A COUNTEREXAMPLE CONCERNING INTEGRABILITY OF DERIVATIVES OF CONFORMAL MAPPINGS[†]

By ALBERT BAERNSTEIN II

1. Introduction

Let Ω be a simply connected plane domain and f be a conformal mapping from Ω onto the unit disk Δ . We shall be concerned with integrability properties of f' on lines which intersect Ω . Without loss of generality the line may be taken to be the real axis. The basic result is due to Hayman and Wu [HW].

Hayman–Wu Theorem. $\int_{\mathbf{R}\cap\Omega} |f'(x)| dx \leq 10^{35}$.

Thus, $f' \in L^1(\mathbf{R} \cap \Omega)$ for all such Ω and f. Simpler proofs have been given in [GGJ] and [FHM]. In the latter paper the upper bound 10^{35} is reduced to $4\pi^2$, and a conjecture is offered for the best constant.

For which exponents p > 1 is it true that $f' \in L^p(\mathbb{R} \cap \Omega)$ for all f and Ω ? Taking Ω to be $\Delta \setminus (-1, 0]$, one sees that $f' \in L^2(\mathbb{R} \cap \Omega)$ can fail. In [Ha, p. 638], I conjectured that $f' \in L^p(\mathbb{R} \cap \Omega)$ would be true for $p \in (1, 2)$. A result in this direction appears in [FHM], where it is shown that there is an absolute constant $\varepsilon > 0$ such that f' always belongs to $L^{1+\varepsilon}(\mathbb{R} \cap \Omega)$.

It turns out, though, that my conjecture is false.

Theorem 1. There exists a simply connected domain Ω and a number $p \in (1, 2)$ such that

$$\int_{\mathbf{R}\cap\Omega}|f'(x)|^pdx=\infty$$

for every conformal mapping f of Ω onto the unit disk.

One can also consider a two-dimensional analogue of this problem and ask for which p is it true that $f' \in L^p(\Omega, dxdy)$ for every Ω and f. For p = 2 this is clearly the case, and for $p \in (2, 3)$ it follows from elementary distortion theorems. Brennan [Br] adapted a difficult technique of Carleson's to prove that $f' \in L^{3+\epsilon}(\Omega)$ for some absolute $\epsilon > 0$. He conjectured that $f' \in L^p(\Omega)$ should hold

[†] This research was supported by a grant from the National Science Foundation.

for $p \in (2, 4)$. The slit disk again shows that $f' \in L^4(\Omega)$ can fail. The best partial result in the direction of Brennan's conjecture is due to Pommerenke [P1], [P2]: $f' \in L^p(\Omega)$ for $p \in (2, 3.399)$.

To prove Theorem 1 we show that *p*-integrability fails for the complement of a rather simple "tree". Recently various authors, including Carleson, Makarov, Volberg, Pryztycki, Zdundik, and Urbański, see [M] for references, have used concepts from dynamics to study harmonic measure in domains with fractal boundaries. Wolff's example [W] of a domain in \mathbb{R}^3 whose harmonic measure is not supported on a set of dimension 2 is inspired by these ideas. It seems plausible that a scale invariant construction more complicated than our tree might provide a counterexample to the Brennan conjecture.

During the course of this research I benefitted greatly from conversations with C. Bishop, J. Fernández, and J. Manfredi. My thanks go also to E. Villamor, whose careful reading of the manuscript uncovered several errors. I am especially grateful to D. Marshall, who with his computer established the inequality stated as Theorem 2 in the next section. Without his help it is unlikely that I ever would have known that my counterexample really was one.

2. The example

For $z_1, z_2 \in \mathbb{C}$ let $[z_1, z_2]$ denote the straight line segment connecting them. Write $a = e^{i\pi/3}$, and take $\alpha \in (0, 1/2)$. Eventually α will be quite small. Define $S = [0, (1 - \alpha)a] \cup [0, (1 - \alpha)a^2]$ and define inductively sets T_k and $\Re(k), k \ge 0$, by

$$T_0 = S + i = \{z + i : z \in S\}, \quad \mathscr{B}(0) = \{i\},$$

 $\mathcal{B}(1)$ = the two endpoints of T_0 on Im $z = \alpha$,

$$T_{k} = T_{k-1} \cup \left[\bigcup_{b \in \mathscr{B}(k)} (\alpha^{k}S + b) \right], \qquad k \ge 1,$$

 $\mathcal{B}(k+1)$ = the endpoints of T_k on Im $z = \alpha^{k+1}$.

Thus, there are 2^k points in $\mathcal{B}(k)$. (See Fig. 1, where T_2 is shown.)

Let $T_{-1} = \{iy : y \in [1, \infty]\}$, and define T to be the closure of $\bigcup_{k=-1}^{\infty} T_k$. Then $T = T(\alpha)$ is a continuum on the sphere containing ∞ . Let $\Omega = \mathbb{C} \setminus T$, and let f be a conformal mapping from Ω onto the unit disk with f(-i) = 0.

We shall denote by C an absolute positive constant whose value can change from line to line, and use the notation $A \approx B$ to mean that $C^{-1}A \leq B \leq CA$ for some C. For $b \in \mathcal{B}(k), k \geq 0$, define

$$m = \operatorname{Re} b, \quad I(b) = [m - 10^{-2} \alpha^k, m + 10^{-2} \alpha^k].$$

The I(b) are pairwise disjoint, and $|I(b)| \approx \text{dist}(I(b), T)$. (We use |E| to denote the Lebesgue measure of $E \subset \mathbb{R}$.) Write

$$g(z) = g(z, -i, \Omega)$$

for the Green's function. Using Schwarz's lemma, the one-quarter theorem, and conformal invariance of Green functions, one sees that $g(z) \approx |f'(z)| \operatorname{dist}(z, T)$ for $z \in \Omega$, |z + i| > 1/2. Thus, for $x \in I(b)$,

$$g(x) \approx |f'(x)| |I(b)|.$$

Moreover, $g(x) \approx g(x')$ for $x, x' \in I(b)$, by Harnack's inequality. Hence

$$\int_{f(k)} |f'(x)| dx \approx g(m), \qquad b \in \mathcal{B}(k).$$

Define $E(k) = \bigcup \{I(b) : b \in \mathcal{B}(k)\}$. Then

(2.1)
$$\int_{E(k)} |f'(x)| dx \approx \sum_{b \in \mathscr{M}(k)} g(m).$$

We will show that if α is chosen small enough, then a number q > 2 exists such that $\forall k \ge 0$,

(2.2)
$$\sum_{b\in\mathscr{B}(k)} g(m) \ge C(q\alpha)^{k/2}.$$

Take $p \in (1, 2)$, and write $A = \int_{\mathbf{R} \cap \Omega} |f'|^p dx$. Let p' denote the conjugate index of p. By Hölder's inequality, for $E \subset \mathbf{R} \cap \Omega$,

$$\int_{E} |f'| dx \leq A^{1/p} |E|^{1/p'}.$$

Now $|E(k)| = C(2\alpha)^k$. From (2.1), (2.2), we deduce

(2.3)
$$(q\alpha)^{k/2} \leq CA^{1/p} (2\alpha)^{k/p'}, \quad k \geq 0.$$

Let p_0 be the exponent conjugate to $2(\log 2\alpha)(\log q\alpha)^{-1}$. Then $p_0 \in (1, 2)$. Taking kth roots in (2.3) and letting $k \to \infty$, we see that if $A < \infty$ then $p' \ge p'_0$. Hence $f' \notin L^p(\mathbb{R} \cap \Omega)$, when $p_0 .$

To prove Theorem 1 it thus suffices to prove (2.2). This estimate will be derived from properties of a pair of simple conformal maps. Recall that $a = e^{i\pi/3}$. Let D be the "fork domain"

$$D = \mathbb{C} \setminus [[0, a] \cup \{x \in \mathbb{R} : x \in (-\infty, 1]\}].$$

Let F_1 and F_2 conformally map D onto the slit plane $\mathbb{C} \setminus \{x \in \mathbb{R} : -\infty < x \leq 0\}$, with

$$F_1(1) = 0$$
, $F_2(a) = 0$, $|F_i(z)| \sim |z|$ as $z \to \infty$, $i = 1, 2$.

Define β , $\gamma \in (0, \infty)$ by

$$\beta = \lim_{z \to a} \left| \frac{F_2(z)}{z - a} \right|, \qquad \gamma = \lim_{z \to 1} \left| \frac{F_1(z)}{z - 1} \right|$$

Theorem 2. $\beta^{1/2} + \gamma^{1/2} > 2^{1/2}$.

The values of β and γ were computed for me by Donald Marshall, who used Trefethen's program [T], [He, p. 422] for finding parameters for Schwarz-Christoffel transformations. According to the computer

$$\beta = 0.49824727, \qquad \gamma = 0.75253266,$$

which gives $\beta^{1/2} + \gamma^{1/2} > 1.57$. As a check on the computation, in §5 we start with the 4-place decimal approximations to the parameters given by the computer and confirm by calculus that the true values of β and γ satisfy $\beta^{1/2} + \gamma^{1/2} > 1.56$. It would be desirable to have a conceptual proof of Theorem 2.

Let us return now to the domain Ω . For $b \in \mathscr{B}(k)$, there is a unique path in T from b to i. This path contains exactly one point of $\mathscr{B}(j)$, $0 \le j \le k$. Denote it by b_j . Thus $b_k = b$, $b_0 = i$, and b_j is the "ancestor" of b_k in the jth generation. For $1 \le j \le k - 1$, when the path passes through b_j it either continues in a straight line or makes a 120° turn. Define

(2.4)
$$v(b) =$$
 number of times the path makes a turn.

Thus $0 \le v(b) \le k - 1$, and for $0 \le j \le k - 1$, v(b) equals j for exactly $2\binom{k-1}{j}$ of the b's in $\mathscr{B}(k)$. Here now is the main estimate in the proof of Theorem 1.

Given
$$\varepsilon > 0$$
, $\exists \alpha$ such that for $T = T(\alpha)$, all $b \in \mathscr{B}(k)$, and $k \ge 0$,

(2.5)
$$g(m) \ge C(e^{-\epsilon k} \alpha^k \beta^{\nu} \gamma^{k-\nu})^{1/2}.$$

This will be proved in §3, except for some lemmas which will be proved in §4. Accepting it for now and using the binomial theorem, we find that

$$\sum_{b\in\mathscr{B}(k)}g(m)\geq C[e^{-\epsilon/2}\alpha^{1/2}(\beta^{1/2}+\gamma^{1/2})]^k.$$

Define $q = q(\varepsilon)$ by $q^{1/2} = (\beta^{1/2} + \gamma^{1/2})e^{-\varepsilon/2}$. By Theorem 2, q > 2 when $\varepsilon > 0$ is sufficiently small. Thus (2.2), and hence Theorem 1, follows from (2.5).

3. Proof of (2.5)

For $0 < \kappa < 1/4$ and D the fork domain of §2 define

$$D_1(\kappa) = D \setminus \Delta(a, \kappa), \qquad D_2(\kappa) = D \setminus \Delta(1, \kappa).$$

Here $\Delta(z_0, \rho) = \{z \in \mathbb{C} : |z - z_0| < \rho\}$. For i = 1, 2 let $F_{i,\kappa}$ be a conformal mapping from $D_i(\kappa)$ onto $\mathbb{C} \setminus \{x \in \mathbb{R} : -\infty < x \leq 0\}$ with $F_{1,\kappa}(1) = 0$, $F_{2,\kappa}(a) = 0$, $|F_{i,\kappa}(z)| \sim |z|$ as $z \to \infty$. By Theorem 2, when κ is sufficiently small, $\beta(\kappa) = |F'_{1,\kappa}(1)|$ and $\gamma(\kappa) = |F'_{2,\kappa}(a)|$ satisfy $\beta(\kappa)^{1/2} + \gamma(\kappa)^{1/2} > 2^{1/2}$. Fix such a κ once and for all, and then suppress the dependence on κ . Thus, we will write D_1, D_2, F_1 , $F_{2,\beta}, \gamma$, instead of $D_1(\kappa), \ldots, \gamma(\kappa)$.

Define also another fork-type domain D_3 by

$$D_3 = \mathbf{C} \setminus [(-\infty, 0] \cup [0, e^{i\pi/6}] \cup [0, e^{-i\pi/6}] \cup \Delta(e^{-i\pi/6}, \kappa)],$$

and let F_3 conformally map D_3 onto $\mathbb{C} \setminus (-\infty, 0]$ with $|F_3(z)| \sim |z|$ for $z \to \infty$, $F_3(e^{i\pi/6}) = 0$.

Let $\rho \in (0, 1/4)$, and suppose that z_1, z_2 satisfy

$$(3.1) |z_1-1| < \rho^{3/2}, |z_2| < \rho^{-1/2}.$$

Define

$$D_1(z_1, z_2, \rho) = [D_1 \cap \Delta(z_2, \rho^{-1})] \setminus \overline{\Delta}(z_1, \rho).$$

Here $\overline{\Delta}$ denotes the closure of a disk Δ . The circles $\partial \Delta(z_1, \rho)$, $\partial \Delta(z_2, \rho^{-1})$ intersect (0, 1), resp. the negative real axis, in exactly one point. Denote the first one by $z_1 + \rho e^{i\phi_1}$ and the second by $z_2 + \rho^{-1} e^{i\phi_2}$, with $\phi_1, \phi_2, \in (\pi/2, 3\pi/2)$. Similarly, if

$$(3.2) |z_1 - a| < \rho^{3/2}, |z_2| < \rho^{-1/2},$$

or if

$$(3.3) |z_1 - e^{i\pi/6}| < \rho^{3/2}, |z_2| < \rho^{-1/2},$$

define for i = 2, 3,

$$D_i(z_1, z_2, \rho) = [D_i \cap \Delta(z_2, \rho^{-1})] \setminus \overline{\Delta}(z_1, \rho).$$

Let $z_2 + \rho^{-1}e^{i\phi_2}$ be the same as above, and $z_1 + \rho e^{i\phi_1}$ be, in the case of (3.2), the point where $\partial \Delta(z_1, \rho)$ meets [0, a], and in the case of (3.3) the point where $\partial \Delta(z_1, \rho)$ meets $[0, e^{i\pi/6}]$. See Fig. 2. One should think of ρ as being very small. The points A and B are, resp. $z_2 + \rho^{-1}e^{i\phi_2}$ and $z_1 + \rho e^{i\phi_1}$.

Fig. 2.

258

Let R(L) denote the open rectangle $(0, L) \times (-\pi, \pi)$. Define, for i = 1, 2, 3,

$$L(i) = 2\log \rho^{-1} - \lambda(i),$$

where $\lambda(1) = \log \gamma$, $\lambda(2) = \log \beta$, $\lambda(3) = \log |F'_3(e^{i\pi/6})|$.

The following lemma, which will be proved in §4, states that for small ρ the D_i are conformally close to R[L(i)].

Lemma 1. There exist absolute constants ρ_0 and C such that if (3.i) holds for i = 1, 2, or 3 and if $\rho \in (0, \rho_0]$, then there exists a homeomorphism $H: D_i(z_1, z_2, \rho) \rightarrow R[L(i)]$ whose boundary values satisfy

(a) $H(z_1 + \rho e^{i\phi}) = i[(\pi - \phi_1) + \phi], -2\pi + \phi_1 \le \phi \le \phi_1,$

(b) $H(z_2 + \rho^{-1}e^{i\phi}) = L(i) + i[(\pi - \phi_2) + \phi], -2\pi + \phi_2 \le \phi \le \phi_2.$ Moreover, H is $(1 + C\rho^{1/2})$ -quasiconformal.

Return now to the situation of (2.5), and recall the notation introduced before (2.4): m = Re b, $b_k = b$, $b_0 = i$, and b_j is the ancestor of b_k lying in $\mathscr{B}(j)$. For $0 \le j \le k - 1$ let b'_j be the point of intersection of the line through $[b_j, b_{j+1}]$ with **R**. Set $b'_k = b'_{k-1}$, and for $0 \le j \le k$ let b''_j be the reflection of b'_j in the line Re $z = \text{Re } b_j$. Write $s = 2 \cdot 3^{-1/2}$. Then s is the side length of an equilateral triangle of altitude 1.

Next, define disks Δ_i , $\dot{\Delta}_i$, and domains Ω_i , Ω' , by

$$\begin{split} \Delta_j &= \Delta(m, s\alpha^{j+1/2}), \qquad j = -1, 0, \dots, k-1, \\ \Delta_k &= \Delta(b'_k, s\alpha^{k+1/2}), \\ \tilde{\Delta}_j &= \Delta(b''_j, \kappa s\alpha^j), \qquad j = 0, \dots, k, \\ \Omega' &= [(\Omega \cap \Delta_{-1}) \setminus \bar{\Delta}_k] \setminus \left(\bigcup_{j=0}^k \tilde{\Delta}_j \right), \\ \Omega_j &= \Omega' \cap (\Delta_{j-1} \setminus \bar{\Delta}_j), \qquad j = 0, \dots, k. \end{split}$$

The number κ was introduced at the beginning of this section. Recall that if we climb T from b_k back to b_0 , then at each b_j we either continue in a straight line, denote the set of these j by I, or turn by 120°; denote these by II. Since $b'_k = b'_{k-1}$, we declare that $k \in I$. Define affine maps A_1, \ldots, A_k by

$$A_j(z) = (b'_j - b_j)^{-1}(z - b_j), \quad j \in \mathbf{I}, \quad 1 \le j \le k,$$
$$A_j(z) = (b''_j - b_j)^{-1}(z - b_j), \quad j \in \mathbf{II}, \quad 1 \le j \le k.$$

Let $z_j = A_j(m)$, $1 \le j \le k$. Since $s\alpha^j = |b_j - b'_j| = |b_j - b''_j|$, for $1 \le j \le k - 1$, A_j maps Ω_j onto one of the four domains $D_i(z_j, z_j, \alpha^{1/2})$, or $D_i^*(z_j, z_j, \alpha^{1/2})$,

A. BAERNSTEIN II

i = 1, 2, where * denotes reflection in **R**. Also, A_k maps Ω_k onto $D_1(1, z_k, \alpha^{1/2})$. Define

$$A_0(z) = e^{\pm (i\pi/6)}(z-b_0), \qquad z_0 = A_0(m),$$

where the sign in \pm is chosen so that A_0 maps Ω_0 onto $D_3(z_0, z_0, \alpha^{1/2})$. Suppose that $1 \le j \le k - 1$. If $j \in I$ then $A_j(\Omega_j)$ is a D_1 or D_1^* , and

$$|z_j - 1| = \frac{|m - b'_j|}{|b'_j - b_j|} \le C\alpha.$$

Similarly, $|z_j - a| \leq C\alpha$ for $j \in II$, $|z_0 - e^{\pm (i\pi/6)}| \leq C\alpha$, and $|z_k| \leq C$. Choose α so small that $C < \alpha^{-1/4}$. Then one of the hypotheses (3.1)–(3.3) is satisfied for $A_j(\Omega_j)$, with $\rho = \alpha^{1/2}$, when z_1, z_2 there are replaced by z_j, z_j ($0 \leq j \leq k - 1$) or 1, z_k . Let $L_j = L(1)$ for $j \in I$, $L_j = L(2)$ for $j \in II$, and $L_0 = L(3)$, where the L(i) were defined before the statement of Lemma 1. Let H_j be the QC map of $A_j(\Omega_j)$ onto $R(L_j)$ provided by Lemma 1. (In case $A_j(\Omega_j)$ is a D_i^* , we use the map $\overline{H}(\overline{z})$.) Define $h_j = H_j \circ A_j$, $0 \leq j \leq k$. Then, by (a) and (b) of Lemma 1, $h_j = h_{j-1}$ on $\Omega' \cap \partial \Delta_{j-1}, 1 \leq j \leq k$. Define $L = \sum_{j=0}^k L_j$ and $h : \Omega' \to R(L)$ by

$$h(z) = h_j(z) + \sum_{i=j+1}^{k} L_i, \qquad 0 \leq j \leq k, \quad z \in \tilde{\mathbf{\Omega}}_j.$$

By Lemma 1, h is a $(1 + C\alpha^{1/4})$ -QC homeomorphism of Ω' onto R(L). In §4 we shall see there are absolute constants C and $\eta > 0$ such that

(3.4)
$$|\operatorname{Re} h(m) - (1/2)\log \alpha^{-1}| < C, \qquad |\operatorname{Im} h(m)| < \pi - \eta, |\operatorname{Re} h(-i) - (L - (1/2)\log \alpha^{-1})| < C, \qquad |\operatorname{Im} h(-i)| < \pi - \eta.$$

To finish, we need two estimates for Green functions. The second one is certainly known and probably so is the first, but for completeness proofs will be given at the end of §4.

Lemma 2. Let Ω_1 , Ω_2 be simply connected plane domains, and h be a K-quasiconformal homeomorphism of Ω_1 and Ω_2 . Assume that $K \leq 2$ and that $g(z, z', \Omega) \leq 1$, where $z, z' \in \Omega$. Then

$$g(z, z', \Omega_1) \geq C[g(h(z), h(z'), \Omega_2)]^K.$$

Lemma 3. Suppose that $P_i \in R(L)$, i = 1, 2, with L > 1, and that $1 \leq \operatorname{Re} P_1 < \operatorname{Re} P_2 \leq L - 1$, $|\operatorname{Im} P_i| \leq \pi - \eta$, i = 1, 2. Then there is a constant C depending only on η such that

$$g(P_1, P_2, R(L)) \ge Ce^{(-1/2)(\operatorname{Re} P_2 - \operatorname{Re} P_1)}.$$

Returning to the proof of (2.5), choose α so small that $\frac{1}{2}\log(\alpha^{-1}) > C + 1$, where C is the constant in (3.4). Then

and also the hypotheses of Lemma 3 are satisfied for $P_1 = h(m)$, $P_2 = h(-i)$. Using Lemmas 2, 3, (3.5), and the fact that h is $(1 + C\alpha^{1/4})$ -QC, we obtain

$$g(m, -i, \Omega') \ge C \exp[(-1/2)(L + \log \alpha + C)(1 + C\alpha^{1/4})]$$
$$\ge C \exp[-(1/2)(L + \log \alpha)] \exp[-C\alpha^{1/4}(L + \log \alpha)].$$

Now $L = \sum_{j=0}^{k} L_j$, so

(3.6)
$$L + \log \alpha = -k \log \alpha - (v - k) \log \gamma - v \log \beta - \log |F'_{3}(e^{i\pi/6})|,$$

where v is the number of $j \in II$. Thus

$$g(m, -i, \Omega') \geq C(\alpha^k \beta^{\nu} \gamma^{k-\nu})^{1/2} E,$$

where, using (3.6),

(3.7)
$$\log(E^{-1}) = C\alpha^{1/4}(L + \log \alpha) \leq C\alpha^{1/4}[\log(\alpha^{-1}) + C]k.$$

For given $\varepsilon > 0$, choose α so small that

$$C\alpha^{1/4}[\log(\alpha^{-1})+C] < \varepsilon/2.$$

Then $E \ge e^{-\epsilon k/2}$, and hence

$$g(m,-i,\Omega') \geq C(e^{-\epsilon k} \alpha^k \beta^{\nu} \gamma^{k-\nu})^{1/2}.$$

Since $\Omega' \subset \Omega$, the proof of (2.5) is complete, except for the proof of the lemmas.

4. Proof of the lemmas

We shall prove Lemma 1 for $D_1(z_1, z_2, \rho)$, and shall write F instead of F_1 . The proofs for D_2 and D_3 require only obvious changes. Square root transformations show that as $z \to 1$ we have

(4.1)
$$F(z) = \gamma(z-1) + O(|z-1|^{3/2}),$$

$$(4.2) (z-1)F'(z)/F(z) = 1 + O(|z-1|^{1/2}),$$

and as $z \rightarrow \infty$

(4.3)
$$F(z) = z + O(|z|^{1/2}),$$

(4.4)
$$zF'(z)/F(z) = 1 + O(|z|^{-1/2})$$

Let $Q = \log F(D_1(z_1, z_2, \rho))$. Then (3.1), (4.1), (4.3) show that Q is a quadrilateral with a pair of opposite sides on Im $z = \pm \pi$. (Breaking tradition, we denote points in the image plane by z also.) The other sides of Q are the image curves of log $F(\partial \Delta(z_1, \rho))$ and log $F(\partial \Delta(z_2, \rho^{-1}))$, which we denote by Γ_1 and Γ_2 , respectively. When ρ is small the Γ_i are essentially vertical segments lying on the lines Re $z = \log \gamma + \log \rho$, Re $z = -\log \rho$. More precisely, define A_i and B_i , i = 1, 2, by

$$(A_1 + iB_1)(\phi) = \log F(z_1 + \rho e^{i\phi}), \qquad \phi_1 - 2\pi \le \phi \le \phi_1,$$
$$(A_2 + iB_2)(\phi) = \log F(z_2 + \rho^{-1}e^{i\phi}), \qquad \phi_2 - 2\pi \le \phi \le \phi_2.$$

Then, using (3.1), (4.2), (4.4), a calculation we leave to the reader shows that for i = 1, 2 and $\phi_i - 2\pi \leq \phi \leq \phi_i$,

(4.5)
$$|A'_i(\phi)| \leq C \rho^{1/2}, \quad |B'_i(\phi) - 1| \leq C \rho^{1/2}.$$

Choose ρ_0 small enough so that $\inf_{\phi} B'_i(\phi) > 0$ when $\rho \leq \rho_0$. Then each Γ_i is intersected exactly once by each line Im z = y, $-\pi \leq y \leq \pi$. Thus, Γ_i may be described in the form $x = \sigma_i(y)$, $|y| \leq \pi$. From (4.5) it follows that, with $\phi = \phi_i(y)$,

(4.6)
$$|\sigma'_i(y)| = \left|\frac{A'_i(\phi)}{B'_i(\phi)}\right| \leq C\rho^{1/2}, \quad |y| \leq \pi.$$

From (3.1), (4.1), (4.3), it follows that

(4.7)
$$|L - (\sigma_2(y) - \sigma_1(y))| \leq C \rho^{1/2},$$

where $L = L(1) = 2 \log \rho^{-1} - \log \gamma$.

Thus, Q is nearly a translation of the rectangle $R(L) = (0, L) \times (-\pi, \pi)$. For $z = x + iy \in Q$, define

$$h_1(z) = L \frac{x - \sigma_1(y)}{\sigma_2(y) - \sigma_1(y)} + iy.$$

Then h_1 maps Q 1–1 onto R(L). Define

$$P_i(y) = B_i^{-1}(y) + (\pi - \phi_i), \qquad |y| \leq \pi,$$

for i = 1, 2, where B_i^{-1} denotes the inverse function of B_i . The P_i are increasing homeomorphisms of $[-\pi, \pi]$ onto itself. From (4.5), it follows that for $|y| \le \pi$ and i = 1, 2,

(4.8)
$$|P'_i(y) - 1| \leq C \rho^{1/2}$$

and, since $P_i(\pi) = \pi$,

(4.9)
$$|P_i(y) - y| \leq C \rho^{1/2}.$$

Define, for $z = x + iy \in R(L)$,

$$h_2(z) = x + i \left[\left(1 - \frac{x}{L} \right) P_1(y) + \frac{x}{L} P_2(y) \right].$$

Then h_2 maps R(L) 1-1 onto itself. Define $H: D_1(z_1, z_2, \rho) \rightarrow R(L)$ by $H = h_2 \circ h_1 \circ (\log F)$. Then H is a homeomorphism of $D_1(z_1, z_2, \rho)$ onto R(L) which satisfies conclusions (a) and (b) of Lemma 1.

To conclude the proof of Lemma 1 we will show that h_1 and h_2 are $(1 + C\rho^{1/2})$ -QC. Write $h_1(z) = u(z) + iy$, $h_2(z) = x + iv(z)$. Then

(4.10)
$$\left|\frac{(h_1)_z}{(h_1)_z}\right|^2 = \frac{(u_x - 1)^2 + u_y^2}{(u_x + 1)^2 + u_y^2}$$
 and $\left|\frac{(h_2)_z}{(h_2)_z}\right|^2 = \frac{(v_y - 1)^2 + v_x^2}{(v_y + 1)^2 + v_x^2}$

Calculation gives

$$u_{x} - 1 = \frac{L - (\sigma_{2}(y) - \sigma_{1}(y))}{(\sigma_{2}(y) - \sigma_{1}(y))} ,$$

$$u_{y} = -L \frac{(\sigma_{2}(y) - \sigma_{1}(y))\sigma_{1}'(y) + (x - \sigma_{1}(y))(\sigma_{2}'(y) - \sigma_{1}'(y))}{(\sigma_{2}(y) - \sigma_{1}(y))^{2}}$$

$$v_{x} = \frac{P_{2}(y) - P_{1}(y)}{L} ,$$

$$v_{y} - 1 = \frac{(P_{1}'(y) - 1)L + (P_{2}'(y) - P_{1}'(y))x}{L} ,$$

where in the first two equations $z = x + iy \in Q$ and in the second two $z \in R(L)$.

Now $L \ge 1$, and for $z \in Q$, $0 \le x - \sigma_1(y) \le \sigma_2(y) - \sigma_1(y)$. Using (4.7), (4.6), (4.9) and (4.8), we deduce that $|u_x - 1|$, $|u_y|$, $|v_x|$ and $|v_y - 1|$ are all bounded above by $C\rho^{1/2}$. From (4.10) it follows that h_1 and h_2 are $(1 + C\rho^{1/2})$ -QC, and the proof of Lemma 1 is complete.

Next, we shall verify (3.4). From the definitions in §3, it follows that h(m) equals either $F_1((1 + a)/2)$ or its complex conjugate. Write

$$\log F_1\left(\frac{1+a}{2}\right) = C_1 + iC_2.$$

Then $|C_2| < \pi$. The construction of h_1 , h_2 and the various inequalities in this section show that

$$\sup_{z\in\mathcal{Q}}|h_2\circ h_1(z)-(z+\log(\rho\gamma)^{-1})|\leq C\rho^{1/2}.$$

Thus, when ρ_0 is chosen sufficiently small, we have

$$|\operatorname{Im} h_2 \circ h_1(C_1 \pm iC_2)| < \frac{1}{2}(\pi + |C_2|) \equiv \pi - \eta,$$

,

A. BAERNSTEIN II

$$|\operatorname{Re} h_2 \circ h_1(C_1 \pm iC_2) + \log \rho| \leq C.$$

Since $\rho = \alpha^{1/2}$, the inequalities for h(m) in (3.4) are verified. Those for $h(-i) = F_3(2)$ are established in the same way, where if necessary we take smaller values of ρ_0 and η .

Proof of Lemma 2. We may assume that Ω_1 and Ω_2 are the unit disk, that z = h(z) = 0, and that $z' = r \in (e^{-1}, 1)$. Then, by reflection, *h* has a *K*-QC extension to C which maps the unit circle onto itself. Recall that $K \leq 2$. Distortion theorems for QC maps (see e.g. [LV, p. 64, Thm. 3.1]) imply that $|h(r)| \geq C > 0$ and that

$$g(0, h(r)) \leq C(1 - |h(r)|) \leq C |h(1) - h(r)| \leq C(1 - r)^{1/K} \leq Cg(0, r)^{1/K}.$$

Proof of Lemma 3. If D is the half-disk $\{z:|z| < 1, \text{ Im } z > 0\}$ and $0 < y_1 < y_2 \le 0.99$ then conformal mapping onto a half-plane and calculation show that

(4.11)
$$g(iy_1, iy_2, D) \ge C \frac{y_1}{y_2}$$
.

Consider the situation of Lemma 3. By Harnack's inequality we may assume $\text{Im } P_1 = \text{Im } P_2 = 0$. Let $\Phi(z) = \sin(\frac{1}{2}iz)$. Then Φ maps R(L) 1-1 onto a domain containing the half disk $\{z : |z| < \Phi(L), \text{ Im } z > 0\}$. Also $|\Phi(P_2)| < (0.99)|\Phi(L)|$, since $1 \le P_1 < P_2 \le L - 1$.

Hence, by (4.11)

$$g(P_1, P_2, R(L)) \ge C \frac{\sinh(\frac{1}{2})P_1}{\sinh(\frac{1}{2})P_2} \ge Ce^{(P_1 - P_2)/2}$$

. _

5. Proof of Theorem 2

Let $H = \{z : \text{Im } z > 0\}$, and for $l_1, l_2 > 0$ define

$$H(l_1, l_2) = H \setminus [[0, l_1 e^{2\pi i/3}] \cup [0, il_2]].$$

There is a unique conformal map from H onto $H(l_1, l_2)$ with the properties $f(z) \sim z$ at ∞ , f(0) = 0, and $f^{-1}(l_1e^{2\pi i/3}) < 0 < f^{-1}(il_2)$. There is exactly one solution of f(x) = 0 in each of the intervals $(-\infty, f^{-1}(l_1e^{2\pi i/3}))$, $(f^{-1}(il_2), \infty)$. Denote them by P and Q, respectively. Then, taking $0 < \arg z < \pi$,

(5.1)
$$f(z) = (z - P)^{1/3} z^{1/6} (z - Q)^{1/2}, \quad z \in H,$$

since the function displayed and the conformal mapping have the same argument on **R** and are both $\simeq z$ at ∞ . Thus, there is a 1-1 correspondence between points $(P, Q) \in (-\infty, 0) \times (0, \infty)$ and points $(l_1, l_2) \in (0, \infty) \times (0, \infty)$. Define the homeomorphism $G: (-\infty, 0) \times (0, \infty) \rightarrow \mathbf{R}^2$ by

(5.2)
$$G(P, Q) = 6(\log l_1, \log l_2).$$

The "6" will ease the arithmetic later on. I thank D. Marshall for pointing out that maps from H to $H(l_1, l_2)$ have the simple form (5.1).

Define also, when f is given by (5.1),

$$s_1(P, Q) = f^{-1}(l_1, e^{2\pi i/3}), \quad s_2(P, Q) = f^{-1}(il_2).$$

Then s_1 and s_2 are the critical points of the polynomial f^6 in the intervals (P, 0)and (0, Q). Logarithmic differentiation shows they are the roots of the equation $6z^2 - (4P + 3Q)z + PQ = 0$, and hence, after a small miracle,

(5.3)
$$s_1(P, Q) = \frac{1}{12}[(4P + 3Q) - (16P^2 + 9Q^2)^{1/2}],$$
$$s_2(P, Q) = \frac{1}{12}[(4P + 3Q) + (16P^2 + 9Q^2)^{1/2}].$$

Write f(z) = f(z, P, Q) to show the dependence on P and Q. Then f is a Schwarz-Christoffel mapping from H onto the degenerate polygonal domain $H(l_1, l_2)$, and the pre-vertices of f corresponding to ∞ , 0, $l_1e^{2\pi i/3}$, 0, il_2 , 0, are ∞ , P, s_1 , 0, s_2 , Q.

The fork domain D of Theorem 2 is mapped onto H(1, 1) by the function $z \rightarrow iz^{1/2}$. Let $f = f(\cdot, 1, 1)$. One easily shows that the numbers β and γ of Theorem 2 are given by

(5.4)
$$\beta = |f''(s_1)|^{-1}, \quad \gamma = |f''(s_2)|^{-1},$$

where $s_i = s_i(P, Q)$, $(P, Q) = G^{-1}(0, 0)$. (G is defined by (5.2).)

To prove Theorem 2, we shall find a sufficiently accurate estimate of $G^{-1}(0, 0)$ and then verify $\beta^{1/2} + \gamma^{1/2} > 2^{1/2}$ by (5.3), (5.4), and direct calculation. When Marshall ran Trefethen's program using the data for H(1, 1) the output gave for $(P_1, Q_1) = G^{-1}(0, 0)$,

$P_1 = -1.01661167,$	$s_1 = -0.47233507,$
$s_2 = 0.52153271,$	$Q_1 = 1.45387605,$

and also

$\beta = 0.49824727, \quad \gamma = 0.75253266.$

We shall prove that at least

$$(5.5) -1.0176 < P_1 < -1.0156, 1.4529 < Q_1 < 1.4549,$$

 $(5.6) -0.4739 < s_1 < -0.4709, 0.5201 < s_2 < 0.5230.$

Using the facts that $f_z(s_i, P, Q) = 0$ and $|f(s_i, P_1, Q_1)| = 1$, it follows that

$$|f_{zz}(s_i, P_1, Q_1)| = \left| \frac{\partial^2 \log f}{\partial z^2} (s_i, P_1, Q_1) \right|$$
$$= \frac{1}{6} [2(s_i - P_1)^{-2} + s_i^{-2} + 3(s_i - Q_1)^{-2}].$$

Then (5.4)–(5.6) give

$$\beta > \frac{6}{12.151} > 0.49, \qquad \gamma > 0.74,$$

so that definitely

$$\beta^{1/2} + \gamma^{1/2} > 1.56.$$

To prove (5.5) and (5.6), let

 $(5.7) P_0 = -1.0166, Q_0 = 1.4539.$

Then (5.3) give

(5.8)
$$-0.472324 < s_1(P_0, Q_0) < -0.472328, \\ 0.521541 < s_2(P_0, Q_0) < 0.521545.$$

Define

$$h(t, P, Q) = \log[(t - P)^2 |t| |t - Q|^3].$$

Then

$$G(P, Q) = h(s_1(P, Q), P, Q) + ih(s_2(P, Q), P, Q),$$

Let $\Delta_1 = \Delta(P_0 + iQ_0, 0.001)$. I claim that

(5.9)
$$\sup_{\Delta_{i}} \left| \frac{\partial s_{i}}{\partial P} \right| < 0.57, \quad \sup_{\Delta_{i}} \left| \frac{\partial s_{i}}{\partial Q} \right| < 0.57, \quad i = 1, 2,$$

and that

(5.10)
$$(0,0) \in G(\Delta_1), \quad \text{so that } (P_1,Q_1) \in \Delta_1.$$

Then (5.5) and (5.6) follow from (5.7)–(5.10).

Now (5.9) follows from differentiation of (5.3) and straightforward estimation. Since G is a homeomorphism of $\mathbf{R}_- \times \mathbf{R}_+$, to prove (5.10) it will suffice to prove

(5.11)
$$|G(P_0 + iQ_0)| < \inf_{z \in \partial \Delta_1} |G(z) - G(P_0 + iQ_0)|.$$

Direct calculation gives

$$(5.12) |G(P_0 + iQ_0)| < 0.0002.$$

266

To obtain a lower bound for $G - G(P_0 + iQ_0)$ on $\partial \Delta_1$ write

$$G(P + iQ) - G(P_0 + iQ_0)$$

= $a[(P - P_0) + i(Q - Q_0)] + b[(P - P_0) + i(Q - Q_0)] + \Phi(P + iQ)$
= $L(P, Q) + \Phi(P, Q)$,
where $a = \frac{1}{2}(G_P - iG_Q)(P_0 + iQ_0), b = \frac{1}{2}(G_P + iG_Q)(P_0 + iQ_0)$. Then
 $\inf_{\partial \Delta_1} |L| = ||a| - |b||(0.001),$
 $\sup_{\partial \Delta_1} |\Phi| \le \sup_{\Delta_1} (|G_{PP}|, |G_{PQ}|, |G_{QQ}|)(0.001)^2.$

Thus (5.11) follows from (5.12), and the bounds

(5.13) |b| > 3.44846, |a| < 1.44718,

so that $\inf_{\partial \Delta_1} |L| > 0.002$, and

(5.14)
$$\sup_{\Delta_1} (|G_{PP}|, |G_{PQ}|, |G_{QQ}|) < 50.$$

Proof of (5.13). Write $G = G_1 + iG_2$ and

$$dG(P_0+iQ_0)=\begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix},$$

where $a_1 = (G_1)_P$, $a_2 = (G_1)_Q$, $a_3 = (G_2)_p$, $a_4 = (G_2)_Q$, all evaluated at $P_0 + iQ_0$. By the chain rule and the fact that $h_i(S_i(P, Q), P, Q) = 0$, we have, with $s_i = s_i(P_0, Q_0)$,

$$a_1 = -2(s_1 - P_0)^{-1}, \qquad a_2 = 3(Q_0 - s_1)^{-1},$$

 $a_3 = -2(s_2 - P_0)^{-1}, \qquad a_4 = 3(Q_0 - s_2)^{-1}.$

Now use the relations

$$a = \frac{1}{2}[(a_1 + a_4) + i(a_3 - a_2)]$$
 and $b = \frac{1}{2}[(a_1 - a_4) + i(a_3 + a_2)]$

with (5.7), (5.8), keep track of six decimal places, and (5.13) follows.

Proof of (5.14). Consider first the function h(t, P, Q), defined between (5.8) and (5.9). Its second derivatives are all negative, and the one of largest absolute value is h_u ,

$$|h_{tt}(t, P, Q)| = 2(t - P)^{-2} + t^{-2} + 3(t - Q)^{-2}.$$

From (5.8) and (5.9), we see that if $P + iQ \in \Delta_1$ then $s_i(P, Q)$ satisfy the bounds on s_1 , s_2 in (5.6). From this, one can show that if $P + iQ \in \Delta_1$, then each second partial derivative of *h* evaluated at $(s_i(P, Q), P, Q)$ has absolute value < 12.2.

For $G_1 = \operatorname{Re} G$ we have, using $H_t(s_i, P, Q) = 0$,

$$(G_1)_{PP}(P+iQ)$$

$$= h_{tt}(s_i, P, Q)[(s_i)_P(P, Q)]^2 + 2h_{tP}(s_i, P, Q)[(s_i)_P(P, Q)] + h_{PP}(s_i, P, Q).$$

Using (5.9) and the preceding paragraph,

$$\sup_{\Delta_1} |(G_1)_{PP}| \leq (12.2)((0.57)^2 + (0.57) + 1) < 25.$$

Similarly, the other second partial derivatives of G_1 and of G_2 are majorized by 25, and (5.14) is proved.

References

[Br] J. Brennan, The integrability of the derivative in conformal mapping, J. London Math. Soc. 18 (1978), 261–272.

[FHM] J. L. Fernández, J. Heinonen and O. Martio, *Quasilines and conformal mappings*, J. Analyse Math. 52 (1989), 117-132.

[GGJ] J. Garnett, F. Gehring and P. Jones, Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), 809-824.

[Ha] V. P. Havin et al., eds., *Linear and Complex Analysis Problem Book*, Lecture Notes in Math. 1043, Springer-Verlag, Berlin, 1984.

[HW] W. K. Hayman and J-M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403.

[He] P. Henrici, Applied and Computational Complex Analysis, Vol. III, Wiley, New York, 1986.

[LV] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer-Veralg, New York, 1973.

[M] N. G. Makarov, Metric properties of harmonic measure, Proceedings of the 1986 I.C.M., Vol. I, 766-776, A.M.S., 1987.

[P1] Ch. Pommerenke, On the integral means of the derivative of a univalent function, J. London Math. Soc. 32 (1985), 254–258.

[P2] Ch. Pommerenke, The growth of the derivative of a univalent function, in The Bieberbach Conjecture, A. Baernstein et al., eds., A.M.S., 1986, pp. 143–152.

[T] L. N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Stat. Comput. 1 (1980), 82–102.

[W] T. Wolff, Counterexamples with harmonic gradient in \mathbf{R}^3 , preprint, Courant Institute.

DEPARTMENT OF MATHEMATICS

WASHINGTON UNIVERSITY

ST. LOUIS, MO 63130, USA

(Received November 15, 1988)

268