , K ) > O  and 

c = c(n, K) > 1 such that if u, v E T" and f :/~" ~ / ~ "  is K-quasiconformai, then 

(C4) d(p(u),p(v))/c - m <- d(pf(u),pf(v))<= cd(p(u),p(v))+ m, 

as follows by [20, Theorems 3.4 and 3.6]. We need also a similar condition for the 

distance from a hyperbolic line. If q = (x, y) E / ~ "  •  is a pair of distinct points, 

let L(q) = L(x, y) denote the hyperbolic line joining x and y. Then c and m in (C4) 

can be so chosen that also 

(C5) d(p(u), L(q))/c - m <= d(pf(u), L(f(q))<= cd(p(u), L(q))+ m. 

This follows from [20, Theorem 3.8 and (3.16)]. 

L e m i n a  C I .  Let f~ be a sequence of K-quasiconformal homeomorphisms of R" 
such that {pfi(u) : i > 0} C H "+~ is bounded in the hyperbolic metric for some u ~ T". 
Then, by passing to a subsequence, we can obtain that f~ ~ [ uniformly in the 
spherical metric for some K-quasiconformal homeomorphism f of R". 

P r o o f .  Let u = ( u ,  u2, u.0. Pass to a subsequence in such a way that all the 

limits iim~_~/~(uj) = xi E/~",  j =< 3, exist. We can assume that xi CR".  All xj's must 

be distinct, otherwise {p[~(u):i>O} cannot be bounded by (C2). Then the 
conclusion follows by V~iis~il~i [23, 20.5, 21.1 and 27.3] if n => 2; if n = 1, this follows 

since quasisymmetric mappings have the same kind of compactness properties as 

quasiconformal maps [2, 2.2]. 

A M6bius group o f /~"  is discrete if and only if it acts discontinuously in H "+z. 

We get as a consequence an analogue of this for a quasiconformai group G of /~n. 

Such a group is discrete if we can find no sequence of distinct g~ E G such that 

g ~ f  for some homeomorphism f of /~". If G acts in X and x E X, G acts 

discontinuously at x if x has a neighbourhood U such that g(U) tq U~  0 for only 

finitely many g E G. 
Lemma C1 has as an immediate 
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Corol lary  C.  Let G be a quasiconformal group of R". Then the following 
conditions are equivalent. 

(a) G is discrete. 
(b) G acts discontinuously in T". 
(c) For all u E T", the set {pg(u): g E G} is a discrete subset of H "+~. 

Let f be a quasiconformai homeomorphism of /4"§ It is of interest to compare 

the action of f in T" and H "+'. We have the following generalization of (CO). 

Lernma C2.  Let f be a K-quasiconformal homeomorphism of flu +'. If  
u E T", then 

(C6) 

for some fit = fit(n, K). 

d( fp(u  ), p f (u  )) <-_ fit 

P roo f .  Extend f by reflection to a K-quasiconformal homeomorphism of 

/~,+t ([23, 35.2]). By (CO), we can compose with M6bius transformations in such a 

way that u = (0, e , ,~)  and that f (u )=  u. The family of K-quasiconformal maps of 

iff "§ fixing 0, et, and oo is compact, as we already observed in the proof of Lemma 

C1, and (C6) follows. 

Finally, we compare a quasiconformal group of H "§ (which defines also a group 

of H"§ by extension to the boundary) with the group it induces in T'.  

L e m m a  C3.  Let G be a quasiconformal group of ffI "+~ and denote by G also 
the quasiconformal group of R" which it induces on the boundary of the hyperbolic 
space. Then H"+~/G is compact if and only if T"/G is compact. 

P roo f .  Let G be a K-quasiconformal group of /4"+ ' .  

Suppose first that H"+t/G is compact and let C C H "+~ be a compact set such that 

GC = H "+'. Let C'  ={z EH"+~: d(z,C)<= fit} where fit = fit(n,K) is as in (C6). 

Then C' is also compact and so is C"= p-~(C')C T" by (C1). 

We claim that GC"= T". Let u E T' .  Then p(u) = g(z)  for some z E C and 

g E G. Thus d(pg-Z(u),z)<= fit and hence g- ' (u)E C". Our claim is proved and 
T ' / G  is compact. 

Suppose then that T ' / G  is compact. Let C C T" be a compact set such that 

GC = T". If we set C'  = {z E H"+t:  d(z,p(C))<= fit}, one sees as above that C'  is a 

compact set such that GC'= H "§ The lemma is proved. 

D. C o n f o r m a l  s tructures  

A measurable Riemannian structure of U C/~" would be a measurable map/~ 

which assigns to a.e. x E U a positive definite bilinear form tt (x). From the point of 

view of quasiconformal maps, two such structures/~ and/~ '  are equivalent if they 
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differ a.e. by a constant: i t ( x ) =  Axtt'(x) a.e. in U. This leads us to consider 
Riemannian structures which are normalized by the requirement that the determin- 
ant of tt is a.e. 1. In addition, it is reasonable to require that /z satisfies a 

boundedness condition. Such structures are to be called conformal structures and 

we will now define them more formally. 

The spaceS. For n=>21et  

S = {A : A is a real positive definite n x n matrix with determinant 1}. 

Then S can be identified with SL (n, R ) / S O  (n) where SL (n, R)  is the set of n x n 
matrices with determinant 1 and SO(n )  is the orthogonal subgroup of it. The 
general linear group GL (n, R)  acts on S by the rule 

(D1) x [ a  ] = I det X I-2/nxT a x  

where T is the transpose and det the determinant. Note that the action is actually a 

right action since X Y [ A ] =  Y[X[A ]] but we prefer to write it in this manner. 
The element of length 

ds 2 =--~- t r ( Y - ' d y y - l d y ) =  t r (Y- 'dy )  2, --f- 

where tr is the trace, makes S into a Riemannian space with metric d invariant 
under the action of GL (n, R ); the factor V"-n/2 is included in order to have equality 
in (D6). If I is the unit matrix, then 

(D2) d(L A ) = d(A ) = ~ ((log a,)2 + . . .  + (log An )2),,2 

when A, . . . .  ,An are the eigenvalues of A, see [14, p. 27] (note that by this same 
reference S is a geodesic subspace of GL (n, R ) / S O  (n)). Other distances d(A, B) 
can be calculated by (D2) and the invariance of the action of GL (n, R).  

The space S = SL (n, R ) / S O  (n) is a globally symmetric Riemannian space (see 
table V in Helgason [10, p. 518]). It is of non-compact type, that is, the orthogonal 
symmetric Lie algebra associated to S ([10, p. 213]) is of non-compact type ([10, p. 

230]). (For the calculation of this algebra see [10, p. 451].) Hence S has negative 
curvature by [10, Theorem V. 3.1], that is, the sectional curvature is = 0 at all 

points along all plane sections. Hence S is a complete, simply connected Riemannian 
manifold of negatioe curvature. We will make use of this fact in Theorem F. 

We will use on S also another metric, denoted k. It is defined by the requirement 
that it is also invariant under the action of GL (n, R)  and that 

n 
= A .. . .  log 1/a ~,,) (D3) k ( A ) = k ( I , A )  ~ m a x ( l o g  A 
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when AA is the biggest eigenvalue of A and '~ m , ,  A,,~. the smallest. Note that these 

requirements make indeed k well-defined. 

To see that k is a metric, note that it is obviously positive definite. Since 

obviously k(I ,A)=k(A,I ) ,  it follows by the G L ( n , R )  invariance that k is 

symmetric. To prove the triangle inequality, it suffices to show that 

(D4) k(I, B)<= k(I, A )+ k(A, B) 

for all A , B ~ S .  Let C=A- 'nBA -m. Then k(A,B)=k(I ,C).  Since B =  
A InCA m, we have 

B A C B A C 
A ma~ < A > m..A~.~ and a,.~.= = A minA min 

which easily imply (D4). 

We get by (D2) and (D3) the following relation between k and d: 

(D5) 
k/X/nn- 1 =< d _-< l k if n is even, 

t k X / n -  1/n if n is odd. 

These inequalities are sharp. To see this, let A E S have eigenvalues a l , . . . ,  A, and 

suppose that k(A)= [log A ~n I. Then one easily sees that the lower bound occurs 
when the eigenvalues satisfy (up to permutation)A]/t"-l~= A~ -~ . . . . .  A: 1. Simi- 

larly, if n is even, the upper bound occurs when al A . ~ 2  -t . . . . . .  A . n + ~  . . . . .  Aft; 
if n is odd, then A, . . . . .  X~.-i)n = A~-2+,~2 . . . . .  X:[, and X. = 1. 

Let us note the consequence that if n = 2, then 

(D6) k = d. 

C o n f o r m a l  s t r u c t u r e s .  Now we can define that a conformal structure of an 

open subset U of /~", n->2,  is a measurable map/~ which assigns to a.e. 

x E U f3 R"  an e l emen t /~ (x )E  S such that k(p(x))is essentially bounded. The 
standard conformal structure ~ of U assigns to every x ~ U f3 R"  the unit matrix I 
and it is meant if no other structure is specified. 

Thus here (and also often in the following, even if we do not always mention it) 

everything is modulo null-sets:/~ = v if /r  = v(x) a.e. In particular, we need not 

care about the value of a conformal structure at oo which would cause some 
problems, see Remark DI.  Therefore we prefer to regard /~ undefined at 0o. 

Now we can define when an embedding f : U---> U' is a quasiconformal map in 

structures p and /~' of U and U', respectively. If f is differentiable with a 
non-vanishing Jacobian Ji(x) at x ~ U, we denote 

K(f, g, it ' ,  x) = exp k(t~(x),f'(x)l#(f(x))]), and 

(D7) 
K(f, it, It ') = supess{K(f, g, it ' ,  x) :  x E U and [ is differentiable 

with Jt(x)#O at x}. 
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We say that f is a K-quasiconformal map (U, t z ) ~  (U', ~') if 

1 ~ f is ACL and a.e. differentiable, and 

2 ~ K(f,l~,lx')<=K<~. 
In view of the essential boundedness of k o/z and k o/~', the property of 

quasiconformality does not depend on the structures but K-quasiconformality may. 

In the case of the standard structure, we get the usual K-quasiconformal maps 
U---r ([23, 34.6]). The map f : (U, l~)~(U' , l~ ' )  is conformal if it is 1- 

quasiconformal, that is, if it is quasiconformal and if 

(08) ) = f '(x '([(x ))] 

a.e. in U. 
If we mean here the standard structure t, we omit it from the notations and 

simply denote K(f) and K(f, x). Since the standard structure is our reference point, 

it is natural to define the dilatation of a conformal structure tt of U by 

K(g)  = K(Id, L, tt) and .K(g, ,x)= K(Id,~,/z,x), 

Id being the identity map U ~  U. 
The familiar rules for the dilatations of compositions and inverses of quasiconfor- 

mal mappings generalize straightforwardly using the fact that k is a GL(n, R)- 

invariant metric of S. We record them here for later reference: 

K(f,l~,l~',x)= K(f- ' ,# ' ,# , f (x)) ,  and 

(D9) K(g[, l~, Ix ", x) <= r([, Ix, lz ', x )K(g,/~ ',/z", f(x)) 

a.e. in U for quasiconformal maps f : (U, p.)--* (U',/.U) and g : (U', /z ')-- ,  (U", it"). 

It follows that 

K(f,/x,/z ')= K(ffl,/.U,/z) and r(gf,  l~,l~")<-- r( f ,  lX, l~')r(g,l~',lz"). 

There are also other measures for the dilatation of a map although this is, 
perhaps, the most widely used. In particular, it is used by V~iis~ii~i [23, 34.6] which is 

our standard reference. We will use it whenever convenient but one of our 
theorems (Theorem F) is most naturally expressed by means of the dilatation 
obtained using the metric d of S instead of k. Thus we define the D-dilatation of a 

quasiconformal map f : (U, # )--* (U', # ' )  at a point x where f is differentiable by 

(O 10) O (f,/z,/z', x) = exp d (g (x), f'(x)[g'(f(x))]) 

and set D(f,#, /~ ')  = supessx~v D ( / , g , g ' , x ) ;  D([), D(g), D([,x), and D(lz, x) 
are defined similarly. The properties (D9) are valid also for D and (D5) gives a 
relation I:)etween K and D. 

The D-dilatation was considered by Ahlfors [1] and was suggested by Earle 
(unpublished). 
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If f : U---> U' is quasiconformal (in the standard structures), and if Ix and/~' are 
conformal structures of U and U', then one can define the image [,/z of/~ and 
pre-image [*/x' of /~' by the formulae 

(Dl l )  [,#([(x))=['(x)-l[l~(x)] and [*Iz'(x)=f'(x)[tz'(f(x))]; 

in order that [ , /z be defined at all points, we must require that [ : U---> U' is a 

homeomorphism (note that [,/z = 0t-')*/~). Thus [,/z and [*/z' are uniquely 

determined by the requirement that [ : (U,#) - ->(U' , [ , l z )  and 
[ : (U, [*#')---> (U', /z ')  are conformal (see (DS)). This fact and (D9) now imply that 

if [ :  U---> U' and g : ( U , g ) ~ ( U ,  v ) a r e  quasiconformal, then 

(D12) K(fgf - ' , f , l z ,  f , v , f ( x ) )  = K(g, lz, v, x) 

a.e. in U. Finally we note that 

(D13) (gf),tz = g , f , g  and (gf )*tz"=f*g*#" 

when [ : U---~ U' and g : U'---> U" are quasiconformal and/z and/z" are conformal 
structures on U and U", respectively. 

Finally, we define the generalization of the complex dilatation for n => 2. It is 
called the matrix dilatation and is defined for the quasiconformal map f : U ~  U' 
by 

(D 14) m (x) = I det f '(x ) 1-2/7'(x )TI'tx ) = ['(x)l/] 

from which expression we see that/z/is a.e. defined and that/z t = f*L if we regard it 

as a conformal structure and hence f : (U,/zt)---~ (U', ~) is conformal. We record the 
following composition rule for the matrix dilatation 

(D15) g~, (x) = g'(x)[m(g(x))] 

a.e. in U when [ : U---* U' and g : U'---> U" are quasiconformal. 

Convergence t h e o r e m s .  As is well-known, a limit of K-quasiconformal 

embeddings is also K-quasiconformal provided that it is an embedding. We now 
give a generalization of this. It is also a generalization of Lemma B2 on which it is 

based. Actually, Lemma B2 almost suffices for us but in Theorem F we need the 
strengthened form for uncountable quasiconformal groups. 

Theorem D. Let ~ : ( U, iz )---> ( V, v) be K-quasiconformal embeddings and 
suppose that [~ --> f for some embedding U---> V. Suppose that for some K '> 1 and all 
e > 0  

(D16) mq({y ~ U:K(~ ,  g, v, y ) >  K ' +  r 

as i--~oo. Then f is a K'-quasiconformal embedding (U, lx)-->(V, v) and ~--->f 
uniformly on compact subsets of U. 
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P roo f .  By (D9), each /~ is K(t~)K(v)K-quasiconformal (in the ordinary 

structures). Hence f is in any case quasiconformal and the convergence is uniform 

on compact subsets of U by V/iis/ilii [23, 21.1 and 37.3]. Hence it suffices to prove 

that 

(D17) K(f,~, v,x) <- _ K' 

for all points x E U such that x#oc# f ( x ) ,  that [ is differentiable at x with a 

non-vanishing Jacobian, and that/.t is approximately continuous at x (see (A2)) and 

v a t / ( x ) ,  these points having full measure in U. See [23, 33,3] and [4, 2.9.13]. 

Pick then atfine maps a and /3 of R" such that /3(0)= x, af/3(O)=O and that 

/3*/.L(0) =/3[/.~(x)] = I = a,v(O)= a-t[v(f(x)]. Replace now f, f, p. and v by af~, 
otis~3,/3 *l~ and a ,  v. By (D9) and (Dl 1),/~ still satisfy (D16), and K(f, #, v) does not 

change. 
Hence, when proving (D17), we can assume in addition that x = 0 = f(0) and that 

/z (0)= I = v tO). 
Define the maps B"--* R" by 

g~(y)= 2'f(2-'y) and g,i(Y) = Zf,(2-'y); 

by passing to a subsequence we can indeed assume that g~ and g, are well-defined 

(and that the image is a subset of R" ). Then g~ o f'(0) I B" as i o oo and, for fixed i, 

g, ---> g~ as j ---> oo and the convergences are uniform. Hence we can find a sequence 

jl < j2 < �9 "" such that setting 

then 

uniformly on B' .  

hi ----> f'(O) [ B" 

Define conformal structures #~ and i,, of B" by 

# , ( y ) =  #(2-~y) and v~(y)= v(2-'y); 

these are the pre-images of p, and v under the map y ~ 2-'y. It is clear by (D16) that 

the sequence j, can be so chosen that if 

(D18) F~ ={y E B "  :K(h,  lz,,v,y)>=K'+2-'}, then m(F~)_-<2 -'. 

Next pick e > 0 and consider the sets 

E~ ={y E B "  :K( I z . y )=K( I z ,2 - ' y )> l+e} ,  and 

(D19) 
E~ = {y E B" : K(v,, h, (y)) = K(v,2-~h,(y)) > 1 + e}. 
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We claim that both m ( E , ) ~ O  and m ( E ' , ) ~ O  as i ~ .  For re(E,) this is clear by 

the approximate continuity of /x at 0. To see it for m(E'i), let 

E ' ;=  {y E B n ( 2 l f ' ( 0 ) l ) : g ( v , 2 - ' y )  >- 1 + e} 

and note that hi (B n) C B n (21/'(0)])for big i. By the approximate continuity of v at 

0, m (E'[)---~ 0 as i ~ ~. Since h, (E',) C E'~, the claimed result now follows by Lemma 

B1. It can be applied since h, and f'(0) are KK(lz)K(v)-quasiconformal and since 

they form a compact family of mappings (to apply Lemma B1, we can clearly 
assume that they are maps 2 B " ~  Rn). 

As we observed above, h, are KK(lz)K(v)-quasiconformal (in the ordinary 

structures). Furthermore, by (D9), (D18) and (D19), 

r(hi, y)  _--- (1 + + 2-')  

if y ~ B n \(E, t.J E',U E).  Since m(Ei U E',U E)---* 0 as i---, oo and e was arbitrary, 

we can apply Lemma B2 to obtain that f'(0)[ B" = l im,~  hi is K'-quasiconformal. 

Thus K(Lx)= K(f'(O)) <- K' and the theorem is proved. 

We have the following corollary which generalizes for n _>- 2 the so-called good 

approximation ([12, IV. 5.6]) of planar quasiconformal maps. 

C o r o l l a r y  D.  Let [~ : U--~ R ~ be K-quasiconformal embeddings. Suppose that 

[~ ---* f for some embedding f : U ~ R ~ and that i~r, ---* I~ in measure for some 

measurable map Iz : U ~ S. Then f is K-quasiconformal and 

I~t = l,t 

a.e. in U. 

P roo f .  Since /zr ,~/x in measure and j~ are K-quasiconformal, K(/~)_- < K. 

Hence/z  defines a conformal structure of U. Regard/ ,  as maps ( U , / ~ ) ~  (/~', ~). 

Then K(f~,/z, ~)_-< K(/z)K = K 2 and our assumptions imply that, given e > 0, 

mq({y E U : k(p,(y),/z~, (y ) )=  log K(~, p,, ~ , x ) -  > e})---~ 0 

as i ~ oo. Hence Theorem D implies that f : ( U ,  t t ) ~  (~n, ~) is conformal. That is 

/~r =/~ a.e. in U. 

The example in Lehto-Virtanen [12, IV. 5.4] shows that without the assumption 

that /~I, ~ tt in measure, it is not in general possible to pass to a subsequence in 
such a way that /zr,---*/zt a.e. in U. 

R e m a r k s .  D1.  Actually, a conformal structure is a field of bilinear forms 
on the tangent space of U. If x ~ U fq R n, it is natural to identify the tangent space 

at x with R n. However, if x = ~, no such natural identification exists but we would 

have to use auxiliary M6bius transformations to define p,(x) as an element of S, 
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that is, we take g E M6b(n) ,  g(oo)~ oc and consider g*/~(g-'(oo)) (or g,/z(g(oc))). 

But an examination of the transformation formula (Dl l )  shows that this depends 

on g. Since we usually need not consider a conformal structure at oo we have not 

introduced this complication, to define a conformal structure as a field of bilinear 

forms of the tangent space. 
Note, however, that K(g*lz, g-t(x))= K (~ , x )  is independent of g. Hence its 

definition for x = oo does not pose difficulties. Similarly, such properties of ~ like 

continuity and approximate continuity are independent of g and hence well-defined 

also for x = oo. Understood this way, the point x in Theorems F and G can be also 

oo. Observe that even if we can define /z(oo)E S in such a way that /x becomes 

continuous (or approximately continuous) at oo this may not be true of g*/x at 
g-l(oo). 

The same remark applies also to the matrix dilatation which is also a field of 

bilinear forms in the tangent space. However, if / ( x ) =  0% x ~  0o, then /.qr(x)is 

independent of g E M 6 b ( n ) ,  g(oo)~oQ as follows by (D15), and is thus well- 

defined. On the other hand, ~rg(g-~(oo)) depends on g and this /zr(oo) cannot be 

defined in this manner. 
Again, continuity o f / z  r is well-defined for x = oo and so is K([, x) if jf is regular 

enough at x. 

D2.  If n = 2, then the matrix dilatation of f at a point x determines the 

complex dilatation of [ at x and conversely; this is due to the fact that both give 

essentially the ratio of eigenvalues of f '(x)Tf'(x) as well as their eigenspaces. Then 

the solvability of the Beltrami equation implies that given a conformal structure 

on U C/~ 2, there is a quasiconformal map f :  U---> U' such that/.L =/zf a.e. in U. 

E.  T h e  c e n t e r  o f  t h e  s m a l l e s t  d i s k  

In the next section we will show that any quasiconformal group o f /~"  acts as a 

group of conformai homeomorphisms with respect to some conformal structure of 

/~". This result is based on a lemma on the uniqueness of centers of smallest disks 

which we now present. 
A smooth Riemannian manifold M has negative curvature if the sectional 

curvature of M is < 0 along each planar section at every point of M. We denote by 

d the geodesic metric of M and let 

D(x,r )= {z E M : d(z ,x)  < r}. 

We assume now that M is complete, simply connected and has negative curvature. 

Then all ~eodesics of M are non-intersecting and homeomorphic to the real line. 

Any two distinct points x, y E M can be joined by a unique geodesic and we denote 

by xy the closed geodesic segment joining x and y;  then d(x, y) = the length of xy. 
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If z ~M,  x ~  z ~  y, we let ang(z ,x ,y)~[0,1r]  be the angle between zx and zy. 

Using this notation we have 

(El) d(x,y)2>>-d(z,x)2+d(z,y)2-2d(z ,x)d(z ,y)cosang(z,x ,y) ,  

see Corollary I. 13.2 of Helgason [10]; also the other results mentioned above can 

be found in this book. 

Formula (El) makes it possible to prove 

L e m m a  E. Let M be a simply connected, complete Riemannian mani[old o/ 
negative curvature. Let X C M be non-empty and bounded. Then there is a uniquely 
determined disk D(Px, rx) with smallest radius r• containing X. Furthermore, i] 
X CD(x,r)  [or some x ~ M  and r=>0, then 

(E2) d(x, Px)<= r. 

Proof .  We can assume that X ~ a point. Then 

r =inf{r ' :  D(y, r ' )D X for some y ~ M}>0.  

It is easy to see that there is at least one y E M such that D(y, r)D X. Suppose that 

also D(z , r )D X. If z ~  y, we get a contradiction as follows. 

Let w be the midpoint of the segment yz and let D = D(y, r)N D(z,r). Pick 

u E D, u ~  w. Then either ang(w, u, y)=> Ir/2 or ang(w, u, z ) =  zr/2. Suppose, for 

instance, that the first case occurs. Then (El) implies that 

r 2 => d(y, u) 2 >= d(w, y)~ + d(w, u) 2 - 2d(w, y)d(w, u)cos ang(w, u, y) > d(w, u) 2. 

Hence d(w, u ) <  r if u E D. Since D is compact, it follows that X CD CD(w, r') 
for some r' < r, a contradiction. Hence P• is well-defined. 

Suppose then that X C D(x, r) :Let  D(y, p) be the smallest disk containing X. If 

y ~ D(x, r), let {w } = xy (3 ~D (x, r). Then, using (El), one sees that ang (w, x, u ) <  
�9 r/2 for all u E D (x, r) N D (y, p), u ~ w. Hence ang (w, y, u) => 7r/2 and it would 

follow as above that D(w, r') D D(x, r) CI D(y, p) for some r' < p. This contradic- 

tion proves (E2). 

R e m a r k s  E l .  Let Cr be the family of all non-empty, bounded subsets 
of M. Define the Hausdorff metric p in CO(M) by 

(E3) p(X, Y)=sup{d(x ,  Y ) , d ( y , X ) :  x E X, y E Y}. 

This makes q~(M) a pseudo-metric space (p is a metric in the subfamily of 

non-empty, closed and bounded subsets of M). 

We will need the fact that X ~ Px is a continuous map C~(M)--~ M. To see this, 

suppose that it is not continuous at X. Then there is a sequence X~ E Cg(M) such 
that 

(E4) p(x,, x ) ~  o 
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but that 

(E5) d(Px, Px,)> E 

for some e > 0. Then, for big i, X~ C{z E M " d(z, X )  <= 1} which is a compact subset 

of M. Hence, by passing to a subsequence, we can assume that the l imits  

(E6) x = l i m P x  and r = i i m r •  
i ~  , i ~ =  

exist. If e' > 0, then D(x, r + e') ~ X~ for big i and hence D(x, r + e') ~ X by (E4). 

It follows that D(x, r) ~ X. Suppose that also D(y, r') 3 X. Then D(y, r") D X~ if 

r" > r' for big i and it follows that r' _-> lim~_~ r~ = r. Thus r = rx and consequently 

x = Px. This contradicts (E5) and (E6) and the continuity is proved. 

E2 .  If X C D(x, r), r > 0, and if x E X, then actually slightly more than (E2) is 

true. To see this, observe that in any case rx =< r. If rx < r, then d (x, Px) <= rx < r. If 

r• = r, then D(x , r )  is the smallest disk containing X and hence Px = x and 

d(x, P x ) = O <  r. Thus always d(x, Px)< r. 

Now Px = Pc~x and the family of all closed subsets of D(x, r) containing x is 

compact in the p-metric. This follows since, as is well known, the family of all 

non-empty and closed subsets of D(x, r) is compact ([3, pp. 58-59]). As we saw, the 

map X ~ Px is continuous and it follows that, if r > 0, there is r' < r (r' may depend 

on x) such that 

(E7) d(x, Px)< r' 

whenever X C D(x, r) and x E X. 

If M is the hyperbolic space, one can make more precise calculations ([18]) and 

show that in this situation in fact 

(E8) d(x, Px) <= ar cosh (cosh r) "2 <= min (r/V/-2, r/2 + log V~) 

and in the right-hand inequality the equality holds only for r = 0. 

E3 .  Lemma E gives a simple proof of the following theorem. 

Let F be a group of isometries of a simply connected, complete Riemannian 

manifold M of negative curvature. Suppose that Gx is bounded for some x E M. Then 

there is x. E M fixed by every g E G. 

By Lemma E, we can take for x,, the center of the smallest disk containing Gx. 

F. I n v a r i a n t  c o n f o r m a l  s t ruc tures  

We will/now show that a quasiconformal group of U C/~" admits a G-invariant 

conformal structure/z. That is, every g E G is a conformal map (U,~)-->(U,t~),  

or, equivalently, g . tz  = / z  = g*t~. Explicitly, this means (see (D8)) that 
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(F0) g'(x)[p, (g (x))] =/~ (x) 

a.e. in U when g E G is fixed. Here it is most convenient to work using the 

Earle-Ahlfors dilatation D(f )  of a quasiconformal map (see (D10)). Sullivan [17] 

gives a different proof of it for countable G. 

T h e o r e m  F.  Let G be a quasiconformal group of U, U C R" open. Then U has 
a G-invariant conformal structure it. Furthermore, if D (g)<-_ D for every g E G, then 

(F1) D 0 . t ) -  < _ D. 

P roo f .  We assume first that G is countable. In this case U has a measurable 

G-invariant subset U' C R" of full measure (that is, U \ U' is a null set) such that 

every g E G is differentiable with a non-vanishing Jacobian with D ( g , x ) =  < D at 

every x E U'. Then /xg(x) is defined for every x E U' and we set 

(F2) Mx = {/x,(x) : g E G} 

for x E U'. If g, f E  G, then /zig(x)= g'(x)[lzf(g(x)) ] (see (D15)) and hence, for 

every x E U' and every g E G, 

(V3)  g'(x)[Mgcx)]={g'(x)[Izt(g(x))]: fEG}={Iztg(x): fEG}=Mx" 

Thus the set Mx satisfies the transformation rule (F0) that a G-invariant 

conformal structure should satisfy. 
Now /. t ,(x)E S which is a simply connected, complete Riemannian space of 

negative curvature, as we observed in Section D. Furthermore, d(/.t, (x), I) =< log D 

for all g E G and x E U'. Hence we can apply Lemma E and set for x E U' 

(F4) /z (x) = Pu.  

Then/z satisfies (F1) by (E2). The map A ~ h [A ], h E GL (n, R ), is an isometry of 

S. Thus, by (F3), g'(x)[iz(g(x)] =/. t (x)  for every g E G and x E U'. 

Hence /z is a G-invariant conformal structure of U if it is measurable. To see 

this, let G = {go, g, . . . .  } and set M(x , j )=  {/z,, : i  <_-j} and/zj(x)  = PMtx,j). The map 

X ~ Px is continuous in the Hausdorff metric (E3) (see Remark El).  This implies 

first that each /zj is measurable and then that I.tj(x)--*lx(x) as j-.-,oo (x E U'). 

Hence /z is measurable. 
This proves the theorem in the countable case. We now suppose that G is 

uncountable. Regard U as a PL manifold. The space of all (not necessarily 

injective) PL maps U ~  U is clearly separable in the topology of uniform 

convergence on compact subsets. Since every g E G can be approximated arbitrar- 
ily closely by such maps, it follows that also G is separable. Hence there is a 

countable subgroup Go C G which is dense in the topology of uniform convergence 

on compact subsets. We have shown that there is a Go-invariant conformal 

structure/z on U. By Theorem D,/1, is also G-invariant. The theorem is proved. 
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R e m a r k s .  F1 .  Actually, since always I = l~d(x)EMx, there is by (E7) 

D '  = D' (D,  n) with the property that O ' <  D if D > 1 and that the D-dilatation of 

/~ satisfies 

(F5) D (/x) =< O '  =< D 

if D(g)<= D for all g E G. In view of (D5), it now follows that if K(g)<= K for all 

g E G, then 

(F6) K ( ~ ) _  -< K ' =  < K v-a=r 

for some K'  = K'(K, n) such that K'  < K "/;~ if K > 1 ; if n is odd, then one has the 

slightly better estimate K '  < K ~"-1~ if K > 1. 

If n = 2, then one can give an even better  estimate, cf. [18, p. 77] and (E8). We 

have 

(F7) K(tz)<=(V'-K + IFK+ V'-K-1/V'--K)/V~<=min(K'/'~,X/2-K), 

and on the right-hand inequality the equality is true only if K = 1. 

F2 .  If n = 2, then there is always a quasiconformal map f of /~" such that 

I~(x) = I~t(x) a.e. in U (see Remark D2). Hence [G([-II[(U)) is a conformal group 

of U (with respect to the ordinary structure). 

Note that here we need not assume that G contains only orientation preserving 

quasiconformal maps. We assumed this in [18] since one customarily considers the 

complex dilatation only for orientation preserving quasiconformal maps. 

F3 .  Suppose tha t /z  s, g E G, are defined at a neighbourhood of a point x ~ U 

and that they are equicontinuous at x (see Remark D1 for the case x = ~ = g(x)). 
Then ~ is continuous at x, as follows from the fact that the map X ~ Px is 

continuous (Remark El) .  In particular, i f /x s, g E G, are defined and equicontinu- 

ous everywhere, then ~ is continuous. 

F 4 .  Let d be a smooth Riemannian metric of U C/~" and suppose that G is a 

group of homeomorphisms of U such that every x E U has a neighbourhood W 

such that every g E G satisfies a bilipschitz condition on W with a bilipschitz 

constant not depending on x nor on g. Then one could show as above that U has a 

measurable Riemannian structure preserved by g E G. 

G. C o n f o r m a l  s t ruc tures  at radial  Po ints  

We will now show that if a quasiconformal group G o f /~"  admits an invariant 

conform~l structure which is approximately continuous (see (A2)) at a radial point 

of G, then G is a quasiconformal conjugation of a M6bius group. 

Radial points for M6bius groups are defined using the fact that the action of the 
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group extends to the hyperbolic space H"§ Such an extension is not known to exist 

for a general quasiconformal group G but we circumvent the difficulty using the 

triple space T" and the projection p : T" --~ H "+~ defined in Section C. Let x E R". 

Suppose that there is a sequence g~ ~ G such that given a triple z = (u, v, w)E; T" 

(i.e. u, v, w E R" are distinct) and a hyperbolic line L C H "+t with endpoint x, then, 

as i ---> ~, 

z~ =p(g~(z))=p(g~(u),g~(v),g~(w))---> x in/-t"+~, and 

(GO) d (z,, L) _-< M 

for some M ->0 when d(z,,L) is the hyperbolic distance of z~ and L. If this is true, 

we say that x is a radial point of (3. 

If (GO) is true for one particular triple z and one hyperbolic line L, then it is true 

for all triples and hyperbolic lines, with M depending on z and L, as follows by 

(C4). 

We denote by R ( G )  the radial point set of G. If G is a M6bius group, then this is 

the usual radial point se t  of G (these points are also called radial limit points, 

conical limit points or non-tangential limit points). Furthermore, radial points are 

preserved under quasiconformal mappings: If [ �9 --~ R" is quasiconformal and G 
a quasiconformal group of /~" ,  then 

(G1) R fiG[-') = [(R (G)) 

in view of (C5), (C2), and (C3). Thus our definition seems reasonable. 

T h e o r e m  G .  Let G be a quasiconformal group of R" and let ~ be a 
G-invariant conformal structure of R". Suppose that t~ is approximately continuous at 
a radial point x of G. Then there is a quasiconformal homeomorphism [ of R" such 
that fGf  -I is a M6bius group of R" and that 

(G2) K q )  _-< K ( ~  )2K(/~, x). 

R e m a r k .  Since a conformal structure/z is actually a field of bilinear forms on 

the tangent space, we have not defined ~ at oo. In order to consider Theorem G for 

x = o% we must replace G, ~, and oo by gGg -t, g,lz, and g(oo) for some g E M6b (n) 
such that g(oo)# oo. See Remark D1. 

Proof .  By (D12), we can replace G by hGh -1 and/z by h . # ,  if h is a M6bius 

transformation; inequality (G2) is not affected. Hence we can assume that x = 0. 

Let g, E G and z = (u, v, w) E T" be points that satisfy (GO) for some M > 0 with 

respect to the hyperbolic line L with endpoint x = 0 and oo. 

Choose a linear map ot of R"  such that a . / z ( 0 ) =  I ;  then 

(G3) K(ot) = K(l~, x). 
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Pick then positive numbers A, > 0 such that 

(G4) ate .§  Lpg,(z )) = d(e.+,, p(A,g,(z ))) < M 

which is possible by (GO). In view of (GO), 

(G5) X, ~ o0 

as i~oc .  Define now maps ~ : / ~ " ~ / ~ "  by 

(G6) /~(u) = A,ag~(u)= a(A,g~(u)). 

By (D9), each g~ is K(/z)2-quasiconformai and thus, in view of (G3), every f~ is 
K(/z)2K(/x, x)-quasiconformal. 

Now each Lg~ is a K(/z y-quasiconformal map of/~ ' .  Hence (G4) and Lemma C1 
imply that we can pass to a subsequence in such a way that Lg~--* ~ for some 

K(/~)2-quasiconformal ~ and that the convergence is uniform in the spherical 
metric. It follows that 

(G7) /~ --~[ 

where [ = a~ is K(tt)2K(/z, x)-quasiconformal and that the convergence is uniform 
in the spherical metric. 

Thus f satisfies (G2) and we conclude the proof by showing that [g[-' is a 
conformal map of /~" for every g E G. Since conformal maps of /~", n => 2, are 
M6bius transformations (Lemma D3) it follows that fG[- '  is indeed a M6bius 
group. 

Pick g E G and let 

g' = [g[-' and 

g', = / ,gL '  = (,~,a)g, gg; '(x,a)- ' .  

Consider the conformal structure/~, =/~ . #  of/~n. By (D12), each g~ is conformal in 

this structure. Since g', is conformal in /~, we have (see (Dll))  

(,.,) = ( , . , )  = = ( u )  = 

Now, /~ is approximatively continuous at 0 and so is a . ~  and, furthermore, 
a . /z(0)  = L Remembering that ~ ~0o, we obtain that, given e > 0, 

K(/z~, x)=< 1 + e 

if x E/~ n \A~ where m q ( A , ) ~ 0  as i---~oo. The maps g'~ and g' form a compact 

family of K(/~)8-quasiconformal maps of /~n. Hence it follows by Lemma B1 that 
there are measurable sets B~ C/~" such that mq(B~)~O as i---~oo and that 

K(iz, ,x)<=l + e and K(l~,,g;(x))<=l + e 
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if x E R " \ B ~ .  Since g'~ is conformal in /x~, we have by (D12) that K(g' ,x)<- < _ 

K(/z,, x)K(#~, g'~(x)) and hence 

K(g;, x)<= (1 + e) 2 

if x E /~"  \ B~. Thus K(g',  x ) ~  1 in measure and consequently Lemma B2 implies 

that g ' =  lim~_~ g'~ is conformal. The theorem is proved. 

We can now give a topological characterization for a quasiconformal group to be 

a quasiconformal conjugation of a M6bius group. Gromow [9, p. 209] has indicated 

a similar theorem. 

C o r o l l a r y  G.  Let G be a quasiconformal group of af " and suppose that either 

(a) T ' / G  is compact (T" as in Section C), or 

(b) G can be extended to a group o[ homeomorphisms o[ the closed hyperbolic 

space ISI "§ in such a way that H'§  is compact and that G is a quasiconformal 

group of H "+~. 
Then G is a quasiconformal conjugation of a M6bius group and every x E af" is a 

radial point of G. 

P r o o t .  We will show that in both cases every x E /~"  is a radial point of G. 

Since a conformal structure is a.e. approximately continuous, Theorems F and G 

imply that fGf- '  CM6b(n)  for some quasiconformal f. 

Suppose that T " / G  is compact and that G is a K-quasiconformal group. Then 
there is a compact set C C T" such that GC = T". Hence there is M > 0 such that 

d ( p ( u ) , p ( v ) ) <  M 

for all u, v E C. By (C4), there is M'  = M'(M, K, n) such that if g E G and u, v ~ C, 

then 

d(g(u) ,g(v) )<=M '. 

Fix z G C. Since every x' E H "+I is of the form pg(z')  for some z '  E C and g E G 

we have that d(x',pg(z))<= M'. Thus every closed hyperbolic disk of radius M'  

intersects p(Gz) .  It follows that every x E af" is a radial point of G. 

Case (b) follows now by Lemma C3. 

Thus the class of M6bius groups of af" such that H"§ is compact and the class 

of quasiconformal groups of af" for which T" /G  is compact are essentially the 

same class of groups. 

R e m a r k s .  G I .  If G is a K-quasiconformai group of aft" and the G- 

invariant conformal structure p. is obtained from Theorem F, then the map f of 

Theorem G for which [G[ -~ is a M6bius group satisfies 

(G8) K (f) <-_ K '3 <= g 3V'gzt 
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where K '  = K'(K, n) is as in (F6). Recall that K ' <  K ~'~r-' if K > 1 and that for odd 

n a slightly better estimate is true. 

Note that in Theorem G it would be impractical to use the D-dilatation since if 

D (]~) =< D and/~ ~ f for some quasiconformal f, it is not known whether D (f) =< D. 

G 2 .  Suppose that G is a quasiconformal group of /~" such that action of G 

can be extended to /q"+~ in such a way that G defines a quasiconformal group of 

H ~§ Then x ~ / ~  n is a radial point of G if and only if, given z E H n§ and a 

hyperbolic line L with endpoint x, the condition (GO) remains true if we set in it 

z~ = g~ (z). This is a consequence of Lemma C2. 

H. Limit  points  and conformal  s tructures  

We will now prove a similar theorem involving limit points of a quasiconformal 

group G. This is a set which includes the radial points of the previous section. If 

there is a G-invariant conformal structure of / ~  which is continuous at a limit 

point, then G is again a quasiconformal conjugation of a M6bius group. 

It is convenient to define limit points for a general quasiconformal group by 

means of the space of triples T n and the projection p : T" ~ H n§ of Section C. We 

say that x E /~  ~ is a limit point of a quasiconformal group G of iff ~ if there are 

g~ E G and z ~ T" such that 

(HI)  x = lira pg~(z). 

It follows by (C4) that if (HI)  is true for some z ~ T n, then it is true for all z ~ T n. 

The limit point set of G is denoted by L(G). Obviously, L(G)  is a closed subset of 
/ ~ .  

In view of (C2) and (C3), we can give also the following characterization for the 

limit set: x E L(G)  if and only if there are distinct u, v E/~n and g~ ~ G such that 

(H2) x = iim g,(u) = lim g~(v). 

It follows that L(G)  is preserved under conjugations 

(H3) L (fGf-') = f (L  (G)) 

for any homeomorphism of aft n, quasiconformal or not. 

We will now show that limit sets of discrete quasiconformai groups have the same 

kind of properties as limit sets of Kleinian groups. For the definitions of the notions 

"discrete"  and "discontinuous",  see Section C. 

T h e o r e m  H 1 ,  Let G be a discrete quasiconformal group of R n. Then 
(a) x ~ L(G)  if and only if there is a sequence of distinct elements g~ E G and 

y E R ~ such that 
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(H4) lim g~ (y) = x, 

(b) the set of points of R"  where G acts discontinuously is R"  \ L ( G ) .  

P roo f .  We will prove (a) which then implies at once (b) by (H2). It is also clear 

by (H2) that if x E L ( G )  then (H4) is true. Thus it suffices to prove that if (H4) is 

true, then x E L ( G ). 

If x ~  L ( G ) ,  then, by (H2), for no u E / ~ "  \{y} can there be a subsequence of g, 

(denoted in the same manner)such that x = lim~_~ g~(u). Hence, by [23, 19.2 and 

20.3], given u E / ~  n\{y}, we can pass to a subsequence in such a way that 

g~(v)---~h(v) for v E R " \ { u , y }  for some function h : / ~  \{u,y}---~/~ ~. Further- 

more, convergence is uniform on compact subsets of /~ n \{u, y}. Since G is discrete, 

h cannot be an embedding. Hence, by [23, 21.1], h is a constant, h ( v ) =  c for all 
v E /~  n \{u,y}. Since u E /~"  \{y} was arbitrary, we have in fact that g ~ ( v ) ~ c  

uniformly on compact subsets of aft" \{y}. 

We assumed that x ~ L ( G ) .  Hence c ~  x. It is not now difficult to see that 
g?l(v)---~ y uniformly on compact subsets of /~n  \{c}. Hence y E L ( G ) .  By (H3), 

then also g ~ ( y ) E L ( G )  and, L ( G )  being closed, x E L ( G ) .  This contradiction 

proves the theorem. 

We now consider G-invariant conformal structures at limit points of G and have 

the following analogue of Theorem G. If x = oo in it, the same remark applies as for 

Theorem G. 

T h e o r e m  IH[2. Let G be a quasicon[ormal group of R~ and let I~ be a 

G-invariant con[ormal structure o[ R". Suppose that tz is continuous at a limit point x 

o[ G. Then there is a quasiconformal map [ of R ~ such that[G[ -~ is a Mi~bius group 

and such that 

(H5) K(f )  =< K ( #  )2K(/.t, x). 

P r o o f .  As in the proof of Theorem G, we can assume that x = 0. Let g~ E G 
and z E T n be so chosen that (HI) is true for x = 0. 

Pick now a linear homeomorphism a of R n such that o t , / z (0 )= / .  Choose then 

)t~ > 0 and b~ E R"  such that, setting/3~(u) = Lu + b~, which is a similarity of R", we 

have 

[J, (p (agi (z ))) = p ([J,ag~ (z )) = en § 

Set f~ = [3,agi which is K(g)3-quasiconformal. By Lemma C1, we can pass to a 

subsequence in such a way that ~---~[ uniformly for some quasiconformal 
homeomorphism f of /~n. 

We claim that [G[ -x is a M/Sbius group. 
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Pick g E G. Set 

h = fgf-r and h, = f~gf~'. 

Each hi is conformal in f~,l.t = (fl~ag~),lz = (f l ,et) ,~ since g~ is conformal in p.. 
Since the derivative /3'~ = AJ, we have 

~ , ~ , ( y )  = (/~,,~),(y) = , ~ , ~  ( /3 , ' (y ) ) ,  

y E R  ". Furthermore, /371(en+1)--)0 as i--->oo. Hence /371(y)---~0 uniformly on 
compact subsets of R ' .  It follows that 

~, /z  (y)---~ I = a , # ( 0 )  

uniformly on compact subsets of R ' .  By (Dg), K(h~, x)--> 1 uniformly on compact 

subsets of R ' .  It follows that h = lim~_~ hi is conformal and hence a M6bius 

transformation by Lemma B3. 

Finally, to get (H5), note that, being conformal in #, each gi is K(# )L  

quasiconformal by (D9). Since a . / t  (0) = I, K ( a )  = K(/.t, x). Since/3~ is a similarity, 

= [3~ag~ is K(#)2K( i . t , x ) -quas icon formal  and (HS) follows. The theorem is 
proved. 

R e m a r k s .  H I .  If the conformal structure # in Theorem H2 is obtained 

from Theorem F, and G is a K-quasiconformal group, the estimate (G8) for the 
dilatation is valid also for the map f of Theorem H2. 

I-I2. If /~, g ~ G, is an equicontinuous family, then Theorem F gives a 

continuous G-invariant conformal structure (see Remark F3); for the definition 

and continuity o f / ~ ( x )  if x = oo or g ( x ) =  o% see Remark D1. Hence f G f - '  is a 

M6bius group for some quasiconformal f if L ( G ) ~  O. If G is discrete, this occurs 
by Theorem H1 as soon as G is infinite. 

Let us note still the following, somewhat striking consequence of Theorem H2. If 

L ( G )  =/~"  and G is not a quasiconfdrmal conjugate of a M6bius group, then a 

G-invariant conformal structure p, can be continuous at no x ~_ R ' .  And there is 
such a p, by Theorem F. 

I. Radial  points  

In view of Theorems F and G, it is interesting to know when the radial point set 

of a quasiconformal group G has positive measure since in this case G is a 

quasiconformal conjugation of a M6bius group. We will now investigate this matter 

and prove a theorem which generalizes a corresponding theorem for M6bius 

groups. 
In the following theorem, the action of G on /~" x /~  n is the diagonal action 

(x, y)---> (g(x ) ,  g(y)), g E G. A set F C/~" x/~n is a measurable f undamen ta l  set of 
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G if it is measurable and if F contains exactly one point from each orbit Gp, 
p E / ~ " x / ~ " ;  the action of G is ergodic in / ~ " x / ~ "  if every G-invariant 
measurable subset has either zero or full measure in/~" x /~"  (with respect to the 

product spherical measure). 

T h e o r e m  I. Let G be a quasiconformal group o[ R", n >= 2, and let Rc be its 

radial point set. Then 
(a) either Re or R" \Re  is a null-set, and 
(b) if G is discrete, then either G has a measurable fundamental set on R" x R" or 

the action o[ G on R" x R" is ergodic and the last case occurs if and only if 
m ( R ~ ) > 0 .  

P r o o f .  We start from the fact that this theorem is true for MSbius groups 

(Sullivan [17, pp. 482-483]). 
If m ( R ~ ) > 0 ,  then, as we observed above, there is a quasiconformal 

homeomorphism f o f /~"  such that H = fGf  -1 is a M6bius group. Since quasicon- 

formal maps are absolutely continuous and since RH = f(RG) (see (G1)), we get (a) 
by [17, Lemma 1, p. 482] (note that in this lemma it is not essential that H is 

discrete). 
Similarly, [17, p. 483] implies that if G is discrete and m ( R a ) >  0, then G acts 

ergodically on /~" x/~".  
We conclude the proof by showing that if m(R~)= 0, then the action of G on 

/ ~ " x / ~ "  has a measurable fundamental set. Our proof generalizes Sullivan's 

argument in I17, Lemma 2, p. 482]. 
If p = (x, y)  is a pair of distinct points of/~",  let L(p) = L(x, y) be the hyperbolic 

line joining x and y. Pick z E T" and let mo > 0. We claim that if x, y ~ Re, then the 

hyperbolic distance 

(I1) d(p(z), Ltg(x) ,  g(y))) =< mo 

for only finitely many g E G. Note that if the inequality (I1) is true, then by (C5) 

d(pg(z ), L (x, y)))=< m, 

where m~ = ml(mo, K, n)when G is a K-quasiconformal group. 
Suppose that (I1) is true for infinitely many g E G. Since the set of accumulation 

points of {u E H "§ : d(u, L(x, y)) =< m~} is contained in {x, y} (see Corollary C), it 
would follow that either x or y is in Re  contrary to our assumption. This proves our 

claim. 

Pick now u E H "+1. Let A = (R" \Ro)  x (/~" \R6) \ (d iagonal)  and set 

F'= {p E A : d(u, L(p))<= d(u, L(g(p))) for all g E G}. 

It follows easily by (I1) that F '  is a measurable set such that if p E A, then Gp n F' 
contains at least one but at most finitely many points. 
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We now obtain a measurable fundamental domain for G as follows. Let  p E A. 

Since each Gp Iq F' is finite, it is easy to find a rule that picks a point xp from each 

of these sets. For instance, if Gp fq F' C R z~, we can use the natural alphabetical 

order of R 2~, a n d  the general case can be treated similarly. It is then clear that 

F={xp  : p E A }  

is a measurable fundamental set for the action of G in A and adding a null-set we 

obtain a measurable fundamental set for the action of G in/~ n •  n. The theorem 

is proved. 

R e m a r k .  Here  it is essential that n ---_> 2 but our proof still shows that if G is a 

discrete quasiconformal group of /~, then the action of G has a measurable 

fundamental set in (/~ \ Re )  • (/~ \ Re).  (In this case it is not known whether Re has 

always full or zero measure in /~.) 

A d d e n d u m .  In Theorems G and H2 it would be possible to conclude the 

proof differently which would have some advantages. First of all the proof would be 

slightly simpler. More importantly, we would have the additional information that 

the conformal s tructure/~ in Theorems G and H2 is the pullback of the ordinary 

conformal structure of /~n under the map f constructed in the proofs. This is 

interesting in itself and would give a better estimate for the dilatation of f than we 

indicated: dilatations of f and/~ are equal, and this regardless whether we use the 

K-dilatation or the D-dilatation. 

We indicate this for Theorem G, the case of Theorem H2 being exactly similar. 

The last paragraph of the proof of Theorem G should be replaced by the following 

one~ 

Since /.~ is approximately continuous at 0 and hi ~ 0% it follows that ~i--~ 

( = the ordinary conformal structure of R n) in measure. Hence the assumptions of 

Theorem D are satisfied if we regard ~ as a map (/~,/~)---> (/~ ~, L) and consequently 

/:(/~n,/x)--->(/~", t) is conformal, or, in other words, /~ is the pull-back of the 

ordinary structure of /~n under f. 
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