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The inequality that goes by the name of Hardy's inequality states, in its 

integral version, that if p > 1, f(x) > O, and 

then 

(1) 

x 

F,(x ) = f f(t)dt 
0 

oo oo 

0 0 

(See, for example, [4], Theorem 327.) Here, as in all such inequalities, we 

are to understand (1) as saying that if the right-hand side is finite, so is the 

left-hand side, and the inequality holds; the "constant" {p/(p- 1)} p in (1) 

is best possible. Another inequality, obtained by Hardy from (1) by using 

the converse of H61der's inequality ([4], Theorem 328), states that if p > 1, 

f(x) > O, and 
, ' .9 

FE(x ) = J t-  lf(t) dt 
x 

then 

(2) 

o o  o o  

0 0 
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The right-hand sides of  (1) and (2) are multiples of the same integral, and this 

fact suggests that the left-hand sides themselves might be comparable. This 

is, in fact, the case: there are constants c I and c2 (actually functions of p) 

such that 

(3) 

co 03 Go 

f x'Fl(x)"dx<c, yV (x)"dx<c  fx- = 2 = PFl(x)"dx .  

o o o 

There are various generalizations of Hardy 's  inequality: see, for example, 

[4], Theorem 330 and 346. Inequality (3) can be generalized in the same way: 

i f p > l , s > 0 ,  and - l < c  < s p - 1  we have 

oo x co oo 

0 0 0 x 

the same inequality holds in the opposite sense with a different C (corresponding 

to the other part of (3)). For a more symmetric formulation see (15) and (16) 

below; I state (4) in its present form because it is then the integral analogue 

of a series inequality that has applications to trigonometric series ([2], Lemma 

6.18; special cases appear in [6] and [7]). Now inequalities of this kind tend 

to be reversed when 0 < p < 1, and it was observed by R. Askey that both 

versions of  (4) do hold, reversed, for 0 < p < 1 ; but this means that (4) holds 

in both senses for 0 < p < 1 as well as for p > 1. (For the series analogue, 

and an application, see [1].) It will also appear that (4) holds, in both senses, 

when p < 0, but with s p -  1 < c < -  1. Inequalities with p < 0 have been 

little investigated; the series analogue of  (1) is discussed in [5]. 

To get the left-hand side of (3) from (4) when p > 1, replace f ( u )  by u - i f ( u )  

and take c = 0; then the left-hand side of  (4) is 

oo x oo x 

0 0 0 0 

if we take s = 1; these choices are possible since - 1 < 0 < p -  1. We are 

going, in particular, to establish (3) with explicit values for the constants: 
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co! cO 

0 0 

f F2(x)Pdx < (pP-1)  f x-PFl(x)Pdx, 
0 0 

p > l .  

L e m m a  1. If r is convex and continuous, f is non-negative, 2 is non- 

decreasing, and L = 2 ( o o ) -  ),(0), then 

(5) 

oO oO oO 

0 0 0 

the inequality is reversed when r is concave. In particular, 

(6) 

CO CO CO 

x -1 xu)d2(u d x <  L p x -  x)Pdx 

0 0 0 

, p > l o r p < O ;  

(7) 

cO cO co 

X X U  U)  X X = x)Pdx, 

0 0 0 

0 < p < l .  

Note that although (4) holds for 0 < p < 1 also, we cannot specialize it to 

get (3) when 0 < p < 1 since the conditions on c become incompatible in this 

case. 

In the series version, (4) has been proved in different ways for p > 1 and 

0 < p < 1. I shall give a unified proof  of both cases of the integral version, 

and in fact of a more general set of inequalities; but the constants obtained 

are not best possible. 

We shall need the following lemma, which contains (1) and (2) as special 

cases. When the convex function in the lemma is a power, it is a restatement 

of a well-known theorem ([4], Theorem 319). A similar approach to inequal- 

ities of this kind has been given by Godunova [3]. 
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By Jensen 's  inequali ty ([4],  Theorem 206), if~b is convex 

cO CO 

0 0 

so that  

oO CO oO oo 

0 0 0 0 

CO o'3 

0 0 

CO CO 

0 0 

= f x-l'~(l(x))dx" 

This proves (5) when ~ is convex; when ~b is concave, Jensen 's  inequality 

is reversed and hence so is (5). 

I f  d2(u) = u ~ - l d u ,  0 < u < 1; d2(u) = 0,  u > 1, and �9 > 0 ,  (6) becomes 

co 1 co 

f x -1 { f  f(xu)u~'-ldu}Pdx < ~-p f x-~f(x:dx, 
0 0 0 

i.e. 

CO X CO 

x -1-~p f(u)u~'-ldu x < ~-P x -  .~_ X X .  

0 0 0 

I f  we take ct = 1 - 1/p and replace f ( x )  by f ( x ) x  I/p we get (1). Similarly we 

get (2) by letting d2(u) = u-#- ldu  for  u > 1, and 0 otherwise. 

I t  will be convenient  to use the nota t ion  
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o3 

K1 * K2 = f Kx(t)K2(x/ t ) t - ldt;  

0 

57 

that is, K 1 �9 K 2 is the convolution of KI and K 2 o v e r  the multiplicative group 

of positive real numbers (with its Haar measure). We generalize the functions 

F 1 and F2 of (1) and (2) by putting 

(8) 

oo 

f 
0 

f (xu)Ki(u)u-*du = Fj(x).  

Then Lemma 1 says in particular that 

co  oo ct~ 

(x)Pdx < (u)du x -  lf(x)Pdx, 

0 0 0 

p > l ,  

with inequality reversed when 0 < p < 1. 

L e m m a  2. Let K1, K 2 and K a be nonnegative and put 

(9) 

I f  KI  <= K2 * K3 then 

co 

mj = f K j (u )u - ldu .  

0 

co co 

(10) f x-IFI(x)Pdx <= D12 p f x-1F3(x) Pdx, p > l or  p < 0 .  

0 0 

The inequality is reversed if  0 < p < 1 and K 1 > K 2 * K a . 

We have 
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Ft(x)  fJ xu,ulduf 
0 0 

t -  IK2(t)K3(u/t)dt 

oo oo 

~ f t - l g 2 ( t ) d t  f f ( x u ) u - l g a ( u / t ) d u  
0 0 

oo oo 

~ - f t - | g 2 ( t ) d t f f ( x t ~ ) ) v - l g 3 ( 1 ) ) d D .  
0 0 

We now apply Lemma 1, with r = x p, replacing f by the inner integral 

in the preceding line, d2(u) by t-IKz(t)dt ,  and L b y  m 2 (from (9)). The result 

is that 

co oo 

(11) f x - l F l ( x ) P d x < m ~ f x - l F 3 ( x ) P d x ,  p > l  o r p < 0 ,  

0 0 

with the inequality reversed if 0 < p < 1. Since K 2 and K 3 enter symmetrically 

we can replace m 2 by m3 and F 3 by F2 in (10). 

In particular, we have inequalities of  the form (11) whenever K1 = K2 * K3 

with all three functions positive. This equation is equivalent to k 1 = k2k3, 

where k~ is the Mellin transform of K j ,  so a necessary condition is that any 

zeros of  k 2 are also zeros of k1 ; but this does not enable us to decide whether 

a positive K 3 exists for given positive K t  and K 2 . On the other hand, we 

can generate inequalities by taking given K2 and K 3 and forming K~. For 

a simple example, take K2(t ) =  t" on (0,1) and K 2 ( t ) = 0  for t > l ,  with 

> 0; take K s = K 2 . Then Kl(t  ) = - t ~ l o g t  on (0,1), Kl(t) = 0 for t > 1. 

Lemma 2 says that 

oo 1 ~ 1 

x -1 f (xu)u "-I dx = < ct-" x -1 f (xu)u~-ldu dx,  

0 0 0 0 

i.e. 
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co x co x 

f }', f {f:. I" x - t  v) (x/v)dv x < oC v x - 1  = v)v =- l x -~  dx .  

0 0 0 0 
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Replacing f ( x )  by x t - ~ f ( x )  we have 

co x co ~r 

f _,f x -~-=v v o g x - l o g v  v x =<ct x v v x .  

0 0 0 0 

In particular, if p > 1 and ~ = 1 -  1/p we get 

co x oc x 

f {1 f f(v)(logx_logv)}~dx<_ (p/(p-1): f {~ f f(v)d~}"d,r 
0 0 0 0 

To get (4) we modify the idea of Lemma 2. 

L e m m a  3. With notation as in L e m m a  2, suppose that K~ + K 2 

= M K 2 *  K a (with a constant M) .  Then  

co or) 

~n) f x-'e,(x),dx Z ~M'm~- 1) f x-'e2<x)'dx, p > 1, 
o o 

with the inequal i ty  reversed i f  0 < p < 1. 

For p < 0 I do not know how to get any more than follows directly from 

Lemma 2. 

Suppose first that p > 1. For positive numbers A and B we have 

03) A p + B p < (A + B) p 

(for example by I-4], Theorem 19). Hence (with notation given by (8)) 
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Fx(x) p + Fz(x) p -<_ {F,(x) + F2(x)} ~' 

oo o'3 

M,If ,~xu)u-,~u fK3~,,~2~u,,)~-,~t I 
0 0 

~ 7o 

0 0 

x - I F 2 ( x ) t ' d x  

:73 O0 O0 

0 0 0 

M p 

or arj 

fx-',,x {fK3(ot-'d~ fv-'y(xv,,K2r 
0 0 0 

03 oo 

~,~ fx-,~x IfK,~,,, ,~2~x,,,,,l ~ 
0 0 

Now the integral in {...} in the preceding line is formed from F 2 a s  F 3 is 

formed from f (in (8)). Hence by Lemma I, in the formulation given just 

before Lemma 2, 

f +f f x - I F I ( x ) P d x  x - I F 2 ( x ) P d x  <= MPm3 t~ x - l F 2 ( x ) P d x .  

0 0 0 

Since m, + m 2 = M m z m  3 we have M r n  a > 1, and hence 

oo oo 

0 0 

p > l .  

If 0 < p < 1, (13) is reversed and hence all our inequalities are reversed. 

We also have 
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cO cO cO 

0 0 0 
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have 

CO X 

(15) x -~p-1 t) t ~-t  dt dx 

0 0 

CO 

= [ u~+Z-lKl(u)du = (o~ + z) -1 ,  k t (z )  

0 

k2(z ) = ( p -  z) -1 

kdz) + kdz) = (~ + p)kdz)k2(z). 

We also have M = ~ + / ? ,  ml = 1/~, m z = 1//3. Hence 

oO oO 

0 x 

p > l ;  

and so if it happens that  K 3 = K 1 (as it will in our  derivation of  (4)), then 

oO oO 

:< 
I r  

O 0 

again with inequality reversed if 0 < p < 1. 

We now specialize Lemma 3 by taking 

Kl(u  ) = u ~, 0 < u < l ;  0, u >  l ( c r  

K2(u ) = U -p ,  U > 1; 0 ,0  < U < 1 (/3 > 0). 

Then we have (~t + fl)K 1 �9 K2 = Kt  + K2.  This can be verified by direct cal- 

culation, but it is easier to verify the Mellin t ransform of  this equat ion:  we 



62 R. P. BOAS, JR. 

(16) 

co  c o  

f,,  ,{f:~t,, , ,~t}'dx 
0 x 

oo x 

{(~)' } f {::,):-' }.~ < - 1 x -~n-1 t d t  x ,  

0 0 

p > l ,  

with both inequalities reversed when 0 < p < 1. 

To obtain (4), we replace f ( t )  by t#+l f ( t )  in (15), and put c = t i p -  1; then 

the left-hand side of  (15) is 

f {f }" x -` 'p-I  f ( t ) t~+#dt  dx ;  

0 0 

t a k e c t + f l = s ; t h e n  - c t p - 1  = c -  s p .  Since fl > O we m u s t  have  c > - l ;  

since ~ > 0 we must have sp - c > 1 ; and C(c, s, p) in (4) is 

( , ~ ) "  
s p - c - 1  - 1 .  

Similarly if we replace f ( t )  by : - ~ + t f ( t )  in (16) we have 

co  co ~ x 

fx,,-, {f:r <= {(~{-~)'- ,} f :--' {f :<o,~,}'~. 
0 0 0 0 

Again take - c t p  - 1 = c - sp, ~ + fl = s; we obtain 

co  co  co  

f {f:~ }, {:s, : }f {f:~ }, x r u )du  d x  < - 1 x r = \1 + c] u )u 'du  d x ,  

0 x 0 0 

and this is (4) reversed, with an explicit value for the constant. 

As we remarked above, the preceding argument breaks down when p < 0 

(since the necessary inequalities run in opposite directions). However, we can 

still use Lemma 2. Since K1 < M K I  �9 K 2 ,  we can apply Lemma 2 with K2 

replaced by K 1 and K 3 by K2. The result is 

CO CO 

f x--lf l(x)l)dx <~ M~'~ .fx--If 2(x' pdx, 
0 0 
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or  explicitly, when ct > O, fl > O, p < O, 

(17) 

co x co co 

X - c t p - 1  t ) t ~ - ~ d t  d x  <= x ap-~  t ) t - t - l d t  d x ,  

0 0 0 x 

and  s imilar ly  

(18) 

co co co x 

' { f f (  ) t - - , - 1  }Pd ( - ~ ) P  fx ~p 1 { f  f (  )~ }Pd x~p - 1  t d t  x < - - t ~ - t d t  x = �9 
x 0 0 

To put  these in the fo rm of  (4), we again  r e p l a c e f ( t )  by t a + l f ( t )  in (17), and  

pu t  c = f l p - 1 ;  but  since p < 0  we have to have c < - l ;  and  with 

~p = sp  - c - 1 we mus t  have c > sp  - 1; thus  (4), and similar ly the reversed 

inequali ty,  hold  for  p < 0 with s > 0 and  sp  - 1 < c < - 1 .  

Since inequal i t ies  wi th  p < 0 are no t  f requent ly  met  with, i t  is o f  some 

interest  to write one out  explicitly. For  example ,  take p = - 2 ,  s = 1, c = - 2 ;  

then 

co x co co 

= 4 x u u . 
O 0 0 x 
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