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1. Introduction 

Let f~ be a simply connected plane domain a n d f  be a conformal mapping from 
onto the unit disk A. We shall be concerned with integrability properties o f f '  

on lines which intersect f2. Without loss of  generality the line may be taken to be 
the real axis. The basic result is due to Hayman and Wu [HW]. 

H a y m a n - W u  T h e o r e m .  SRna If'(x)l dx < 1035. 

Thus, f '  EL I(R n fl) for all such fl and f .  Simpler proofs have been given in 
[GGJ] and [FHM]. In the latter paper the upper bound 103s is reduced to  47t 2, and 
a conjecture is offered for the best constant. 

For which exponents p > 1 is it true tha t f '~LP(R N fl) for a l l fand f27 Taking 
fl  to be A \ ( -  1, 0], one sees that f'~L2(R n ~) can fail. In [Ha, p. 638], 
I conjectured that f '~LP(R n f~) would be true for p E(1, 2). A result in this 
direction appears in [FHM], where it is shown that there is an absolute constant 
t > 0 such that f '  always belongs to L~+e(R n ~). 

It turns out, though, that my conjecture is false. 

Theorem 1. There exists a simply connected domain f~ and a number 
p E (1, 2) such that 

f If'(x)l'dx = oO 

Rn~ 

for every conformal mapping f of ~ onto the unit disk. 

One can also consider a two-dimensional analogue of this problem and ask 
for which p is it true that f 'ELP(~, dxdy) for every ~ and f .  For p = 2 this 
is clearly the case, and for p ~(2, 3) it follows from elementary distortion 
theorems. Brennan [Br] adapted a difficult technique of Carleson's to prove that 
f '~L3+"(~)  for some absolute e > 0. He conjectured that f '  E LP(~) should hold 

t This research was supported by a grant from the National Science Foundation. 
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for p E (2, 4). The slit disk again shows that f '  E L4(f~) can fail. The best partial 

result in the direction of  Brennan's conjecture is due to Pommerenke [P 1 ], [P2]: 

f'~LP(D) fo rp  ~(2,  3.399). 
To prove Theorem 1 we show that p-integrability fails for the complement of  a 

rather simple "tree". Recently various authors, including Carleson, Makarov, 

Volberg, Pryztycki, Zdundik, and Urbafiski, see [M] for references, have used 

concepts from dynamics to study harmonic measure in domains with fractal 

boundaries. Wolff 's example [W] of  a domain in R ~ whose harmonic measure is 
not supported on a set of  dimension 2 is inspired by these ideas. It seems 

plausible that a scale invariant construction more complicated than our tree 
might provide a counterexample to the Brennan conjecture. 

During the course of this research I benefitted greatly from conversations with 

C. Bishop, J. Fern/mdez, and J. Manfredi. My thanks go also to E. Villamor, 
whose careful reading of  the manuscript uncovered several errors. I am especially 

grateful to D. Marshall, who with his computer established the inequality stated 
as Theorem 2 in the next section. Without his help it is unlikely that I ever would 
have known that my counterexample really was one. 

2. T h e  e x a m p l e  

For zl, z2~C let [z~,z2] denote the straight line segment connecting 
them. Write a = e  ~/3, and take o~E(0, 1/2). Eventually a will be quite 
small. Define S = [0, (1 - a)d] tJ [0, (1 - a)a 2] and define inductively sets Tk 

and ~(k) ,  k > 0, by 

T o = S + i = { z + i : z E S } ,  ~(0)  = {i}, 

8 (1 )  = the two endpoints of  To on Im z = a, 

Tk=Tk- 'U[ b~k) (akS+b)] ' k>=l' 

~ ( k  + 1) --- the endpoints of Tk on Im z = a k+~. 

Thus, there a r e  2 k points in ~(k) .  (See Fig. 1, where T2 is shown.) 

Let T-l = {iy 'yE[l ,  ~]}, and define T t o  be the closure of  [,.Jk~__l Tk. Then 

T = T(a) is a continuum on the sphere containing oo. Let f l  = C \  T, and l e t f  be 
a conformal mapping from fl  onto the unit disk with f (  - i) = 0. 

We shall denote by C an absolute positive constant whose value can change 
from line to line, and use the notation A ~ B to mean that C- tA < B < CA for 
some C. For b E ~(k) ,  k >_- 0, define 

m = R e b ,  l(b) = [m - 10-2a k, m + 10-2ak]. 
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R 

Fig. 1. 

The l(b) are pairwise disjoint, and I I(b)[ ~ dist(I(b), T). (We use [EI to 
denote the Lebesgue measure o f E  c R.) Write 

g(z) ffi g(z, - i, ~) 

for the Green's function. Using Schwarz's lemma, the one-quarter theorem, and 
conformal invarianee of  Green functions, one sees that g(z) .~ I f '(z)ldist(z, T) 
for z E D ,  tz + i l > 1/2. Thus, for xEI(b) ,  

g(x) ~. If '(x)l II(b)l .  

Moreover, g(x) ,~ g(x') for x, x '~I(b) ,  by Harnack's inequality. Hence 

f l f '(x)ldx,~,g(m), bE~ (k ) .  

Define E(k) = I,.){I(b) : b E ~(k)}.  Then 

I f ' (x) ldx ~ Y. g(m). (2.1) 
,Y  bEgS(k) 

E(k) 
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We will show that i fa  is chosen small enough, then a number q > 2 exists such 

that V k >= 0, 

(2.2) Y. g(m) > C(qa) k/2. 
b~..~(k) 

Take p E(1,  2), and write A = IRnalf'lPdx, Let p' denote the conjugate index 

o fp .  By H61der's inequality, for E C R C1 fl, 

f l f ' l dx  <=Al/VlEll/v'. 

E 

Now IE(k)l = C(2a) k. From (2.1), (2.2), we deduce 

(2.3) ( q a )  k/2 ~ C A  I/P(2a)k/v', k ~ O. 

Let P0 be the exponent conjugate to 2(log2a)(logqa) -l. Then p0E(l ,  2). 
Taking kth roots in (2.3) and letting k - -  oo, we see that i fA < oo then p' > p~. 
Hencef'giLV(R C1 fl), when P0 < P < 2. 

To prove Theorem 1 it thus sutfices to prove (2.2). This estimate will be derived 
from properties of  a pair of  simple conformal maps. Recall that a = e ~'/3. Let D be 

the "fork domain" 

D = C\[ [0 ,  a] U {x E R : x E (  -- oo, l]}l. 

Let Fi and F2 conformally map D onto the slit plane C \ (x E R : - oo < x < 0}, 

with 

F l ( l ) = 0 ,  F2(a )=0 ,  I f ~ ( z ) l " l z l  asz--.-oo, i = 1 , 2 .  

Define fl, 7~(0 ,  oo) by 

f l = l i m  F2(z) , 
z--a 2 --  G 

T h e o r e m  2 .  fl1/2 jr_ 71/2> 21/2 

7 = l i m  Fl(z) . 
z-i z - - 1  

The values of  fl and 7 were computed for me by Donald Marshall, who used 
Trefethen's program [T], [He, p. 422] for finding parameters for Schwarz- 

Christoffel transformations. According to the computer 

fl = 0.49824727, 7 = 0.75253266, 

which gives ill/2 + 71/2 > 1.57. As a check on the computation, in w we start with 

the 4-place decimal approximations to the parameters given by the computer and 
confirm by calculus that the true values of  fl and 7 satisfy ~1/2 "Jl- 71/2 > 1.56. It 

would be desirable to have a conceptual proof of  Theorem 2. 
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Let us return now to the domain fL For b ~ ~(k) ,  there is a unique path in T 
from b to i. This path contains exactly one point of  ~ ( j ) ,  0 __<j < k. Denote it by 
bj. Thus bk = b, bo = i, and bj is the "ancestor" of  bk in the j t h  generation. For 
1 _--< j < k - 1, when the path passes through bj it either continues in a straight line 

or makes a 120* turn. Define 

(2.4) v(b) = number of times the path makes a turn. 

Thus 0 =< v (b) _-< k - 1, and for 0 < j _< k - 1, v (b) equalsj for exactly 2( k-~ ) of  
the b's in ~(k).  Here now is the main estimate in the proof of  Theorem 1. 

Given e > 0, 3 a such that for T = T(a), all b E ~(k) ,  and k _-_ 0, 

(2.5) g (m  ) >= C(e-~'  akp'~,k-') I/2. 

This will be proved in w except for some lemmas which will be proved in ~4. 
Accepting it for now and using the binomial theorem, we find that 

~, g (m)  >= C[e-a2ot~/~fl lcz + 7,,z)]k. 
bEa(k) 

Define q = q(e) by qV2 = (flt/2 + 71/2)e-a2. By Theorem 2, q > 2 when e > 0 is 

sufficiently small. Thus (2.2), and hence Theorem 1, follows from (2.5). 

3. P r o o f  o f  (2.5) 

For 0 < x < 1/4 and D the fork domain ofw define 

D~(x) = D \ a ( a ,  x), D2(x) = D \A(1, x). 

Here A(zo, p ) = { z E C : l z - z o l  <p} .  For i =  1,2 let Fi~, be a conformal 
mapping from D~(x) onto C \ {x ~ R : - oo < x < 0} with FI.~(1) -- 0, F2.~(a) = O, 
I Fi~,(z)l  "- I zl as z - - o o .  By Theorem 2, when x is sufficiently small, f l (x)--  
IFb,(1)l and y(x) -- IF~.~(a)l satisfy p(x)l/2 + y ( x ) t a >  21/2. Fix such a x once 
and for all, and then suppress the dependence on ~:. Thus, we will write Dl,/)2, El, 
/72, fl, Y, instead OfDl (X) , . . . ,  ~0r 

Define also another fork-type domain D3 by 

D3 = C \ [ (  - oo, 0l U [0, e ~'/~] U [0, e -''/6] U A(e -i'/6, x)], 

and let F3 conformally map D3 onto C \ (  - oo, 0] with IF3(z)l  ~ I z l  for z - -  oo, 
F3( e i~/6) = O. 

Let p E(O, 1/4), and suppose that z~, z2 satisfy 

(3.1) Iz~ - 11 <pU2, Iz21 < p - ~ a .  
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Define 

D,(z,, z:, p) = [D, N A(z:, p-1)] \A(z,, p). 

Here A denotes the closure of a disk A. The circles OA(z~,p), OA(z2,p -I) 
intersect (0, 1), resp. the negative real axis, in exactly one point. Denote the 
first one by Zl +pe  ~' and the second by z2 +p-leir with ~1, ~02,E(n/2, 31r/2). 
Similarly, if 

(3.2) I z , - a l  <p3/2, Iz21 < p - , , 2  

or if 

(3.3) I z l -  ei~/61 <p3/2, Iz21 <p- l ,2 ,  

define for i = 2, 3, 

Di(z,, z2, p) = [D~ r) A(z2, p-1)] \ A(z~, p). 

Let z2 +p-le~2 be the same as above, and zl +pe  ~' be, in the case of (3.2), the 
point where OA(zl, p) meets [0, a], and in the case of (3.3) the point where 
0A(Zl, p) meets [0, eg'/6]. See Fig. 2. One should think ofp as being very small. The 
points A and B are, resp. z2 +p-leir and z~ +pe  ~,. 

radius 

radius p 

Fig. 2. 
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Let R(L)  denote the open rectangle (0, L)  X ( - n, r0. Define, for i = 1, 2, 3, 

L(i) = 2 logp-~ - 2 ( i ) ,  

where 2(1) = log y, 2(2) = logfl, 2(3) = logl f ; (# ' /6)  [. 

The following lemma, which will be proved in w states that for small p the D~ 

are conformally close to R [L(i)]. 

L e m m a  1. There exist absolute constants po and C such that i f  ( 3.i ) holds for 
i = 1,2, or 3 and i f  p E(0,p0], then there exists a homeomorphism 
H:  Di(Zl, z2, p ) ~  R [L (i)] whose boundary values satisfy 

(a) H(zl + p#~) = i[(rr -- 0~) + q)], -- 2zt + Ol < 0 < q)~, 
(b) H(z2 +p-lei*) = L(i)  + i[(~ - 02) + r - 2n + 02 < 0 < 02. 

Moreover, H is (1 + Cp~/2)-quasiconformal. 

Return now to the situation of  (2.5), and recall the notation int roduced before 

(2.4): rn = Re b, bk = b, bo = i, and bj is the ancestor of  bk lying in ~ ( j ) .  For  

0 < j  < k - 1 let bjbe the point of  intersection of  the line through [bj, bj+d with 

R. Set b;, = b;,_,, and for 0 =<j =< k let b~ be the reflection of  bj in the line 

Re z = Re b s. Write s = 2 .3 -v2 .  Then s is the side length of  an equilateral 

triangle of  altitude 1. 

Next, define disks Aj, Aj, and domains flj ,  f l ' ,  by 

Aj = A(m, s a  J+l/z), 

Ak = A(b;,, s a  k+ ,/2), 

A; = A(b ~;, xsa j), 

j = - - l , O  . . . . .  k - l ,  

j = 0  . . . .  k, 

['~' = [(~'~ ("1 a _ l ) \ , ~ k ]  \ U , 
j-O 

f l j  = f l '  n ( a j _ , ' , A j ) ,  j=O, . . . , k .  

The number x was introduced at the beginning of  this section. Recall that i f  we 

climb T from bk back to b0, then at each bj we either continue in a straight line, 

denote the set o f these j  by I, or turn by 120~ denote these by II. Since b~ = b~_ ~, 
we declare that k E I. Define affine maps A~ . . . . .  Ak by 

A j ( z ) = ( b ~ - b j ) - ' ( z - b j ) ,  j ~ I ,  l < j < k ,  

A j ( z ) = ( b ~ - b j ) - ~ ( z  - b j ) ,  j ~ I I ,  1 <=j<k.  

Let z j=Aj (m) ,  l < j < = k .  Since sa j = l b j - b ; I  = l b j - b ' ~ l ,  for l < j  < 

k - 1, Aj maps Oj onto one of  the four domains  Di(zj, zj, a ~n), or Di*(z s, zj, a la), 
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i = 1, 2, where * denotes reflection in R. Also, Ak maps f~k onto Dl(1 , zk, aU2). 

Define 

Ao(z) = e • r - bo), z0 = Ao(m ), 

where the sign in + is chosen so that  A0 maps ~)0 onto D3(zo, Zo, a 1/2). 

Suppose that  1 _-<j _-< k - 1. I f j ~ I  then Aj(flj) is a D~ or  D*, and 

[zj-- 1 1 -  Im - b ] l  <Ca. 
Ib ; -b j l  

Similarly, I zj - a I 6 Ca f o r j  ~ II, I z0 - e • ~ix/6) l __< Ca, arid I Zk [ <= C. Choose 
a so small that  C < a -i/4. Then one of  the hypotheses (3.1)--(3.3) is satisfied for 

Aj(f~j), with p = a 1/2, when Zl, z2 there are replaced by zj, zj (0 < j  < k - 1) or 

l, zk. Let Lj = L ( l )  f o r j E I ,  Lj = L(2) f o r j  EI I ,  and L0 = L(3), where the L(i) 
were defined before the statement of  Lemma I. Let/-/j be the QC map of  Aj(f~j) 

onto R(Lj) provided by Lemma 1. (In case Aj(F~j) is a D*, we use the map / / (2 ) . )  

Define h~ = Hj oAj, 0 < j  <-_ k. Then, by (a) and (b) o f  L e m m a  l, hj = hi-1 on 

f~' A 0Aj_ ~, l _-<j _-< k. Define L = Zf-0 Lj and h" F~'--R(L) by 

k 
h(z)---hj(z)+ Y. L,, O<-_j<=g, z ~ j .  

i - - j+l  

By Lemma 1, h is a (1 + Ca ~4)-QC homeomorphism o f f l '  onto R(L). In w we 

shall see there are absolute constants C and q > 0 such that  

[ R e  h ( m )  - ( 1 / 2 ) l o g  a - l I < C ,  I I m  h ( m )  I < 7t - q,  

(3.4) 
I R e h ( - i ) - ( L -  (1/2)loga-~)l  < C ,  l i m b ( - i ) 1  <~c - r/. 

To finish, we need two estimates for Green functions. The second one is 

certainly known and probably so is the first, but for completeness proofs will be 

given at the end of  w 

L e m m a  2. Let s i-~2 be simply connected plane domains, and h be a 
K-quasiconformal homeomorphism of  ~ and g)2. Assume that K < 2 and that 
g(z, z', f l )  < l, where z, z 'E f~. Then 

g(z, z', ill) > C[g(h(z), h(z'), f~2)] x. 

L e m m a  3.  Suppose that P ~ R ( L ) ,  i = 1, 2, with L > l,  and that I <-_ 
Re PI <Re  P2 <-_L - 1, IImP~l _-<Tr - q ,  i =  1,2. Then there is a constant C 
depending only on q such that 

g(Pl, P2, R(L )) > Ce t- I/2XRe P,-ReP,). 

Returning to the proof  of  (2.5), choose a so small that  �89 C + 1, 

where C is the constant  in (3.4). Then 
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(3.5) Re h( - i) - Re h ( m )  < L --  log(a-l)  + C, 

and also the hypotheses of  Lemma 3 are satisfied for P~ = h ( m ) ,  P2 = h (  - i). 

Using Lemmas 2, 3, (3.5), and the fact that h is (1 + Cal/4)-QC, we obtain 

g ( m ,  - i, l ) ' )  > Cexp[( - l / 2 ) (L  + loga  + C)(1 + Ca'/4)] 

>_- C exp[ - (I/2)(L + log a)]exp[ - Cot 1/4(L + log a)]. 

Now L = Z k_ 0 Li, so 

(3.6) L + l o g a = - k l o g a - ( v - k ) l o g y - v l o g f l - l o g [ F ' 3 ( e ~ X / 6 ) [ ,  

where v is the number o f j  ~ II. Thus 

g ( m ,  - i, f~') > C(akfl~3,k-~)l/2E, 

where, using (3.6), 

(3.7) log(E-1) _~ C a  ~/4(L + log a) < Ca  U4[log(a -~) + C]k .  

For given e > 0, choose a so small that 

C a  I/4[Iog(a - I) + C] < e/2. 

Then E _-> e -e'/2, and hence 

g ( m ,  - i ,  [2') > C(e-aotkB~?t- ' ) l /2 .  

Since ~ '  c fl, the proof of(2.5) is complete, except for the proof of  the lemmas. 

4. P r o o f  o f  the  l e m m a s  

We shall prove Lemma 1 for Dl(z~, z2, p) ,  and shall write F instead ofF1. The 
proofs for D2 and D3 require only obvious changes. Square root transformations 
show that as z --- 1 we have 

F ( z )  = ~,(z - I) + O ( [ z  - 1 ]3/2), 

(z  -- 1 ) F ' ( z ) / F ( z ) =  1 + O ( [ z  - 1 [u2), 

(4.1) 

(4.2) 

and as z --* 

(4.3) 

(4.4) 

F ( z )  = z + O ( I z  II/Z), 

z F ' ( z ) / F ( z )  = 1 + O ( I z  I-~/2). 

Let Q = log F(Dl ( z l ,  z2, p)).  Then (3.1), (4.1), (4.3) show that Q is a quadrila- 
teral with a pair of  opposite sides on Im z = + 7t. (Breaking tradition, we 
denote points in the image plane by z also.) The other sides of  Q are the image 
curves of  log F(OA(zl ,  p ) )  and log F(OA(z2, p-i)) ,  which we denote by Fl and F2, 
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respectively. When p is small the 1-'~ are essentially vertical segments lying on the 

lines Re z --- log 7 + log p, Re z = - logp. More precisely, define A, and  

Bi, i = 1, 2, by 

(Am + iBO(O) = log F(z  I + peJr 0i - 2n < 0 < 01, 

(A2 + iB2)(0) = log F(2 2 + p -  leiO), 02 -- 2n < 0 < 02. 

Then, using (3.1), (4.2), (4.4), a calculation we leave to the reader shows that for 

i = 1, 2 and 0i -- 2r~ < 0 < 0i, 

(4.5) Ia;(O)l <= CP 1'2, I B;(0) - I I < Cp I/2. 

Choose P0 small enough so that  inf ,  B~(0)> 0 when p <P0. Then each 

F~ is intersected exactly once by each line Im z = y,  - ~ r  _--< y < ft. Thus, Fi 

may be described in the form x = cry(y), lYl < n. From (4.5) it follows that,  

with 0 = ~P,(Y), 

A;(O)[I <CP l/2, IYl ~ n .  (4 .6 )  l a ' ( y ) l  = B;(O) 

From (3 .1 ) ,  (4 .1 ) ,  (4 .3 ) ,  it follows that  

(4.7) IL - (cr2(y) - al(y))l  < CP l/2, 

where L = L ( I )  = 2 logp -1 - log y. 

Thus, Q is nearly a translation of  the rectangle R ( L )  = (0, L )  • ( - re, n).  For  
z = x + iy  ~ Q ,  define 

x -- e l ( y )  
hi(z) = L + iy. 

th (y)  - o , (y )  

Then h~ maps Q 1-1 onto R ( L ) .  Define 

P i ( Y ) = B i - ~ ( Y ) + ( n - - 0 i ) ,  [Yl ~Tr, 

for i = 1, 2, where Bi-1 denotes the inverse function of  Bi. The P; are increasing 

homeomorphisms o f [  - n, n] onto itself. From (4.5), it follows that  for lYl =< :t 

and i = 1, 2,  

(4.8) IP;(y)  - I I < Cp v2 

and, since Pi(Tt) = n ,  

(4.9) IP~(y) - y[  =< Cp ~/2. 

Define, for z = x + iy ~ R (L),  
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x 1 h2(z ) = x  + i 1 - e t ( Y )  + - ~ P 2 ( Y )  �9 

Then h2 maps R ( L )  1-1 onto itself. Define H :  Dt(z~, z 2 , p ) ~ R ( L )  by H = 
hzoh~ o(log F). Then H is a homeomorphism of  D~(z~, z2 ,p)  onto R ( L )  which 

satisfies conclusions (a) and (b) of  Lemma 1. 
To conclude the proof of  Lemma 1 we will show that h~ and h2 are 

(1 + Cpl/2)-QC. write hi (z )  = u ( z )  + iy, h2(z) = x + i v ( z ) .  Then 

(hl)t 2=(Ux-- l)2 + UZr and {(h2)~2 ( v y -  l)Z + v~ 
( 4 . 10 )  (hl)z (Ux + 1) 2 + uv 2 I ~  = (v~ + 1) ~ + v~ 

Calculation gives 

U x -  l = 
L - ( a 2 ( y ) -  a,(y)) 

(o'2(y) -- o's(y)) 

Uy-.~- m t  
( a ~ ( y )  - a , ( y ) ) a ~ ( y )  + ( x  - a , ( y ) ) ( a ~ ( y )  - a ~ ( y ) )  

(0"2(y) - -  O' l (y))  2 

P2(Y) - P , ( Y )  
Vx 

L 

v y - l =  
( P ; ( y )  - 1)L + (P~(y)  --  P~(y ) ) x  

L 

where in the first two equations z = x + iy E Q and in the second two z E R ( L ) .  

Now L > 1, and for z E Q ,  0 < x  - a~(y) < a2(.v) - trl(y). Using (4.7), (4.6), 

(4.9) and (4.8), we deduce that l Ux - 1 I, Jut [, I Vx [ and Iv r - 11 are all bounded 
above by Cp ~/2. From (4.10) it follows that ht and h2 are (1 + Cpl/2)-QC, and the 
proof of  Lemma 1 is complete. 

Next, we shall verify (3.4). From the definitions in w it follows that h ( m )  

equals either F,((1 + a)/2) or its complex conjugate. Write 

logF~ ~ = Cl + iCz. 

Then I C2t < zt. The construction of h~, h2 and the various inequalities in this 
section show that 

sup I h2 o hi (z )  - (z  + log(p7) -I)l ~ Cp 1/2. 
z~Q 

Thus, when Po is chosen sufficiently small, we have 

I Imh2oh~(C~ + iC2)1 <�89 + I C 2 1 ) ~ n - ~ ,  
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IReh2oh~(C~ + i C 2 ) + l o g p l  < C.  

Since p = a  u2, the inequalities for h ( m )  in (3.4) are verified. Those for 

h ( -  i ) =  F3(2) are established in the same way, where if necessary we take 
smaller values of  p0 and r/. 

P r o o f  o f  L e m m a  2. We may assume that f~l and f~2 are the unit disk, that 

z = h ( z ) = O ,  and that z ' = r ~ ( e  -~, l). Then, by reflection, h has a K-QC 

extension to C which maps the unit circle onto itself. Recall that K _-< 2. 
Distortion theorems for QC maps (see e.g. [LV, p. 64, Thm. 3.1]) imply that 

I h(r)l > C > 0 and that 

g(0, h (r)) < C( 1 - I h (r) l) < C I h (1) - h (r) I < C( 1 - r) , ,x  < Cg(O, r)ux.  

P r o o f  o f  L e m m a  3. If  D is the half-disk {z : lz l  < 1 ,  I m z > 0 }  and 

0 <y~ <Y2--< 0.99 then conformal mapping onto a half-plane and calculation 
show that 

(4.11) g(iYl, iY2, D)  > C y~ 
Y2 

Consider the situation of  Lemma 3. By Harnack's inequality we may 

assume Im P, = Im/'2 = 0. Let q~(z) = sin(�89 Then �9 maps R ( L )  1-1 onto 

a domain containing the half disk {z :1 z I < q~(L), Im z > 0}. Also Itl~(e2) l < 
(0.99) [q'(L)l,  since 1 _---< P, < / '2  < L -- 1. 

Hence, by (4.11) 

sinh(�89 
g(Pi,  P2, R ( L  )) >--_ C - -  >- Ce (e,-ey2. 

sinh(�89 - 

5. P r o o f  o f  T h e o r e m  2 

Let H -- {z : Im z > 0}, and for II, 12 > 0 define 

H(It,  12) = H \ [[0, lie 2`m] LI [0, i/2]]. 

There is a unique conformal map from H onto H(I~, 12) with the properties 
f ( z )  ~ z at 00, ~0 )  = 0, and f -  l(l,e 2~i/3) < 0 < f - ' ( i l2) .  There is exactly one 
solution o f f ( x ) =  0 in each of  the intervals ( -  ~ ,  f-I(lle2Xi/3)) , ( f - I( i l2) ,  00). 

Denote them by P and Q, respectively. Then, taking 0 < arg z < n, 

(5.1) f ( z )  = (z -- P)l/3zJ/6(Z -- Q) J/2, z E H ,  

since the function displayed and the conformal mapping have the same argument 

on R and are both --~ z at oo. Thus, there is a l -  1 correspondence between points 

(P, Q ) ~ ( -  oo, 0) x (0, oo) and points (11,/2)6(0, oo) X (0, ~) .  Define the 
homeomorphism G : ( - oo, 0) X (0, oo) -~ R 2 by 
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(5.2) G(P, Q) -- 6(log l,, log 12). 

The "6" will ease the arithmetic later on. I thank D. Marshall for pointing out 

that maps from H to H(ll,/2) have the simple form (5.1). 

Define also, when f i s  given by (5.1), 

Sl(P, Q) = f-1(11, e2m/3), s2(g, Q) = f-1(i/2). 

Then st and s2 are the critical points of the po lynomia l f  6 in the intervals (P, 0) 
and (0, Q). Logarithmic differentiation shows they are the roots of  the equation 
6z 2 - (4P + 3Q)z + PQ = 0, and hence, after a small miracle, 

s,(e, Q) = ~[(4P + 3Q) - (16P 2 + 9Q2)1/2], 

(5.3) 
s2(e, Q) = ~[(4P + 3Q) + (16P 2 + 9Q2)V2]. 

wr i t e  f ( z ) =  f (z ,  P, Q) to show the dependence on P and Q. Then f is a 
Schwarz-Christoffel mapping from H onto the degenerate polygonal domain 

H(lt, 12), and the pre-vertices o f f  corresponding to oo, 0, lie 2"~3, O, i12, O, are oo, P, 

SI, 0, S2, Q. 
The fork domain D of  Theorem 2 is mapped onto H(1, 1) by the function 

z --- iz t~2. L e t f  = f ( . ,  1, 1). One easily shows that the numbers fl and 7 of  Theorem 
2 are given by 

( 5 . 4 )  ,8 = If"(s01 -I, ~, = IfO(s2)l -I, 

where s~ = si(e, Q), (e,  Q) = G-~(O, 0). (G is defined by (5.2).) 
To prove Theorem 2, we shall find a sufficiently accurate estimate of  G -  1(0, 0) 

and then verify fltr2+ 71/2> 21/2 by (5.3), (5.4), and direct calculation. When 

Marshall ran Trefethen's program using the data for H(1, 1) the output gave for 
(Pt, QI) -- 6-1(0,  0), 

PI = - 1.01661167, sl = - 0.47233507, 

s2 = 0.52153271, QI = 1.45387605, 
and also 

fl = 0.49824727, 7 -- 0.75253266. 

We shall prove that at least 

(5.5) - 1.0176 < P t  < - 1.0156, 1.4529 < QI < 1.4549, 

(5.6) - 0.4739 < S l <  - 0.4709, 0.5201 <s2  < 0.5230. 

Using the facts that f~(si, P,  Q) -- 0 and [f(si, PI, QI) I -- 1, it follows that 
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0 2 log f (st P1, QO 
I f~z(si, P1, Qi)l = Oz 2 , 

-- ~[2(s~ - e l ) -2  + s72 + 3(s~ - Q0 -21. 

Then (5.4)-(5.6) give 

p > - -  

so that definitely 

To prove (5.5) and (5.6), let 

(5.7) 

Then (5.3) give 

(5.8) 

Define 

Then 

6 

12.151 
> 0.49, y > 0.74, 

pl/2 + yt/2 > 1.56. 

Po= - 1.0166, Qo= 1.4539. 

- 0.472324 < sl(Po, Q0) < - 0.472328, 

0.521541 < s2(Po, Qo) < 0.521545. 

h(t,  P, Q) = log[(t - p)21t I It - Q 13]. 

G(P, Q) = h(s~(P, Q), P,  Q) + ih(s2(P, Q), P, Q), 

Let A~ = A(Po + iQo, 0.001). I claim that 

(5.9) sup Osi Os~ < 0.57, sup ~-~ < 0.57, i ---- 1, 2, 
a, O P  A, 

and that 

(5.10) (0, 0)U G(A1), so that (PI, Q~)EA~. 

Then (5.5) and (5.6) follow from (5.7)--(5.10). 
Now (5.9) follows from differentiation of(5.3) and straightforward estimation. 

Since G is a homeomorphism of R_ X R+, to prove (5.10) it will suffice to prove 

(5.11) I G(Po + iQ0) l < inf  I G(z) - G(Po + iQo) l. 
zqSe~n 

Direct calculation gives 

(5.12) I G(Po + iQo) l < 0.0002. 
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To obtain a lower bound  for G - G(Po + iQo) on 0A~ write 

G(P + iQ) - G(Po + iQo) 

= a[(e - eo) + i ( Q  - Q0)] + b[ (P  - Po) + i ( 0  - Q0)] + o ( e  + iQ) 

= L ( P ,  Q)  + o ( e ,  Q) ,  

where a = ~(Ge - iGQ)(Po + iQo), b = ~(Ge + iGQ)(Po + iQo). Then 

i n f l L I  = I l a l - l b l l ( 0 . 0 0 1 ) ,  
O~j 

sup I~1 <suP(Iaeel , Iaml , IaQQI)(O.O01)2 .  
O&1 &l 

Thus (5.11) follows from (5.12), and the bounds  

(5.13) Ibl > 3 . 4 4 8 4 6 ,  la l  < 1.44718, 

so that infa~, I L I > 0.002, and 

(5.14) sup (I Gee I, I GeQ I, I G ~  I) < 50. 
Ai 

P r o o f  o f  (5 .13 ) .  Write G = G~ + iG2 and 

dG(Po+iQo)=[a~ a2], 
a3 a4 

where al = (G0p, a2 -- (G~)Q, a3 = (G2)p, a4 = (G2)Q, all evaluated at Po + iQo. By 
the chain rule and the fact that ht(S~(P, Q), P, Q ) =  0, we have, with si = 

si(Po, Qo), 

al = - 2(sl - P0) - l ,  a2 = 3 ( Q 0  - -  SI)  - I ,  

a~ = -- 2(S2 -- P0) - l ,  a 4  = 3 ( 0 0  - -  $2) -I 

NOW use the relations 

a = �89 + a4) + i(a3 -- a2)] and b = �89 - a4) + i(a3 + a2)], 

with (5.7), (5.8), keep track of  six decimal places, and (5.13) follows. 

P r o o f  o f  (5 .14 ) .  Consider  first the function h(t,  P, Q), defined between 
(5.8) and (5.9). Its second derivatives are all negative, and the one o f  largest 
absolute value is h, ,  

I h , ( t , P ,  Q)I = 2(t - e ) - 2 +  t - 2 +  3(t - Q) -2  



268 A. BAERNSTEIN lI 

From (5.8) and (5.9), we see that i f P  + iQ EAI then si(P, Q) satisfy the bounds 
on sl, s2 in (5.6). From this, one can show that i f P  + iQ EAI, then each second 
partial derivative of  h evaluated at (si(P, Q), P, Q) has absolute value < 12.2. 

For G~ = Re G we have, using Ht(si, P, Q) = O, 

(GI)pe(P -t- iQ) 

= htt(si, P, Q)[(Si)e(P, Q)]2 + 2hte(si, P, Q)[(s~)e(e, a)]  +.hee(s~, P, Q). 

Using (5.9) and the preceding paragraph, 

sup I(GOPe I < (12.2)((0.57) 2 + (0.57) + 1) < 25. 
A~ 

Similarly, the other second partial derivatives of  G~ and of  G2 are majorized by 
25, and (5.14) is proved. 
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