A COUNTEREXAMPLE CONCERNING INTEGRABILITY
OF DERIVATIVES OF CONFORMAL MAPPINGS'

By
ALBERT BAERNSTEIN II

1. Introduction

Let Q be a simply connected plane domain and f be a conformal mapping from
Q onto the unit disk A. We shall be concerned with integrability properties of f”
on lines which intersect Q. Without loss of generality the line may be taken to be
the real axis. The basic result is due to Hayman and Wu [HW].

Hayman-Wu Theorem. [gqq|f(x)|dx = 10%.

Thus, f€L'(R N Q) for all such Q and f. Simpler proofs have been given in
[GGJ] and [FHM]. In the latter paper the upper bound 10 is reduced to 472, and
a conjecture is offered for the best constant.

For which exponents p > 1 is it true that /€ L?(R N Q) for all fand Q? Taking
Q to be A\(—1, 0], one sees that fELXR N Q) can fail. In [Ha, p. 638],
I conjectured that /€ L?(R N Q) would be true for p €(1, 2). A result in this
direction appears in [FHM], where it is shown that there is an absolute constant
& > 0 such that f* always belongs to L' (R N Q).

It turns out, though, that my conjecture is false.

Theorem 1. There exists a simply connected domain Q and a number
P €(1, 2) such that

[ 1reeax = o

RNQ
Jfor every conformal mapping f of Q onto the unit disk.

One can also consider a two-dimensional analogue of this problem and ask
for which p is it true that f”€ L?(Q, dxdy) for every Q and f. For p =2 this
is clearly the case, and for pE€(2, 3) it follows from elementary distortion
theorems. Brennan [Br] adapted a difficult technique of Carleson’s to prove that
S € L3**¢(Q) for some absolute ¢ > 0. He conjectured that f” € L?(2) should hold
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for p €(2, 4). The slit disk again shows that /'€ L*Q) can fail. The best partial
result in the direction of Brennan’s conjecture is due to Pommerenke [P1], [P2]:
S eL(Q) for pe(2,3.399).

To prove Theorem 1 we show that p-integrability fails for the complement of a
rather simple “tree”. Recently various authors, including Carleson, Makarov,
Volberg, Pryztycki, Zdundik, and Urbanski, see [M] for references, have used
concepts from dynamics to study harmonic measure in domains with fractal
boundaries. Wolff’s example [W] of a domain in R*® whose harmonic measure is
not supported on a set of dimension 2 is inspired by these ideas. It seems
plausible that a scale invariant construction more complicated than our tree
might provide a counterexample to the Brennan conjecture.

During the course of this research I benefitted greatly from conversations with
C. Bishop, J. Fernandez, and J. Manfredi. My thanks go also to E. Villamor,
whose careful reading of the manuscript uncovered several errors. I am especially
grateful to D. Marshall, who with his computer established the inequality stated
as Theorem 2 in the next section. Without his help it is unlikely that I ever would
have known that my counterexample really was one.

2. The example

For z,z,€C let [z, z,] denote the straight line segment connecting
them. Write a =¢™?, and take «€(0, 1/2). Eventually « will be quite
small. Define S =[0, (1 —a)d] U [0, (1 — a)d?] and define inductively sets T,
and #(k), k = 0, by

I, =S+i={z+i:z€S5}, 20)={i},
(1) = the two endpoints of 7, on Im z = q,

Tk=Tk_lU[ U (a"S+b)], k=1,
beak)

#(k + 1) = the endpoints of T, on Im z = a**!,

Thus, there are 2* points in (k). (See Fig. 1, where T, is shown.)

Let T_, = {iy: y €[l, w0]}, and define T to be the closure of U;__, T,. Then
T = T(a) is a continuum on the sphere containing cc. Let Q = C\ T, and let f be
a conformal mapping from Q onto the unit disk with f( — i) = 0.

We shall denote by C an absolute positive constant whose value can change
from line to line, and use the notation 4 = B to mean that C~!'4 = B = CA for
some C. For b€ #(k), k = 0, define

m=Reb, I(b)=[m—10"%* m+ 10 "%a*].
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The I(b) are pairwise disjoint, and |I(b)| = dist(/(b), T). (We use |E| to
denote the Lebesgue measure of E C R.) Write

g(Z)=g(Z, _ia Q)

for the Green’s function. Using Schwarz’s lemma, the one-quarter theorem, and
conformal invariance of Green functions, one sees that g(z) = | f'(z)|dist(z, T)
forz€Q, |z +i| > 1/2. Thus, for x €I(b),

g(x)= | f(x)|11(b)I.
Moreover, g(x) = g(x’) for x, x’€1(b), by Harnack’s inequality. Hence

f |0 dx ~g(m),  bERK).

I(b)

Define E(k) = U{I(b) ) Eﬂ(k)}. Then
@.1) [ irwias= 3 gtm

beEM(K)
E(k)
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We will show that if « is chosen small enough, then a number g > 2 exists such
that Vk =0,

(2.2) Y g(m)zC(ga)*?

beEAR(Kk)

Take p €(1, 2), and write 4 = [gnq|f’|Pdx. Let p’ denote the conjugate index
of p. By Holder’s inequality, for E CRN Q,

f |f'1dx < AY? |E |77
E

Now |E(k)| = C(2a)*. From (2.1), (2.2), we deduce
2.3) (ga)*? = CAVPQ2a)*'7 k=0.

Let p, be the exponent conjugate to 2(log 2a)(log ga)~'. Then poE(l, 2).
Taking kth roots in (2.3) and letting kK — oo, we see that if 4 < oo then p’ = py.
Hence /€ LP(R N Q), when p, < p < 2.

To prove Theorem 1 it thus suffices to prove (2.2). This estimate will be derived
from properties of a pair of simple conformal maps. Recall that a = ¢*3. Let Dbe
the “fork domain”

D =C\[[0, a) U {x ER: x E(— 0, 1]}].

Let F, and F, conformally map D onto the slit plane C\ {x ER: — o0 <x =0},
with
Fl(l)=0’ FZ(a)=O’ |E(Z)|~|ZI as z — oo, i=1’2'

Define 8, y €(0, «) by

Fy(2)
zZ—da

Fy(z)

B =lim
z—1

zZ—~a

, y =lim

z—1

Theorem 2. B2+ y2> 212

The values of # and y were computed for me by Donald Marshall, who used
Trefethen’s program [T], [He, p. 422] for finding parameters for Schwarz-
Christoffel transformations. According to the computer

B =0.49824727, y=0.75253266,

which gives 2 + 2> 1.57. As a check on the computation, in §5 we start with
the 4-place decimal approximations to the parameters given by the computer and
confirm by calculus that the true values of 8 and y satisfy /2 + 2> 1.56. It
would be desirable to have a conceptual proof of Theorem 2.
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Let us return now to the domain Q. For b € 4(k), there is a unique path in T
from b 1o i. This path contains exactly one point of 8(j), 0 =j < k. Denote it by
b;. Thus b, = b, by=i, and b, is the “ancestor” of b, in the jth generation. For
1 =j = k — 1, when the path passes through ; it either continues in a straight line
or makes a 120° turn. Define

2.9 v(b) = number of times the path makes a turn.

Thus0 = v(b) =k — 1,and for0 = = k — 1, v(b) equalsj for exactly 2(* ') of
the b’s in #B(k). Here now is the main estimate in the proof of Theorem 1.

Given ¢ >0, 3« such that for T = T(«a), all bE B(k), and k = 0,

(2.5) g(m) = Cle~*a*gry -2,

This will be proved in §3, except for some lemmas which will be proved in §4.
Accepting it for now and using the binomial theorem, we find that

2 g(m)z Cle™* a1 + y' )},
bEMK)

Define ¢ = g(¢) by ¢"> = (B"? + y"*)e ~*. By Theorem 2, g > 2 when ¢ >0 is
sufficiently small. Thus (2.2), and hence Theorem 1, follows from (2.5).

3. Proof of (2.5)
For 0 <k < 1/4 and D the fork domain of §2 define
D\(x)=D\A(a,x), Dyx)=D\A(l, k).

Here A(zy, p)={z€C:|z —z]| <p}. For i=1,2 let F,, be a conformal
mapping from D;(x) onto C\ {x ER: — o0 <x = 0} with F, (1) =0, F,,(a) =0,
|F;x(z)] ~ |z| as z— co. By Theorem 2, when k is sufficiently small, B(x) =
| F} (1) and y(x) = | F}.(a)| satisfy B(x)"? + p(x)>> 2'2_ Fix such a x once
and for all, and then suppress the dependence on x. Thus, we will write D,, D,, F,,
F,, B, v, instead of D\(x), . . ., y(k).

Define also another fork-type domain D, by

Dy=C\[(— o, 0] U [0, &™) U [0, e~ 6] U A(e ™5, k)],

and let F; conformally map D; onto C\( — o0, 0] with | F3(z)| ~ | z| for z — oo,
F;(ei'IG) = 0.
Let p €(0, 1/4), and suppose that z,, z, satisfy

3.1 Iz =11 <p*, |z <p™'”
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Define
Dy(zy, zp, p) =D, N A(Zzap_l)]\A(le p).

Here A denotes the closure of a disk A. The circles 0A(z,, p), 9A(z;, p~")
intersect (0, 1), resp. the negative real axis, in exactly one point. Denote the
first one by z, + pe'*: and the second by z, + p~'e', with ¢,, ¢,,E(n/2, 3n/2).
Similarly, if

(3.2) [z, —a| <p*?, lz;| <p~'2,
orif
(3.3) |2, —e™| <p*?,  |z| <p~'?

define for i = 2, 3,
Dj(z,, 23, p) = [D; N Az, p~ DI\ A(zy, p).

Let z, + p~'e'*: be the same as above, and z, + pe'*: be, in the case of (3.2), the
point where JA(z,, p) meets [0, a], and in the case of (3.3) the point where
dA(z,, p) meets [0, ™). See Fig. 2. One should think of p as being very small. The
points 4 and B are, resp. z, + p~'e*: and z, + pe‘®.

Fig. 2.
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Let R(L) denote the open rectangle (0, L) X ( — x, n). Define, for i =1, 2, 3,
L@i)=2logp~' =A%),

where A(1) =log y, A(2) =log B, A(3) = log| Fi(e™"%)|.
The following lemma, which will be proved in §4, states that for small p the D,
are conformally close to R[L(7)].

Lemma 1. There exist absolute constants py and C such that if (3.1) holds for
i=1,2, or 3 and if pE(,p,), then there exists a homeomorphism
H : D(z,, zy, p) =~ RIL(i)] whose boundary values satisfy

(@) H(zy +pe®)=i[(n —¢)+ 9], —2n+ ¢, =¢ =9,

(®) H(z;tp~'e®)=L3i)+i[(n—¢)+ ¢, —2n+ 9, =9 = ¢,.

Moreover, H is (1 + Cp'?)-quasiconformal.

Return now to the situation of (2.5), and recall the notation introduced before
(2.4): m=Reb, b, =b, by=1i, and b; is the ancestor of b, lying in #(j). For
0 =j =k — 1 let b/ be the point of intersection of the line through [b;, b;,,] with
R. Set b =b;_,, and for 0 =j =k let b’ be the reflection of b/ in the line
Rez=Reb;,. Write s =2-37"2 Then s is the side length of an equilateral
triangle of altitude 1.

Next, define disks A;, Aj, and domains €;, (', by

A =A(m,sa’*"),  j=—1,0,...,k—1,
Ay = A(bY, sak*1),
A =A% ksad), j=0,...,k,

x
Q=[(QNA_D\A]\ < ,-L-’:) ,)
Q=N \E), j=0,...,k

The number x was introduced at the beginning of this section. Recall that if we
climb T from b, back to b, then at each b; we either continue in a straight line,
denote the set of these j by I, or turn by 120°; denote these by II. Since b = b} _,,
we declare that k €1. Define affine maps 4, ..., 4, by

Ai(z)= (b} — b))~ (z = b)), JEI, 1=j =k,
A(z)=(b7—b) Yz =), JEII, 1<j=k.

Let z;=A4;(m), 1 =j=k. Since sa’=|b;—b/| =b;—b%|, for 1Zj=
k — 1, A; maps £, onto one of the four domains D,(z;, z;, a'’%), or D¥(z;, z;, @',
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i = 1,2, where * denotes reflection in R. Also, 4, maps Q, onto D((1, z, a'’?).
Define
Afz)=e* "Nz —by),  zo=A(m),

where the sign in * is chosen so that 4, maps Q, onto Ds(zq, zg, a'/?).
Suppose that 1 =j =k — 1. If j €1 then 4,(£);) is a D, or D¥, and

Im _bfl

|b; — b1

lz;— 1] = =Ca.

Similarly, |z; —a| = Caforj€E€II, |z,— e*™®| = Ca, and |z,| = C. Choose
a so small that C < a ~"4 Then one of the hypotheses (3.1)—(3.3) is satisfied for
A(Q;), with p = a'2, when z,, z, there are replaced by z;, z;(0=<j =k — 1) or
1, zz. Let L;= L(1) for j €I, L; = L(2) for j€Il, and L, = L(3), where the L(i)
were defined before the statement of Lemma 1. Let H; be the QC map of 4;(€2))
onto R(L,) provided by Lemma 1. (In case 4;(€);) is a D*, we use the map H(2))
Define h; = H; 2 A4;, 0 =j = k. Then, by (a) and (b) of Lemma 1, #;=4;_, on
QNoA_y, 1 =j=k.DefineL =2f,L;and h: Q' — R(L) by

k
i=j+1
By Lemma 1, hisa (1 + Ca'*)-QC homeomorphism of Q' onto R(L). In §4 we
shall see there are absolute constants C and n > 0 such that

|IRe hi(m) — (1/2loga™'| < C, [Im A(m)| <=mn — 1,
(3.4) [Re h(—i)—(L —(1/loga™ Y| <C, iImA(—i)| <m—1.
To finish, we need two estimates for Green functions. The second one is
certainly known and probably so is the first, but for completeness proofs will be
given at the end of §4.

Lemma 2. Let Q,, Q, be simply connected plane domains, and h be a
K-quasiconformal homeomorphism of Q, and Q,. Assume that K <2 and that
2(z,2,, Q)= 1, where z, z’€X. Then

8(z, 2, Q) Z Clg(h(2), h(z), Q)"

Lemma 3. Suppose that P,ER(L), i=1,2, with L>1, and that 1 =
ReP,<ReP,=L -1, |ImP,|=n—n, i=1,2. Then there is a constant C
depending only on n such that

g(P,, Py, R(L)) Z Cel~/MReP=Rel),

Returning to the proof of (2.5), choose a so small that 4log(a~)>C + 1,
where C is the constant in (3.4). Then
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3.5) Reh(—i)—Reh(m)=L —logla™")+ C,

and also the hypotheses of Lemma 3 are satisfied for P, = h(m), P, = h(—1i).
Using Lemmas 2, 3, (3.5), and the fact that 4 is (1 + Ca'4-QC, we obtain

g(m, — i, )= Cexp[(— 1/2XL + log a + C)1 + Ca'¥)]
= Cexp[ — (1/2)(L + log a)lexp] — Ca4L + log a)}.

Now L =3f_, L;, so
(3.6) L+loga=—kloga—(v—k)logy —vlogB — log| Fie™9]|,
where v is the number of j €I1. Thus

g(m,—i,Q)z Cla'py*")"E,

where, using (3.6),
(3.7) log(E~") = Ca'(L + log &) < Ca "[log(a ~!) + Clk.

For given &€ > 0, choose « so small that

Ca[log(a "+ C] < e/2.
Then E = e~%%, and hence
glm, — i, Q) z Cle~*a*py )"

Since ' C Q, the proof of (2.5) is complete, except for the proof of the lemmas.

4. Proof of the lemmas

We shall prove Lemma 1 for D\(z,, z,, p), and shall write F instead of F,. The
proofs for D, and D, require only obvious changes. Square root transformations
show that as z— 1 we have

4.1) F(z)=y(z—1)+0(iz -1/,
4.2) (z - DFQ@)F@E)=1+0(z—-1|",
andasz— o

4.3) F(z)=z +0(|z]"?),

4.4) zZF"(z)/F(z)=1+ O(|z|~'?).

Let Q = log F(Dy(z,, z5, p)). Then (3.1), (4.1), (4.3) show that Q is a quadrila-
teral with a pair of opposite sides on Im z = * n. (Breaking tradition, we
denote points in the image plane by z also.) The other sides of Q are the image
curves of log F(0A(z,, p)) and log F(0A(z,, p~')), which we denote by I', and I,
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respectively. When p is small the I'; are essentially vertical segments lying on the
lines Rez=1logy +logp, Rez= —logp. More precisely, define 4, and
B", i = l, 2, by

(4, + iB\)(¢) = log F(z, + pe’?), $—2m=¢=¢,
(4, + iB,)(¢) = log F(z, + p~'e"), $pr—2m=9 =0

Then, using (3.1), (4.2), (4.4), a calculation we leave to the reader shows that for
i=1,2and ¢, —2n=¢=¢,,

(4.5) |4/ =Cp'?, |1Bi(9)— 1] =Cp'

Choose p, small enough so that inf, Bi(¢)>0 when p =p, Then each
I'; is intersected exactly once by each line Imz=y, —a =<y ==z. Thus, I
may be described in the form x =o;(y), |y| = =n. From (4.5) it follows that,
with ¢ = 8.(y),

A{(9)
4.6 ) = |[—/—=| = G2, <n.
(4.6) lo{(¥)] B9 p lyl ==
From (3.1), (4.1), (4.3), it follows that
4.7) |L —(o(y) — a(y))| = Cp'?,

where L=L(1)=2logp~!—logy.
Thus, Q is nearly a translation of the rectangle R(L) = (0, L) X (— =, n). For
z=x+iy€Q, define

x —ay(y)

hz)y=L ——————
‘ oA y) — 0y(¥)
Then #, maps Q 1-1 onto R(L). Define

P(y)=B'(y)+(m—¢), I|y|l=nm,

for i = 1, 2, where B! denotes the inverse function of B;. The P; are increasing
homeomorphisms of [ — &, n] onto itself. From (4.5), it follows that for |y | ==
andi=1,2,

(4.8) |[Pi(y)— 11 =Cp'?
and, since P,(n)=nm,
(4.9) IP(y)—y| =Cp'~

Define, for z =x + iyER(L),
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b =x+il(1-2) P01+ 3 P
Then A, maps R(L) 1-1 onto itself. Define H: D\(z,, z,, p)—= R(L) by H =
hyo hyo(log F). Then H is a homeomorphism of D\(z,, z,, p) onto R(L) which
satisfies conclusions (a) and (b) of Lemma 1.
To conclude the proof of Lemma 1 we will show that 4, and h, are
(1 4+ Cp"»-QC. Write h\(z) = u(z) + iy, hy(z) = x + iv(z). Then

(h), (hy);
(hl)z (hZ)z

Calculation gives

2 (u,— 1)+ ul
(ue + 1) +u?

2 (v, — 1)+ 0}

4.10 = .
( ) (v, + 12 +v?

and

_ L@ =ai)
(0 y) — au(¥))

X

_ 1 (o) = a)oi(y) + (x — 0(yINoxy) — i)
(oAy) = ai(¥)?
_PAy)— Pi(y)

X 3

L

y 3

_(Pi(y) — DL + (Pi(y) — Pi(y»)x
L

b, — 1 ’
where in the first two equations z = x + iy € Q and in the second two z ER(L).

Now L =1, and for z€Q, 0 = x — a,(y) = a,(y) — 6,(y). Using (4.7), (4.6),
(4.9) and (4.8), we deduce that |u, — 1], |u,|, |1, | and |y, — 1] are all bounded
above by Cp'2. From (4.10) it follows that h, and A, are (1 + Cp"?)-QC, and the
proof of Lemma 1 is complete.

Next, we shall verify (3.4). From the definitions in §3, it follows that A(m)
equals either F,((1 + a)/2) or its complex conjugate. Write

1+
log F| (—z_a) = Cl + [Cz.
Then | C;| < z. The construction of 4,, #; and the various inequalities in this

section show that

sup |hyo hy(z) —(z + log(py) ™" = Cp'™.

zE€Q
Thus, when p, is chosen sufficiently small, we have

[Im by o hy(C, 2 iC)| <Km + |C|)=n — 1,



264 A. BAERNSTEIN 1I

|RC h2°h|(C| + lCz) + logpl = C.

Since p = a2, the inequalities for #(m) in (3.4) are verified. Those for
h(—1)= F;(2) are established in the same way, where if necessary we take
smaller values of py and 7.

Proof of Lemma 2. We may assume that Q, and Q, are the unit disk, that
z="h(z)=0, and that z’=re&(e~', 1). Then, by reflection, # has a K-QC
extension to C which maps the unit circle onto itself. Recall that X < 2.
Distortion theorems for QC maps (see e.g. [LV, p. 64, Thm. 3.1]) imply that
|A(r)| = C > 0 and that

g0, h(r)=C(A — |h(nN)) = Clh() = h(r)| =C(A —r)"* = Cg(0, r)"X.

Proof of Lemma 3. If D is the half-disk {z:|z| <1, Imz>0} and
0<y <y,=0.99 then conformal mapping onto a half-plane and calculation
show that

4.11) gliyy, iy D)2 C 2L
Y2
Consider the situation of Lemma 3. By Harnack’s inequality we may
assume Im P, = Im P, =0. Let ®(z) =sin(}iz). Then ® maps R(L) 1-1 onto
a domain containing the half disk {z:|z| <®(L), Im z > 0}. Also |®(P,)| <
0.99)|P(L)|,since l =P <P, =L — 1.
Hence, by (4.11)

sinh(H)P, ~
P, P, R(L) = C ——=- > Cethi—F)2,
8P Py RN = € G p = €€

5. Proof of Theorem 2
Let H = {z:Im z >0}, and for /,, /, > 0 define
H(l, L) = H\[[O, /,e*") U [0, il]).

There is a unique conformal map from H onto H(/,, /,) with the properties
NAz)~z at oo, f(0)=0, and f~'(/,e*®) <0< f~'(il). There is exactly one
solution of f(x)=0 in each of the intervals ( — o, f/~!(L,e*")), (f~'(il,), ).
Denote them by P and @, respectively. Then, taking 0 <argz <,

(5. flz)=(z = P2z~ Q)" zE€H,

since the function displayed and the conformal mapping have the same argument
on R and are both =~z at co. Thus, there is a 1-1 correspondence between points
(P,Q)E(— 0,0)X(0,0) and points (I, L)E(, 0) X (0, ). Define the
homeomorphism G : ( — o0, 0) X (0, o) — R? by
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(5.2) G(P, Q)= 6(log /,, log I,).

The “6” will ease the arithmetic later on. I thank D. Marshall for pointing out
that maps from H to H(l,, /,) have the simple form (5.1).
Define also, when fis given by (5.1),

sl(P7 Q) = f_l(lla eZni/J)’ SZ(Ps Q) = f_l(iIZ)-

Then s, and s, are the critical points of the polynomial f® in the intervals (P, 0)
and (0, Q). Logarithmic differentiation shows they are the roots of the equation
62° — (4P + 3Q)z + PQ = 0, and hence, after a small miracle,

si(P, Q) = H{(4P + 3Q) — (16P* + 90%)'?),

©-3) sy(P, @) = H{(4P + 3Q) + (16P* + 90 '].

Write f(z) = f(z, P, Q) to show the dependence on P and Q. Then fis a
Schwarz-Christoffel mapping from H onto the degenerate polygonal domain
H(l,, 1), and the pre-vertices of fcorresponding to oo, 0, /,e**”*, 0, il,, 0, are oo, P,
51, 0, 8, Q.

The fork domain D of Theorem 2 is mapped onto H(l, 1) by the function
z—iz!2 Letf= f{-, 1, 1). One easily shows that the numbers 8 and y of Theorem
2 are given by

(5.9) B=1r)17, =17

where s; = 5;(P, Q), (P, @) = G X0, 0). (G is defined by (5.2).)

To prove Theorem 2, we shall find a sufficiently accurate estimate of G ~(0, 0)
and then verify g2+ 32> 22 by (5.3), (5.4), and direct calculation. When
Marshall ran Trefethen’s program using the data for H(1, 1) the output gave for
(P, Q)=G7'(0,0),

P,=—1.01661167, s = —0.47233507,

5, =0.52153271, Q, = 1.45387605,
and also
B =0.49824727, y =0.75253266.

We shall prove that at least
5.5 —1.0176 < P, < — 1.0156, 1.4529 < Q, < 1.4549,
(5.6) —0.4739 < 5, < — 0.4709, 0.5201 <5, < 0.5230.

Using the facts that £,(s;, P, @) =0 and | f(s;, P,, Q)| = 1, it follows that
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d*log f
9z?

| £2(si, Py, @) = (si, Py, Q)

=42(s; — P) 2+ 572+ 30 — Q) 7).
Then (5.4)—(5.6) give

B> >0.49, y>0.74,

12.151
so that definitely
BV + yV2>1.56.
To prove (5.5) and (5.6), let
(5.7 Py=—1.0166, Q,=1.4539.
Then (5.3) give
— 0.472324 < 5(Py, Qp) < — 0.472328,

(3-8) 0.521541 < s5o(Py, @) <0.521545.
Define
h(t, P, Q) =logl(t — P)*|¢| |t — Q).
Then

G(P, Q)= h(s(P,Q), P, Q)+ ih(sAP, Q), P, Q),
Let A, = A(P, + iQy, 0.001). I claim that

3, 3s,

(5.9) sup j|<o.57, sup il<o.57, i=1,2,
A |OP a 16Q

and that

(5.10) 0,00EG(A,),  sothat (P, Q,)EA,.

Then (5.5) and (5.6) follow from (5.7)—(5.10).
Now (5.9) follows from differentiation of (5.3) and straightforward estimation.
Since G is a homeomorphism of R_ X R, to prove (5.10) it will suffice to prove

(5.11) |G(Po + Q)| < inf |G(z) — G(Po + Qo)

Direct calculation gives

(5.12) |G(Py+ iQy)| < 0.0002.
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To obtain a lower bound for G — G(P, + iQ,) on dA, write
G(P +iQ)— G(Py + iQy)
=al(P — Po) +i(Q — Qo) + b[(P — Po) + i(Q — Q)] + D(P +iQ)
=L(P, Q)+ PP, Q)
where a = {Gp — iGo)(Py + iQy), b = ¥Gp + iGy)(P, + iQy). Then
inf |L| =1la] —[b]1(0.001),

sup | Q| = SUD (|Gpp |,| Gpgl,| Ggo | 0.001)>.

oA a
Thus (5.11) follows from (5.12), and the bounds

(5.13) |b| > 3.44846, la| <1.44718,

so that infy, |L | > 0.002, and

(5.14) sup (| Gpel,|Gpgl,1 Ggg ) <50.
A

Proof of (5.13). Write G =G, + iG, and

dG(Py + iQy) = [“‘ “2],
a, a,

where a, = (G\)p, a2 =(G))g, a; = (G,),, a, = (G,)y, all evaluated at P, + iQ,. By
the chain rule and the fact that A,(S;(P, Q), P, Q) =0, we have, with s5; =
si(PO’ QO)y

a=—-25-P) Y, a=3(Q —s)7,
ay=—25—P) ", a,=3(Qy—s)""
Now use the relations
=i[(a, +a)+i(a;—a))] and b =3(a,—a)+i(a; + ay)l,
with (5.7), (5.8), keep track of six decimal places, and (5.13) follows.

Proof of (5.14). Consider first the function A(¢, P, Q), defined between
(5.8) and (5.9). Its second derivatives are all negative, and the one of largest
absolute value is 4,

|h(t,P, Q)| =20t —P) 2 +1t72+ 3t — Q)2
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From (5.8) and (5.9), we see that if P 4+ iQ €A, then s,(P, Q) satisfy the bounds
on s,, 5, in (5.6). From this, one can show that if P + iQ €A,, then each second
partial derivative of & evaluated at (s;(P, Q), P, Q) has absolute value <12.2.

For G, = Re G we have, using H,(s;, P, Q) =0,

(G)pp(P +iQ)
= hy(s;, P, Q)(s)p(P, Q)I* + 2hup(si, P, Q)(s)p(P, Q)] +hpe(s;, P, Q).
Using (5.9) and the preceding paragraph,
sup (G)pp| =(12.2)((0.57)* 4 (0.57) + 1) < 25.

Similarly, the other second partial derivatives of G, and of G, are majorized by
25, and (5.14) is proved.
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