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1. Introduct ion  

Throughout this paper we let R" denote euclidean n-space and R" its one point 
compactification R n U {oo}. Next for x E R" and 0 < r < oo we let B" (x, r) denote 

the open n-ball with center x and radius r and S'-l(x,r) its boundary. 
A domain D in/~2 is said to be a K-quasidisk if it is the image of an open disk or 

half plane under a K-quasiconformal self mapping of g2. This paper is concerned 

with the extension to more general classes of domains D in/?" of the following two 

basic properties of quasidisks. 

1.1. E x t r e m a l  d i s tance  p r o p e r t y .  If D is a quasidisk and if Ft and F2 are 
disjoint continua in D, then 

mod F =< M rood Fo, 

where F and Fo ate the families of curves which join Ft and F2 in ~2 and D, 
respectively, and where M is a constant which depends only on D. 

1.2. Extens ion  property .  If D is a quasidisk and if f is a quasiconformal 
mapping of D onto a domain D' in R 2, then f has a quasiconformal extension to R 2 if 

and only if D' is a quasidisk. 

Property 1.1 is a consequence of a simple reflection principle for the moduli of 

curve families; see 2.12. Property 1.2 follows from the work of Beurling and Ahlfors 

[3]. 
For domains in ~2 it turns out that these properties are related in the following 

sense. If D has the extremal distance property, then D and D' have the extension 

property if and only if D'  has the extremal distance property. This is Corollary 3.16 

in section 3. 
We begin in section 2 by deriving several geometric properties of domains D in 

R" which have the extremal distance property. We call such domains D quasi- 
exUemal distance or QED domains. It turns out that a simply connected plane 

domain of hyperbolic type is QED if and only if it is a quasidisk. We then obtain in 

' This research was supported in part by grants from the U.S. National Science Foundation and from 
the Humboldt Foundation of West Germany. 
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182 F. W. GEHRING AND O. MARTIO 

section 3 a number of extension theorems for QED domains including several 
generalizations of the above-mentioned result of Beurling and Ahlfors. 

2. Q E D  e x c e p t i o n a l  se ts  a n d  Q E D  d o m a i n s  

A closed set E in /~" is said to be an M-quasiextremal distance or M-OED 
exceptional set, 1 =< M < oo, if for each pair of disjoint continua F1,F2 C /~" \E  

(2.1) mod F = M mod F~, 

where F and F~ are families of curves joining F1 and F2 in aft" and in /~"\E, 

respectively, and mod is the n-modulus. The class of QED exceptional sets contains 

the class of NED or nullsets for extremal distances; these are the sets E in /~"  for 

which (2.1) holds with M = 1 for all choices of F~,F2. See [1], [2], [21] and Remark 

2.4 below. 

The conformal or n-capacity can also be used to characterize QED exceptional 

sets. Let D be an open set in /~" and Ct,C2 compact disjoint sets in D. Set 

cap(C,,C2;D)= inf,~w f IVul"dm (2.2) 

D n R "  

where W = W(C~, C2;D) is the family of all functions u continuous and ACL in D 

with u (x) =< 0 for x E C1 and u (x) => 1 for x E C2. Since a point has zero n-capacity, 
the point ~ can be deleted in the definition for W and thus W in (2.2) can be 

replaced by the family W of functions u which are continuous and ACL in D A R" 

and satisfy u (x) =< 0 for x E C1 rl R"  and u (x) ->_ 1 for x E C2 rl R ". The classes W 
and if" differ only if ooED. It is well-known, see [14], that cap(CI,C2;D)= 
mod(F) where F is the family of curves joining C~ and (72 in D. Hence (2.1) can be 

written as 

(2.3) cap (F~, F2 ;/~" ) =< M cap (F1, F2;/~" \E).  

2.4. R e m a r k .  If E is an M-QED exceptional set in/~" with re(E) = 0, then E 

is NED. This follows from the methods and results in [2] although it is not explicitly 

mentioned there. To see this let E be an M-QED exceptional set in aft" with 
r e ( E ) = 0  and let F~,F2 be two continua in /~"\E. Then for each u E 

W(F~,F2;R"\E), it follows from Lemmas 3 and 4 and the considerations on pp. 

1220-1221 in [2] that there is a function u*E W(F~,F2;R") with 

f f IVu*l"dm= f IVul"dm. 
R a R a \ E  R n \ E  

Hence (2.3) holds with M = 1 and thus E is NED. This observation together with 

Corollary 2.16 below yields: For M-QED exceptional sets E in R" the [ollowing 
conditions are equivalent. 
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(i) m ( E ) = O .  
(ii) int E = QS. 

(iii) E is NED. 

We shall derive some properties of QED exceptional sets. The first is an 

immediate consequence of the quasi-invariance of the modulus under quasiconfor- 

mal mappings. 

2.5. L e m m a .  Suppose that E is an M-OED exceptional set and that 

[: 1~ n ---* R"  is a quasiconformal mapping. Then f ( E )  is an M'-QED exceptional set 

where 

M'  = 1(,i ( f )Ko (f)M. 

Here K~(f) and Ko( f )  denote the inner and outer dilatations o f f  [22, p. 42]. 

We shall need the following estimate to establish several metric properties of 

QED sets. 

2.6. L e m m a .  Suppose that F1 and F2 are disjoint continua in R"  and that 

rain dia (Fj) => ad (F~, F2) 
j ' l , 2  

where a is a positive constant and d(Fl ,  F2) denotes the distance between F, and F2. I f  

F is the family of curves which join F, and 172 in R~, then 

modF=> c > 0  

where c is a constant which depends only on n and a. 

P r oo f .  Choose xl E F~ and x2 U F2 so that 

Ix,-x21=d(F,,F~). 

By hypothesis we can choose a point yj E Fj such that 

> 1  > a  
l YJ - x~l= ~dia (FD = ~l x, - x21 

for j = 1,2; by relabeling if necessary we may also assume that I Yl - x, I =< I Y, - x~ I- 
Let [:/~"---~/~" be a Mfbius transformation for which [(y2)= ~. Then 

I f ( Y , ) -  [(xOI = lY, - x,I I x2 -  y21 

< 2 l y , - y ~ l  < 2 lx2-y2l+lx,-x~l+ly,-x,I 
=Xlx -y l=a Ix -y l 
< 2 (  2 +  ) 4 ( a + l )  
= - -  1+  1 = = b > 0  a a a 2 
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and hence by [22, Theorem 11.9] 

rood F = mod/(F)  -> ~0, (b) = c > 0 

where ~o, :(0,=)-.(0,oo) is a decreasing function depending only on n. (See also 
Theorem 4 in [4].) 

A set A C J ~ "  is said to be a-quasiconvex, 1_---a<o% if each pair of points 

x,,x2 E A \{oo} can be joined in A by a rectifiable curve 3' whose length does not 
exceed a Ix, - x2[. If A C R", then A is 1-quasiconvex if and only if A is convex in 
the usual sense. 

2.7. L e m m a .  Suppose that E is an M-QED exceptional set in R". Then 
D = R " \ E  is a domain which is a-quasiconvex with 

a - exp(bM '/("-') 

where b depends only on n. 

P r o o f .  Since E is closed, D is open. Suppose that D is not connected. Let 

D, ,  D: be two disjoint components of D. Choose non-degenerate continua Fj C Dj, 

j = 1,2, and let F and F~ denote the families of curves joining F~ and F2 in/~"  and 

D, respectively. Lemma 2.6 implies mod F > 0. On the other hand Fs = @ and 

hence mod F~ = 0. These two conclusions contradict (2.1) and thus D must be 
connected. 

We show next that D is a-quasiconvex. Fix x~,x2 E D\{oo} and set r = Ix1-  x21. 
Since D\{oo} is a domain, there is a curve a joining xl to x2 in D\{| Let Fj denote 

the component of a fl B*(xj,rl4) which contains xl, ] = 1,2, and let F and Fs 

denote the families of curves joining Ft and F2 in/~" and D, respectively. Then 

and Lemma 2.6 yields 

min dia (Fj) _>- r14 >= d(F~, F2)/4 
j-1.2 

modF>_ - Co>0 

where co depends only on n. Since E is an M-OED exceptional set, 

(2.8) modFz -> l m o d F  C_~o 
= M "  

Let F, consist of those curves in Fs which lie in B"(x2,s),  

s =~exp\\2--M-~_l)  ] rct, 

and let F2 = F~\F1. Suppose that each curve 3' in FE has length 1(3') > L .>  0. Then, 
cf. [22, Theorem 7.1], 
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[Ls" f t .cTr" 
modF,  < L" - L"  ' 

where l-L is the n-measure  of B". On the other hand, each y E F, meets S'-~(x2,s) 
and hence 

modF2 N o~,-t log = 2M" 

Cf. [22, 7.5]. These inequalities yield 

modF~ < modF1 + modF2_-< f l ~ !  r" Co 
-- + 2 M  

and thus by (2.8) 

where 

(2fl .M~ l/. 
- -  < r exp(cM '1~'- ') L < rc~ \ Co / 

c --  2 ( 2 ~ o . - , / C o )  ' ' ( " - "  

depends only on n. Set r = exp(cM~/C"-~)). Then there is a rectifiable curve ~'o E FB 

with 

t( o) <= , c ,  = c2[ x ,  - 

and with endpoints y~, y2 E a such that 

Ix, - y,  l <= l x ,  - x l/4 

for j = 1,2. 

Next set rl = [ x l - y ~ [  and let F~ and F2 denote the components  of a 1"3 

B ' ( x , ,  rd4) and y0 N/J" (y~ ,  rd4) which contain x~ and y, ,  respectively. Then 

mindia(Fj)  r~ 1 ,-,~ >-_-~ >-~ d(F, ,Fz) ,  

and arguing as above we obtain a curve 3', in D such that 

= 4 

and such that y~ joins 3'o to a point z~ E a with 

< 1  

Clearly the curves yo and Y~ contain a rectifiable subcurve joining z~ to yz. Now a 

continuation of this process and a similar construction starting from y2 towards xz 
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leads to two sequences of curves y~, y2,. . ,  and 371, ~2 . . . .  whose union together with 

yo contains a rectifiable curve y in D from x~ to x2 with 

l ( y ) =  < l(y0) + ,-~ l(yi) + ,~1= 1(3~) 

( / _-__c= Ix,-x l+ Ix'4,x l+ ]x'4_x l 
i = l  i = 1  

= 5-c lx,-x l. 
3 

Thus D is a-quasiconvex with 

5 
a = 5c2 = exp((c + 1)M 1/~-~) 

as desired. 

2.9. R e m a r k .  Lemma 2.7 is an extension of the following result due to 

Ahlfors and Beurling [1, Theorem 10]. If E is an NED set in ~2, then D = R~\E is 
a-quasiconvex for each a > 1. 

If E is an M-QED exceptional set, then by Lemma 2.7/~n\E is a domain; we call 

any such domain an M-quasiextremal distance or M-OED domain. 
A set A in /~ ~ is c-locally connected, cf. [6], if for each Xo E R ~ and r > 0, 

(i) points in A A/~ ' (x0 , r )  can be joined in A M B'(xo,cr), 
(ii) points in A\B~(xo,r)  can be joined in A\B' (xo ,r /c ) .  

The set A is linearly locally connected if it is c-locally connected for some c. 

2.10. R e m a r k s .  When A is open, it is easy to see that the condition (i) holds 

for a given xo~ R ~ and r > 0  if and only if 

(i)' points in A M Bn(xo,r) can be joined in A N B"(xo,cr) and similarly for 

condition (ii). Moreover if condition (i) holds for A and its image under each 

M6bius transformation f : /~"---~/~,  then condition (ii) holds. For let x~,x2E 
A\B~(xo,r)  and let 

f(x)= r 2  +xo. 

Then f(x,),f(x2)E f (A )M B ~ (xo, r) and, by hypothesis, these points can be joined 
by a curve y in f ( A ) N  B"(xo,cr). Hence f-~(y) joins xl,x2 in A\B"(xo,r/c) .  

Finally it is not ditticult to show that the property of being linearly locally 

connected is invariant under quasiconformal self mappings of/~".  In particular if A 

is c-locally connected and if [:/~"---~/~" is K-quasiconformal, then f ( A )  is 
c'-locally connected where c' depends only on n, c and K. See [23, Theorem 5.6]. 
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connected with 

QUASIEXTREMAL DISTANCE DOMAINS 187 

Suppose that D is an M - Q E D  domain. Then D is c-locally 

c =< 1 + exp(bM Itc"-l~) 

where b is the constant of Lemma 2.7. 

P r o o f .  Fix xo E R" and r > 0. By Lemma 2.7, D is a-quasiconvex with 

a =< exp(bM~/~"-'~). 

Hence each pair of points x ~ , x 2 E D  n / ~ " ( x o , r )  can be joined in D n B"(xo , s )  

where 

s <= r+ a [x~-x21/2 <-- r +  ar = (1 + a)r. 

Since 

1 + a =< 1 + exp(bM '/("-') 

the points xl, x2 can be joined in D n B"(xo, cr) and c has the desired upper bound. 

Next if D '  is the image of D under a M6bius transformation of /~" ,  then D '  is 

M - Q E D  by Lemma 2.5 and points in D ' n B " ( x o , r ) c a n  be joined in D ' A  

B"(xo,cr)  by what was proved above. Thus D is c-locally connected by the 

remarks in 2.10. 

2.12. R e m a r k s .  Suppose that D is a ball or a half space, that FI,F2 a r e  

disjoint continua in D and that F and Fo are the families of curves joining F~ and F2 

in /~"  in D, respectively. Let F* denote the family of curves joining F* and F~ in 

/~" where F* = Fj U ~o(F,) and ~o denotes reflection in OD. Then 

mod F =< mod F* = 2 mod Fo 

and hence D is a 2-QED domain. It is easy to see that the constant 2 is best 

possible. 

Next if 

0 <  At< A2 < ..- <A.  

and if D is the image of the exterior of a ball under the attine mapping 

f(x, . . . . .  x .  ) = ( X , x ,  . . . . .  

then Lemma 2.5 implies that D is M - Q E D  where 

M = 2(A./A,)". 

If, in particular, A~ = 1 and A2 . . . . .  A. = t > 1, then D is a-quasiconvex only if 

a > t = (M[2) ~''. 
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This observation yields lower bounds for the constants a and c in Lemmas 2.7 an, 
2.11. 

Lemmas 2.7 and 2.11 give quantitative information about the connectivity of; 
QED domain. The following result yields a density condition for this class o 
domains. 

2.13. L e m m a .  Suppose that D is an M-QED domain in R' .  Then for eaci 
x o E D A R "  and O<r <dia(D)  

(2.14) m (D D B" (Xo, r)) > c 
m(B"(xo,r)) -- M 

where c > 0 depends only on n. 

Proof .  Fix X o E I D n R ' .  Since r < d i a ( D )  we can choose x3E/5 so thai 

Ix3- xo[= r/2. Set s = r/10, choose xl,x2E D such that I x a - x ~ l <  s, [x2-x31< s~ 
and let a be a curve joining x, and x2 in D. Let F, be the xrcomponent ot 

a n B'(xo,2s)  and F2 the x2-component of otlB'(xo,3s). Next denote by F and FL 
the families of curves which join F~ and F~ in /~" and in D, respectively. Set 

p(x) = { !  i n D n B " ( x o ,  r), 

elsewhere. 

Since each y ~ Fo contains a subcurve fl which joins S'-t(xa,2s) and S'-](xo,3s) 
in D, 

fo ,>f= ods=11(~) >= 1, 

p is admissible for FD and 

f 1S modFo<-_ p "dm s" dm 
R ~ D q B ~ x ~ . r )  

= 10,fl m(D n B"(xo, r)) 
m (B" (xo, r)) 

Next 

min~.,.2 dia (Fj) _-> s > l d ( F , ,  Fz) 

and thus Lemma 2.6 implies that 

modF_- > co>O 
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where co depends only on n. Since D is M-Q ED ,  we obtain 

m(O n B"(xo,r))> c 
m(B"(xo,r)) = M 

where c = Co/(10"fl.). 

2.15. R e m a r k .  
B"(0,1)  under 
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Suppose that t > 1 and that D is the image of the unit ball 

f ( x ,  . . . . .  x . _ , , x . )  = ( x ,  . . . . .  x._,,tx.). 

Then as in Remark 2.12, D is M - Q E D  where M = 2t" while 

m(DNB"(O, t ) )  I ( 2 )  ~"-'u". 
m(B"(O,t)) = t  "-;'~- = 

Hence the exponent  of M in (2.14) is asymptotically sharp for large n. 

2.16. C o r o l l a r y .  The boundary OD of a QED domain D has n-dimensional 
m e a s u r e  z e r o .  

P r o o L  By Lemma 2.13 a point x0 E dD\{oo} cannot be a point of density for 

E = / ~ " \ D  and hence not for dD. 

A domain D in R"  is said to be uniform if there exist constants a,b such that 

each x,, x, E D can be joined by a rectifiable curve 3, in D with 

a I x , - x , I ,  

(2.17) rain (s, 1(3,) - s) <= bd(y(s), OD). 

Here y is parametrized by arc length s. 

The next lemma is essentially due to P. Jones [15]. 

2.18. L e m m a .  A uniform domain D is an M - Q E D  domain where M depends 
only on n and the constants for D. 

Proof .  Let F, and F2 be two disjoint continua in D. Let e > 0 and choose 

u E W(F,,F2;D) such that 

f [Vu <-_cap(F,,F~;D)+ e/2. I'dm 
D 

Then for small t > 0 the function v = (1 + t)(1 - t)-'(u - t) satisfies 

f lVvl"dm =< c a p ( F , , F ~ ; D ) +  e 
D 
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and v(x) < - t for x E F,, v(x) > 1 + t for x E F2. By [15, Theorem 2] there exists 

an ACL-function v* : R"  --~ R such that v* = v in D and 

Mf IVvl"dm ~- f IVv*l"dm, 
D R ~ 

where the constant M depends only on n and the constants for D. Choose a smooth 

convolution approximation ~ of v* with ~ ~ 0 on FI, ~ ~ ] on F2 and 

f IVv*I "dm>= f Iv~~ " d m - e .  
R n R ~  

Then ~ E IYg(F~, F 2 ; / ? ' )  and the last three inequalities yield 

f 
cap(Fl ,F2 ; /~")_- < | IV,pJ"dm <-_ Mcap(F1,F2;D)+ e ( M +  1). 

R A 

Letting e - ~ 0  yields the desired result. 

Although the classes of QED,  linearly locally connected and uniform domains do 

not coincide, it is possible to obtain more precise relations between them when 

n = 2. In particular, we shall show that for finitely connected plane domains these 

classes are the same. 

We say that D C/~" is a K-quasibalt if D is the image of an open ball or half 

space under a K-quasiconformal self mapping of /~" and that S C/~" is a 

K-quasisphere if it is a boundary of a K-quasiball. Next a domain D C/~" is said to 

be a K-quasisphere domain if each component  of aD is either a point or a 

K-quasisphere. We use the more standard terms quasidisk and quasicircle when 

n = 2 .  

We shall show that every quasisphere domain is linearly locally connected and 

that this property characterizes this class of domains when n -- 2. We require first 

the following result. 

2.19. L e m m a .  If  Gt . . . . .  G~ are pairwise disjoint K-quasiballs all of which meet 
S"-'(xo,ri) and S" l(xo,r2), then 

r n - I  < a  [ r2+rl 
k =  \ lr=-r, I)  

where a depends only on n and K. 

P r o o f .  We may assume r~ > r,. Set t = I t2 -  r~ I/2. For each i = 1 . . . . .  k choose 
x, E G~ such that 

I x, - xol = r, + r~ 
2 
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By Lemma 2.5. see also the remarks in 2.12, each G~ is an M - Q E D  domain where 

M depends only on K. Lemma 2.13 yields for i = 1 . . . . .  k 

c c ~ t "  
m(G,  O B " ( x , , t ) ) > = - ~ m ( B " ( x , , t ) )  = M 

where c > 0 depends only on n. Since the quasiballs G, are disjoint, 

t ) .  ( r~ -  rT) = m (B"  (xo, r,.)\B" (xo, r,)) 

k cO,  c t ) .  
>- ~, m(G~ n B"(x,.t))>--~--kt" = 

,=j = M2" 
k(r2 - rl)" 

and thus 

r~' - r~' 1 - s" 
k <= a(r 2 _ rl)" - a ( ' i ' -  s)" 

where s = rdr2< 1 and a = M 2 " / c  depends only on n 

inequality 

1 -  s" =<(1- s)(1 + s) "-~ 

easily follows by induction and hence 

a {  r 2 + r ,  '~" ' 
k _-< 

as desired. 

2.20. L e m m a .  

and K. The elementary 

I f  D is a K-quasisphere domain,  then D is c-locally connected 

where c depends only on n and  K. 

P r o o f .  Let Co be a nondegenerate component of 0D and let Do denote the 

component of /~"\Co which contains D. Then Do is a K-quasiball and hence 

c = c(n,  K)-locally connected by, for example, the remarks in 2.12 and Lemmas 2.5 

and 2.11. 

Fix x0 E R ", r > 0 and d > c. We shall show that D is d-locally connected. Since 

each image of D under a M6bius transformation is again a K-quasisphere domain, 

it suffices by the remarks in 2.10 to show that each pair of points x ~ , x ~ E D  n 

B" (Xo, r) can be joined in D N B" (xo, dr). Suppose that this is not true for a given 

pair xl ,x2 .  Then these points are separated by 

F = OD U S"-~(x0, dr). 

By [19, Theorem V.14.3 and p. 137], there is a component  E of F which does this. 

Now observe that E meets S"-'(x0, dr) since otherwise E C OD and hence could 

not separate x~ and x2. Let 
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where {Co} is the collection of all components of OD which meet S ' - ' (xo ,  dr). Then 

Eo is a connected subset of F, 

E n Eo D E n S"-'(Xo, dr) ~ 0 

and thus EoCE. Suppose that there exists a point y E aD\En. Then y lies in a 

component  C of OD with 

C N S"-'(Xo, dr) = 0 .  

Choose e > 0  so that 

e < q ( C  S"-t(Xo, dr)) 

where q is the chordal metric in 1~'. Then [19, Corollary 1 on p. 83] yields a set 

H C 0D such that H is both open and closed in aD with 

C CHC{x : q ( x , C ) <  E}. 

Thus 

H n S"-l(xo, dr) = 0 

and H is closed in F. On the other hand, 

F\H = S"-t(Xo, dr) O (OD\H) 

is also closed in F. Hence y does not belong to the same component  of F as 

S"-t(xo,dr), i.e. y t~ E. Thus E = Eo or 

E = S " - ' ( x o , d r ) U (  y C~). 

For each non-degenerate component  Co let Da and Go denote the components 

o f /~" \Co  labeled so that D C/9, .  Then the Go are pairwise disjoint K-quasiballs 

and hence by Lemma 2.19 at most k of the Co meet S'-~(Xo,cr) where 

[ d + c X " - '  
k <= a~-d--L~_ c ] , a = a(n,K). 

By relabeling we may assume that these are the components C~ . . . . .  Ck. Then for 

i = 1 . . . . .  k, x~ and x~ lie in Di O B"(xo,r) and hence x, and x2 can be joined in 

D~ n B"(xo,cr). This says that x, and x2 are not separated by 

F, = S"-'(xo, cr) U C,. 

For j - I ..... k let 

J 
E j = U ~  

i ~ l  

and suppose that xt,x2 are not separated by Ej for some / < k. Then since 
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Ej Iq F1+1 = S'- '(Xo,cr) 

we can apply [24, Theorem II.5.18] to conclude that xl, x~ are not separated by Ej.I 
and hence not by 

i - |  

In particular, there is an arc y which joins xl and x2 in B ~ (Xo, cr) and does not meet 
any C~, i = 1 . . . . .  k. Choose Ca with a I~ {1 . . . . .  k}. Then Ca meets S~-'(xo, dr) and 
not S~-'(x,,cr).  Hence Ca Cl y = 0 and we conclude that 

E n y - - ( s ' - l ( x 0 , d r ) n y ) U ( y  C o n y ) - - e .  

This means that E does not separate x~ and xz and the proof is complete. 

2.21. T h e o r e m .  A domain D in ~z  is a quasicircle domain if and only if it is 
linearly locally connected. 

P r o o f .  Suppose that D is a domain in /~2. If D is linearly locally connected, 
then by [6, Lemma 5], D is a quasicircle domain. The converse follows from 
Lemma 2.20. 

2.22. T h e o r e m .  I f  D is a finitely connected domain in R 2, then the following 
conditions are equivalent. 

(i) D is a QED domain. 
(ii) D is linearly locally connected. 
(iii) D is a quasicircle domain. 
(iv) D is uniform. 

P r o o f .  That (i) implies (ii) follows from Lemma 2.11; that (ii) implies (iii) is a 
consequence of Theorem 2.21. By [20, Theorem 5] and [10, Theorem 5] a finitely 
connected quasicircle domain is uniform. Finally (iv) implies (i) by Lemma 2.18. 

2.23. R e m a r k .  Suppose that D E  R ~ is a simply connected domain in R 2. 
Then Theorem 2.22 implies the well-known equivalence of the following condi- 
tions. 

(i) D is a QED domain. 
(ii) D is linearly locally connected. 
(iii) D is a quasidisk. 
(iv) D is uniform. 
The equivalence of (i) and (iii) was proved by V. Gol'dstein and S. Vodop'janov 

[12]. For the equivalence of (iii) and (iv) see [18, Corollary 2.33] while the 
equivalence of (ii) and (iii) follows from [6, Lemmas 4 and 5]. Cf. also [8]. 



194 F. W. G E H R I N G  A N D  O. M A R T I O  

2.24. R e m a r k .  Finally for an arbitrary domain D C/~ n we have the following 

relations between the classes of domains considered in this paper. 

(i) If D is uniform, then D is QED.  

(ii) If D is QED,  then D is linearly locally connected. 

(iii) If D is a quasisphere domain, then D is linearly locally connected. 

(iv) There exists a QED domain D which is not uniform. 

(v) There exists a quasisphere domain D which is not QED,  and hence not 

uniform. 

(vi) When n > 2, there exists a domain D which is uniform, and hence Q ED  and 

linearly locally connected, but not a quasisphere domain. 

The first three conclusions follow from Lemmas 2.18, 2.11 and 2.20, respectively. 

For (iv), note that if E is a closed set in R n with m,_,(E) = 0, then E is NED by [21] 

and hence D = R " \ E  is a 1-QED domain. On the other hand if we choose E as the 

set of points with integer coordinates, then the second condition in (2.17) fails and 

D wilt not be uniform. For (v) choose a closed, totally disconnected set in R" with 

r e ( E ) > 0 .  Then D = R " \ E  is a 1-quasisphere domain with OD = E tA{oo} and 

hence D is not QED by Corollary 2.16. Finally when n > 2 ,  then D = R " \ R  ~ is a 

uniform domain while R~ U {o~} is neither a point nor a quasisphere. 

3. Extension of quas iconformal  and quasi- isometric  mappings  

We shall show in this section that a quasiconformal mapping between QED 

domains in iff" has a homeomorphic  extension to the closures of the domains when 

n -_ 2 and a quasiconformal extension to /~" when n = 2. Section 2 then yields 

several extension theorems for quasiconformal mappings on various subclasses of 

QED domains. We also prove corresponding results for injective local quasi- 

isometries. 

We begin with the following result. 

3.1. T h e o r e m .  Suppose that D and D' are domains in ~n, that D is M - Q E D  

and that D' is c'-locally connected. If f is a K-quasiconformal mapping o l d  onto D',  

then f has a homeomorphic extension to D. Moreover, if xt ,x2,x3,x4 are distinct 

points in 19 with 

-x211 ,-x,l< 

then 

I f (x , ) -  f(x2) [/(x3)- f(x,)! < b 
(3.2) If(x3) - f(x2) If(x,) - f(x,)[ = 

where b is a constant which depends only on n, K, M, c' and a. 
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P r o o f .  We begin by deriving (3.2) whenever x,,x2,x3,x4E D. By cooposing f 

with a pair of M6bius transformations and appealing to Lemma 2.5 and to the 

remarks in 2.10, we see that it is sufficient to consider the case where x4 = o~ and 

f(x4) = ~; then we must show that 

tx,-x21< ly,-y21< 
(3.3) I x , -  x21 = a implies l y 3 -  y21 = o 

where y, = f(x,), j = 1,2,3,4. 

First we choose t so that 

lY , -  y2l = c ' ~ t l y 3  - y2l = c 'ztr 

and suppose that t > 1. Because D '  is c'-locally connected there exist continua F', 

and F; which join y2 to y3 in D '  t"l /~"(y2,c ' r)  and y, to y , = ~  in D'\B"(y2,c'tr), 
respectively. Set G = f-'(F;) and let F and Fo denote the families of curves joining 

F, and F.. in /?" and in D, respectively. If y E Fo, then f ( y )  joins S"-'(y2,c'r) to 

S"-J(y2,c'tr) and thus 

Next 

mod Fo _-< K mod f(Fo ) <= Kto,_~ (log t)~ ". 

> 1 1 d(F, F,.) mindia(Fj)>-_lx.,-x21=alX,-X,_l>--a , 
i=1,2 

and by Lemma 2.6 

modF-_>c 

where c > 0  depends only on n and a. Since D is an M - Q E D  domain, these 

inequalities yield 

c =< mod F _-< M mod Fo _-< MKw._,(iogt)'-" 

or  

t<=exp(( MKt~ ~)'(" ~))" 

Now this inequality holds trivially whenever t <= 1. Hence we obtain (3.3) with 

b =c'"exp((MKw"-')'""-x') 

Next we use what was proved above to conclude that f has a homeomorphic  

extension t o / 5  ; again it is sufficient to consider the case where ~ E D and f(oo) = ~. 

Fix xoG OD and choose points xj E D so that xl---~Xo and f ( x j ) ~  yo as j---)~. Then 

yoG OD'CR". Given e > 0  fix k such that 

If(x~)- yol <- ~.  
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Suppose that x ~ D and that 

Ix -Xof =<-~lx~- xol = 8. 

For large j, xj # x, I x, - Xo I <-- c5 and 

f~ - x, I--< Ix - x01 + Ix, - x o i  

_-<38-ix,-xol 
(3.4) 

= l x k - ~ o f - f x , - X o f  

With (3.4) we can apply (3.2) with x; = x, x2 = xj, x~ = xk and x4 = ~ to conclude that 

I f ( x )  - f ( x , ) l  ~ b I f (xk ) - f (x,  )1 

where b = b(n,K,M,c ' ) .  Letting j---~oo we obtain 

I f ( x ) -  yol ~ b I f (x~)  - yol ~ b, 

and this shows that [(x)--* Y0 as x ---} x0 in D. Thus f has a continuous extension t o / )  

which we again denote by f. By continuity (3.2) holds whenever x; ,x2,x3,x4 E E), 

where b is the original constant corresponding to a + 1, and this, in turn, implies 

that [ is injective in /5 and hence a homeomorphism. 

Theorem 3.1, Lemma 2.11 and Lemma 2.18 imply the following results. 

3.5. C o r o l l a r y .  I [ D  and D'  are QED domains in /~', then each 

quasiconformal mapping of D onto D' has a homeomorphic extension to 19. 

3.6. C o r o l l a r y .  If D and D' are uni[orm domains in R ' ,  then each 

quasicon[ormal mapping of D onto D'  has a homeomorphic extension to if). 

3.7. R e m a r k .  In the case of bounded uniform domains Corollary 3.6 also 

follows from [9, Corollary 3.30] since then both f and [-1 belong to some Lipschitz 

class Lip~ a > 0. 

3.8. Q u a s i e o n f o r m a i  e x t e n s i o n  to  /~2. In the plane Theorem 3.1 can be 

considerably sharpened. We require first the following results on quasidisks. 

3.9. L e m m a .  Suppose that G is a K-quasidisk in R 2, that zo E R 2\ G and that a 

is a component of G tq St(zo,r). Then 

dia(a)<-_ c lz ; -  z2[ 
where z;, z2 are the endpoints of a and c depends only on K. 

P r o o f .  Let 0 denote the angle subtended by a at zo. If O< 0 =< It, then 

dia (t~) = I z t - z~ I. 
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If 0 > er, then consider the ray from zo through the point 2zo -  zl on the opposite 

side of z~ in S~(zo,r). Since G lies in R ~, this ray meets each of the components yz 

and y2 of aGl{z~,z2}; thus 

dia (yj) > [ z l -  zo[ = r 

for j = 1,2. On the other hand, since OG is a K-quasicircle, 

rain dia (,/~) ~ a I z , -  z21, 
i -1,5 

where a = a(K), and hence 

d i a ( a ) ~  2r ~ 2 a  I z , -  z~l. 

3.10. L e m m a .  If ( Gj ) is an infinite sequence of pairwise disjoint K-quasidisks, 
then 

l)mq(6 ) = 0 

where q(Gj) is the chordal diameter of Gj. 

P r o o f .  If not we can, after passing to a subsequence if necessary, choose 

z,, wj E Gj such that zj --* Zo r oo and wj --* w0 r z0. Fix 0 < r, < r2 < I z0 - wo I. Then 

there exists a ]0 such that ] z j -  Zol < r, and ] w j -  zo[ > r2 for j ~= ]o. This says that 
infinitely many 6;,. meet both Sl(zo, rl) and S'(zo, re) contradicting the conclusion of 

Lemma 2.19. 

3.11. T h e o r e m .  Suppose that D and D'  are domains in R2, that D is M-QED 
and that D' is c'-locally connected, l f  f is a K-quasiconformal mapping o l d  onto D', 
then f has a K*-quasiconformal extension to ~2 where K* depends only on the 
constants K, M and c'. 

P r o o f .  By Theorem 3.1, f has a homeomorphic extension, denoted again by f, 

which maps /5 onto /5'. Next by Lemma 2.11, D is c-locally connected where 

c = c(M) and it follows from Theorem 2.21 that D and D '  are Kl-quasicircle 

domains where K, depends only on M and c'. 
Let C be a quasicircle component of OD. Then C' = f (C)  is also a quasicircle and 

there exist Krquasiconformal mappings g and g'  of R2 onto itself such that 
g ( C ) =  lq', g ' ( C ' ) =  lq' and g'ofog-'(oo)= o0. Moreover, we may assume that g 

maps the component G of/~2\/5 bounded by C onto the lower half plane H and 

that g'  does the same for the corresponding component G '  of / ~ \ D ' .  Then 
h = g'ofog-~ is a homeomorphism which maps g(D) onto g'(D'),  R ~ onto R '  and 

is K2-quasiconformal in g(D), Ks = KK~. Now g(D)  is M,-QED with M~ = K~M 
and by the remarks in 2.10, g'(D') is c~-locally connected where c~ depends only on 

c' and K~. Choose x E R ' ,  t > 0  and let 
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XI = X + I, X2 = X ,  X3 = X - -  I, X4 = Oo. 

Then by Theorem 3.1 applied to h, 

h(x + t ) -  h ( x ) <  
h(x)- h(x - t ) =  b 

where b depends only on K~ ,M~ and c'~. From interchanging the roles of x~ and x3 
above, we conclude that h I R'  is b-quasisymmetric and hence, by a theorem of 
Beurling and Ahlfors [3}, there exists a homeomorphism h* :/~---> H which agrees 
with h on OH and is K3-quasiconformal in H, K3 = K3(b). 

Mapping back we obtain a homeomorphism [o of E3 U G o n t o / 5 '  t.I G '  which 
extends f and which is K*-quasiconformal in D and in G, where K* depends only 

on K, M and c'. Define f* :/~---,/~z as f*(z) = f(z)  when z E f i  and f*(z) = fc(z)  
when z belongs to a quasidisk component of G of R~\/5. Next we show that f* is a 
homeomorphism. Since f* is injective, it suffices to show that f* is continuous and 
this clearly follows if we establish the continuity of f* at zo ~ OD. 

Let z i ~ zo and suppose that f* ( z j )~  Wo. We want to show that w0 = f*(Zo). If 
infinitely many zj belong either t o /3  or to a single component  G of/~2\/3, then this 
follows from the fact that f is continuous in /3  a n d / o  in G, respectively. Suppose 
that the points zj lie in infinitely many distinct components G~ of R ~\D. Passing to a 
subsequence, if necessary, we may assume that zj E Gj where the Gi are pairwise 
disjoint. For each j choose wj ~ dGj COD. Since the K~-quasidisks Gj are pairwise 
disjoint, Lemma 3.10 implies that q(Gi)-.-',O as j---*~. Thus wj---*zo and hence 

f*(wj)~f*(zo) by the continuity of f in/3. Next, because the K~-quasidisks f*(Gj) 
are pairwise disjoint, the same reasoning shows that f*(zi) approaches the same 
limit as f(w~). Thus wo = f(zo). 

It remains to show that f* is K*-quasiconformal i n / ~ .  Suppose first that ~ E D 
and that f*(oo)= oo. By Corollary 2.16, 8D has zero planar measure. Hence by a 
well-known removability theorem it suffices to show that there is a constant c such 
that 

(3.12) L (zo, r) <= cl(zo, r) 

for all zo E OD\{o~} and 0 < r < 0% where 

t. (zo, r) = f*(z)  - ?*(zo) I, 

t(zo, ,) = f,_m!n.,[/*(z) - f*(z~ 

By making a pair of changes of variable we may assume that zo = 0 and f*(zo) = O. 
Suppose first that zl,  z: E E3 with [ z, I = ] z21 = r. Then by (3.2) 

(3.13) Iw~l<= bllw,[ 

where w~ = /* (z l )  for j = 1,2 and b, = b,(K,M,c'). 
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Suppose next that z3ER~\D with Iz31=r. Then z3EG where G is a K~- 
quasidisk in R 2 with 0 I~ G;  let zt ,z2 denote the endpoints of the component a of 
G N S~(0, r) which contains z,. labeled so that I w, I < I w, I. Here again w, = /* (z , )  

for j = 1,2, 3. We shall show that 

(3.14) I I  < b, w'l=lw31<b~lw~l 

where b2 depends only on K, M and c'. 
Choose z , E  OG C/5 so that I w,  I = I w,  I, and suppose first that l z 3 - z , I  =< 

~ [z t -  z4[. Then 

4 Z + I Z4I, Iz, l<=~lz,-z,l+lz,  l<=~ ~ 

Iz, I -  -> I z~l-AI z~- z,I---~lz~l- ~1 z,I. 

Hence 

�89 l<lz ,  l~2iz~l 

and Theorem 3.1 applied t o / ' 1 / 5  yields 

~1 wl l=  < Iw3l = Iw, I -  -< b~lw~l, 

where b3 = b3(K, M, c'). Suppose next that I z3 - z, I > -~l z~ - z4 I- Then by Lemma 3.9 

[z l -  z, l lz3- z21< 3 dia__~L(~ < 3c 
Iz3 z, l l z , - z 2 l =  Iz , - z2 l  = 

where c = c(K~). Since G and G '  = f*(G) are Krquasidisks and hence 2K~-QED 

domains, we can apply Theorem 3.1 to f* ]13 with a = 3c to obtain 

(3.15) ~wt-w~[  I w3-  w2l< b, 
tw.~- w,t I w , -  w~T-- 

where b, = b,(K, M, c'). If I w, [ _-> 2J w, l, then 

]w3-w,l<=Elw, l<=4lwl-w,[ 

and with (3.15) 

-<_ ( 8 b , +  1 ) lw2[  

where the inequality [ wl [ < I w2 [ has also been used. Similarly if [ w3 [ --< [ wl [/2 and 

hence I w31 --< I w21/2, then 

Iw,-w~l<=2lw~l<-41w,-w~l 
and Iw, l<-_ 4b,l w , -  w,l + lw, l <= (8b, + l)lw, I 
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where (3.15) and the equality I w31 = [w,I have been used. Thus we obtain (3.14) 

with 

b2 = max(b3,2,8b, + 1). 

Finally (3.13) and (3.14) imply (3.12) with c = bib 2, and Zo = 0 completing the 

proof for the case where o0 E D and [(~) = ~. The general case can then be reduced 
to this special case by composing [ with two auxiliary M6bius transformations. 

The following two corollaries are immediate consequences of Theorem 3.11, 

Lemmas 2.5, 2.11, 2.18 and [18, Corollary 2.33] or [10, Corollary 3]. 

3.16. C o r o l l a r y .  If D is a QED domain in ~2 and if [ is a quasiconformal 
mapping o lD onto D', then [has a quasiconformal extension to ~2 if and only if D' 
is QED. 

3.17. C o r o l l a r y .  If D is a uniform domain in R 2 and if f is a quasiconformal 
mapping of D onto a domain D ' in R 2, then [ has a quasiconformal extension to R 2 if 
and only if D' is uniform. 

For finitely connected domains D in /~2 we obtain 

3.18. C o r o l l a r y .  Suppose that D is a linearly locally and finitely connected 
domain in ~2. If  f is a quasiconformal mapping olD onto a domain D', then [ has a 
quasiconformal extension to ~2 if and only if D' is linearly locally connected. 

P r o o f .  If D = /~  2, then there is nothing to prove and in the case D ~ / ~  2 we can 

compose [ with two auxiliary Mfbius transformations and hence assume D , D ' C  
R 2. Now Corollary 3.16 or Corollary 3.17 together with Theorem 2.22 yield the 

result. 

3.19. R e m a r k s .  (a) Since a quasidisk D CR 2 is uniform, linearly locally 

connected and QED, all three corollaries are generalizations of the 

Beurling-Ahlfors extension theorem. 

(b) Corollaries 3.16 and 3.17 do not hold for n => 3. A counterexample is provided 

by a quasiconformal mapping of a smooth knotted torus onto one which is not 

knotted. 
(c) If D is a QED domain in/~",  n = 2, wi th /5  = R ' ,  then E = R" \D is NED; 

see Remark 2.4. In this case it follows from results of Ahlfors and Beurling [1] when 
n = 2 and Aseev and Sy~ev [2] when n => 3 that every K-quasiconformal mapping 

of D into /~" has a K-quasiconformal extension to /~'. 

(d) We give an example in section 4 to show that Corollary 3.18 does not hold 

when D is infinitely connected. 

3.20. Structure of QED and uni form domains .  Theorem 3.11 can be 
used to interpret the geometric structure of QED and uniform domains in /~2. 
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Suppose that D and D' are domains in /~2. If there exists a quasiconformai 

mapping of/~2 which carries D onto D', then D is QED if and only if D'  is. This 

statement is false if we know only that there exists a quasiconformal mapping of D 

which carries D onto D';  for an example, let D be the upper half plane and 

f ( z ) =  z'. On the other hand if we know that D and D'  are linearly locally 

connected and that there exists a quasiconformai mapping of D which carries D 

onto D', then Theorem 3.11 implies that D is QED if and only if D'  is. Thus the 

collection of QED domains is invariant under quasiconformal mappings in the class 

of plane domains which are linearly locally connected, i.e. in the class of quasicircle 

domains. 
Alternatively we may think of a domain D C / ~  as being determined by the 

shape of its boundary components and by their relative position and size as 

measured by its conformal moduli. Then Theorem 3.11 implies that D is QED if 

and only if D is a quasicircle domain whose conformal geometry is quasiconfor- 

mally equivalent to that of another QED domain. In particular, it is natural to ask 
for geometric conditions on the boundary components of a quasicircle domain D 

which are necessary and sufficient to guarantee that D is QED. 
Obviously the same remarks and questions hold for uniform domains in /~.  

3.21. Extension of local quasi-isometries.  Suppose that f is a mapping of 

E C/~" into /~". We say that f is an L-quasi-isometry in E if 

1 Ix , -  x21 <---If(x,)-f(x2)l < L I x , -  x21 L = 

for each pair of points xl ,x2 E E\{o0} and if f(oo) = oo whenever oo E E. We say that f 

is a local L-quasi-isometry in E if for each L'  > L each x E E has a neighborhood 

U such that f is an L'-quasi-isometry in E f'l U. 

The next theorem is a counterpart of Theorem 3.1 for injective local quasi- 

isometrics. 

3.22. T h e o r e m .  If  f is an in]ective local L-quasi-isometry of a quasiconvex 
domain D C R" into a domain D' C R", then f extends to a quasi-isometry f* of 
onto D' if and only if D' is quasiconvex. In this case [* is an L *-quasi-isometry with 
L* = L max(a, a') where a and a' are the constants for D and D'. 

Proof.  Suppose first that [ extends to an L*-quasi-isometry f* of /5  onto/5 ' .  
Let yl, y2 ~ D'\{| Since D is an a-quasiconvex domain, there is a curve 3' in D 

joining/-~(y~) to f-'(y~) with 

<___ a i 

N o w / ( y )  joins yl to y2 in D' and 

l(f(3')) ~ L*l(y) < L*a I/-'(Y,)-/-'(Yz)l --< L*'a ]y, - y2 I. 
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Thus D' is a'-quasiconvex with a '  = L*2a. 
Next suppose that D'  is a'-quasiconvex and that f is an injective local 

L-quasi-isometry of an a-quasiconvex domain D onto D'. Fix xt,x2ED\{o~}. 
There is a rectifiable curve y joining xt and x2 in D with 

l(y)<alx,-x2l. 
Thus 

] f (x l ) -  f(x~)] <= i(f(~,)) <= Ll(~/) = < La Ix1- x21. 

Since f is injective, f-~ is a local L-quasi-isometry in D' and arguing as above yields 

[x t -  x21 <= La ' [ f (x t ) -  f(xz)[. 

Hence f is an L*-quasi-isometry in D where L* = L max(a,a ')  and we can extend 

f to /5 by continuity. 

3.23. R e m a r k .  Theorem 3.22 together with section 2 yields several extension 

results for injective local quasi-isometrics. For example, if f is an injective local 
quasi-isometry of a uniform domain D C R" onto a domain D' C R ' ,  then f extends 
to a quasi-isometry of D onto D'  if and only if D' is uniform. If D and D' are 

uniform, then the extension follows from Theorem 3.22 and from the fact that 

uniform domains are quasiconvex, cf. (2.17). On the other hand, it is easy to see that 

the image of a uniform domain D under a quasi-isometry f :D--~ R" is again a 
uniform domain. 

We conclude this section with the following analogue of Theorem 3.11 for 
injective local quasi-isometries. 

3.24. T h e o r e m .  Suppose that D and D' are domains in R2, that D is M-QED 

and that D' is c'-locally connected. If  f is an injective local L-quasi-isometry o l d  
onto D' and, in the case oo ~_ D, if the unbounded complementary components o l D  
and D' correspond under f, then f has an L *-quasi-isometric extension to ~2 where 
L* depends only on the constants L, M and c'. 

The formulation of this result requires a word of explanation. If f is an injective 
local quasi-isometry, then f defines a homeomorphism of D onto D'. In this case 
for each component E of/~2\D there exists a unique component E'  of/~2\D' such 

that f(x)---* E' if and only if x--+ E in D. The second hypothesis on f in Theorem 
3.24 requires that 0o E E '  whenever oo ~ E. This condition is clearly necessary for f 

to have a quasi-isometric extension to /~2. 

P r o o f  for T h e o r e m  3.24. The hypotheses imply that f is a K- 

quasiconformal mapping of D onto D' where K = L z. Hence by Theorem 3.11, f 

has a K*-quasiconformal extension t o / ~  where K* depends only on L, M and c'; 

hence D' is M'-OED where M ' =  K*2M. By Lemma 2.7, D and D'  are a- 
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quasiconvex and a depends only on M and M'. Theorem 3.22 implies that f has an 

extension, denoted again by f, as an L'-quasi-isometry of /5 onto /5', where L'  
depends only on L and a and thus only on L, M and c'. 

Next let C be a nondegenerate component of aD. Then, cf. the proof of Theorem 
3.11, the boundary component C is a K-quasicircle where K depends only on M. 

Let C'  be the boundary component of D '  which corresponds to C under f. Again 
C' is a K'-quasicircle and K '  depends only on c'. Let G and G' denote the 
components of R 2\D and/~ 2\/5' bounded by C and C', respectively. Then G C R 2 

if and only if G '  C R 2 and we can apply [7, Theorem 7] to get an L *-quasi-isometry 

of t~ onto (3' which agrees with f on C Moreover, L* depends only on L' ,  K and 
K '  and thus only on L, M and c'. 

Proceeding in this way we obtain an injective mapping f,:/~2__~/~2 which 
extends f, maps co onto oo and satisfies the inequality 

(3.25) ] z , -  z~ I/L * --< I f*(z , ) - f*(z2) l  < L * l z , -  z2 [ 

whenever z, and z2 are finite points in the closure of the same component of 
R2\OD. A trivial argument then yields (3.25)for all zt, z2 E R 2 and thus completes 

the proof. 

Finally the following consequences of Theorem 3.24 extend Corollary 1 in [7] in 

precisely the same way that Corollaries 3.16 and 3.17 extend the aforementioned 
theorem of Beurling and Ahlfors. 

3.26. C o r o l l a r y .  I f  D is a QED domain in ~2 and if f is an injective local 

quasi-isometry of D onto D ', then f has a quasi-isometric extension to R 2 if and only 

if D'  is QED and the unbounded complementary components of D and D'  
correspond under [. 

3.27. C o r o l l a r y .  I f  D is a uniform domain in R 2 and if f is an injective local 

quasi-isometry o l D  onto D',  then f has a quasi-isometric extension to ~2 if and only 

if D '  is uniform and the unbounded complementary components of D and D'  

correspond under f. 

4. Quas ic irc le  d o m a i n s  and  c o n f o r m a l  m a p p i n g s  

We conclude this paper by exhibiting two infinitely connected domains D, D'  in 

/~2 and a conformal mapping f of D onto D '  which has no quasiconformal 
extension to /~2. This example will show that the hypothesis that D be finitely 

connected is essential in Corollary 3.18. 

4.1. T h e o r e m .  There exists a compact, totally disconnected set E in R 2 and a 

conformal mapping f of D = R2\E onto D ' =  B2\F where F is a closed, totally 
disconnected subset of B 2. 
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Since D and D '  are 1-quasicircle domains, this theorem yields the desired 

example. The proof of Theorem 4.1 is based on the following results due to 

Grrtzsch [13], see also [16], and to Ahifors and Beurling [1, Theorem 16], 

respectively. 

4.2. L e m m a .  Suppose that G is a domain in R ~ and that Zo ~ OG \{~}. Then the 
[ollowing conditions are equivalent. 

(i) iim~-~o/(z) exists [or all conformal mappings f o[ G into ~2. 
(ii) For each r > 0, rood F = oo where F is the family of all closed curves y in 

G 71 B(zo, r) which have nonzero winding number about Zo. 

4.3. L e m m a .  There exists a compact, totally disconnected set F in R 2 such that 
r e ( F ) > 0  and such that limz_~o]:(x) exists [or each z o ~ F  and each con[ormal 
mapping f of RZ\F into ~2. 

We require the following easy consequence of the above two results. 

4.4. C o r o l l a r y .  Suppose that G is a domain in R 2 with m ( G ) < o o  and that 
0 <  e < 1. Then there exists a compact set E in G such that m(G\E)<  era(G) and 
such that l imz~ , / ( z )  exists ]:or each Zo ~ E and each con[ormal mapping ]: o[ G\E  
into R 2. 

P r o o f .  Let F be the set described in Lemma 4.3. Since m (F) > 0, F has a point 

of density and we can pick an open disk Bo and a compact set Eo C F N Bo such that 

(4.5) m (Bo\Eo) < 2 m (Bo). 

Then from Lemmas 4.2 and 4.3 we see that iim . . . .  f (z)  exists for each ZoE Eo and 

each conformal mapping f of Bo\Eo into /~2. 

Because re(G) < oo we can choose disjoint open disks Bj in G, j = 1,2, . . . ,  n, such 
that 

(4.6) m ( G \  ~ BJ)<2m(G ). 

Let Ej denote the image of Eo under the similarity mapping which carries Bo onto 
B~. Then 

E=OEj 
j - I  

is a compact subset of G, 

m(G\E)=  m G\ 0 B~ + m(Bj\Ej)< Era(G) 
l -1  

by (4.5) and (4.6) and lira . . . .  f (z )  exists for each ZoE E and each conformal 
mapping [ of G\E into /~2. 
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Proof  of T h e o r e m  4.1. For j = 1,2 . . . .  let Gj = {z :2 -~§ < ]z [ < 2 -~} and let 

E~ denote the compact subset of G, given in Corollary 4.4 corresponding to 
e = 2-3( Next let D = R2\E where 

E = 0 u {o}, 
j -1  

let F denote the family of closed curves in D A B 2 which have nonzero winding 

number about 0 and set 

Then 

if z E D N B  2, 

otherwise. 

0ds_-  = 1 
Y Y 

for each rectifiable curve y in F and 

j mod F _-_ p~dm = (2~r) -2 .~  

Gi\E t 

(21r) -2 ,~  22o+"m(Gj\Ej) < oo. 

Hence by Lemma 4.2, there exists a conformal mapping g of D into/~2 such that 

l imz~g(z )  does not exist; since D is locally connected at 0, this implies that the 

cluster set C(g,0) of g at 0 is a nondegenerate continuum. Next by Corollary 4.4, 
lim . . . .  g(z) does exist for each zoEE\{O} and hence g has a homeomorphic 

extension to /~\{0}. Thus G = g(R2\{0}) is a simply connected subdomain of 

R~\C(g,O) and the Riemann mapping theorem yields a conformal mapping h of G 

onto B 2. The conclusion of Theorem 4.1 then follows with f =  hog and F =  

f(E\{0)). 
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