A CLASS OF ISOPERIMETRIC INEQUALITIES

By
R. R. HALL

1. Introduction

The work presented here is a sequel to my paper [4] in which I considered the
class ® of non-decreasing functions ¢ : [0,27)— R such that ¢ (27 —0)— ¢ (0) =
2, and the Fourier series

1) e~ N c.e™.

However, my primary aim now is to establish certain isomprimetric inequalities for
the class of closed convex curves I' with perimeter 24, similar to those of H. Sachs
[5] and R. Wegmann ([7]. Let

?) G:={p €EP:¢c,=0}.

Each ¢ €®, is associated with one of the curves I' through the relation
(dX/ds, dY/ds) = (cos ¢(s),sin ¢ (s)) where (X, Y), (s, ) denote Cartesian, intrin-
sic coordinates, respectively. We write

X(s)=3Ao+ D, (An cos ns + B, sin ns),
nwl
3)

Y(s)=3Co+ D (C. cos ns + D, sin ns),
n=1

and define the invariants
C)) L(N):=A%+Bi+ C:+ D3,
() A.(= A.D, - B,C,.

With ¢ € ¥, and T related as above, we have
6 LT)=2(|c] 2 M) =% (e [ ~|conf
(6) n( —nz(lcnl +|C-,.|), An( )—nz(lcnl lc—nl)-

It is sometimes easier to study the larger class ® even in problems arising
specifically in ®.. In my previous work [4] I evaluated the Heinz constant

%) p? = inf L(0) = 27/27°
169
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by showing that
® inf3|c_i [+ co +3] i : ¢ € D} =27/872,

and in §6 below I give a general result of this type concerning sums of the form
Ya.l, (). This includes Heinz’ constant, and a theorem quoted by Wegmann [7]
and derived from the work of Sachs [5] that the moment of inertia of I', regarded as
a wire of unit density, satisfies

® 21 (D)= 47%/27.

The extremal I' in these problems is the equilateral triangle.
An important theorem of Choquet [1] implies that in (1), |ci|=]|c-i], or
inf Ai(I")=0. In §3 I show that in fact

leif=lePzn e P—|coal?]  forall n,
which implies A«(l')= n|A.(T')|. The area inside I is given by the formula
(10) Area(T) = 21 nA, ()
and in §2 I prove an area theorem,
an Area(T) = (2m/81)Ay(T).

The constant on the right is 7.5560... and it would be interesting to know its best
possible value. The circle shows that this must be at least .

In §5 I prove the conjecture of J. L. Ullman and C. J. Titus [6] that
L(I')+2A«() = 16/7”. In the notation of (1) this is simply

(12) inf{|c,|: ¢ € Oo} =2/

Equality is attained when I' collapses to a (double) line segment of length #. This
has an application to the theory of harmonic univalent mappings developed by J.
Clunie and T. Sheil-Small [2]: let h(z) be a harmonic, univalent, sense-preserving
map from the unit disc onto a domain 9. Let h be normalized by the conditions

_ okl _
RO=0, 2| =1

Then @ has a boundary point w such that |w|< 7/2. The constant m/2 is best
possible.

2. An area theorem

Theorem 1. Let I be a closed convex curve with perimeter 2. Then

(13) Area(T) = (27°/81)Ay(T)
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where the left-hand side denotes the area within T' and A,(T) is defined by (3) and
)

Proof. Given ¢ € P the function e may be continued into the unit disc to
give a harmonic function h(z) = f(z)+ g(z) where

f(z)=ico+ciz+ 27+
14
a0 g(z) =360+ caz +é,27+ -
are analytic. For |{|<1 let 8, € ® be such that

N e 4

B 1+ fe™

and ¢.(8) = ¢(8:(9)). The harmonic continuation h,(z) of e is fi(z)+ gi(z) where

= (2L s —5
fie)=f(FE) -1~ e,

(15)

= o (2L Ly F ey —

8= (5F) +10©) - 8.

Hence fi(0)=(1-1¢{[)f'(¢). 8i(0)=(1—[{[)g'(). For any f and g as in (14) we

have [f'(O)}+|g'O)F =|e:f+|c.,f =1 (by Parseval’s identity applied to (1)).
Applying this to |fi(0)] +]gi(0)f yields

(16) IFOF+1g@F=a-1¢P7  [¢I<t.

We recall from [4] that there exists w(z), analytic for [z|<1 and such that
[w(z)| =1, g'(z)=w(z)f'(z), (|]z|<1). This follows from the fundamental in-
equality |c_,| =|c,| via the Mdbius transformation above. We now have

Area(l) == 2 nA, (I

3Ll -lcf)

1 27
2 [riogar [ (17re )P ~1g'e" e
0 0
after differentiating (14) and applying Parseval’s identity to the inner integral. But

from (16)

1-|w(re

ey -1g ey ST

and so
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2n
sl 1—|w(re”
Area(I‘)éﬁsgp f T+ w(re®)
)
The integral does not exceed 27 (1 —|w(0)[)/(1 +|w(0)[*). To prove this, we may
assume w(0) real. Then Cauchy’s theorem gives (with C the circle z = re®

1-w@)Y _ 1 [1-w(z) dz

1+w@Of 2m ) 1+w(z) z

2w
_1 1—w!re“’!2d0
27 ) 1+ w(re®Y
0

The inequality follows on taking real parts. We now have

@ |al—leaf 7' A) .
Areal)="c PP~ 3 LD

and apply (7) to the denominator. This gives the result stated.

3. The function K(7)

Given ¢ € ® we define

2w

o

17) K(f):=% f sin(¢p(x +7)—$(x))dx = Y, [c.[sinns,

pput™
Q

where thc range of definition of ¢ is extended to R by setting ¢(8+27)=
&(0)+ 27w We note that K is sub-additive in the sense that

(18) K(71+Tz)§ K(T])+K(Tz) (0§'r,-§27r, 0§1’2§21T_T|).

For the function sin @ is sub-additive in the same sense and so

K(n+m)= % j sin{d(x + 71+ 7)) — ¢(x))dx

27

= _21_1r f sin(¢(x + 11+ 1) — d(x + 1)) +sin(P(x + 7.) — d(x))dx

= K(m)+ K(12).

Theorem 2. The function K defined by (17) satisfies K(1)=0 for 0= 7=«
and every ¢ €.

In fact K(7)sin r 20 for every real 7.
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Corollary. For every ¢ €D we have

(19) el —leaPi=n(ei —]eal), n=z1,
(20) n|A@)=AD), n=z1, ¢Ed,
1) Ay(T) g% Area(T), ¢ € .

We begin with the corollary. Since
22) lenl?=|c-n =% I K(7)sin nrdr
0

and |sin n7| = nsin 7 for 0 = 7 = =, (19) follows. For ¢ € &, (20) is equivalent, by
(6). Next we have

j (m—7)K(r)dr == 21 lc_,.lz_—’:lc;,.]f

(23) -
=1 }_j nA, ()= Area(l’)

for ¢ € ®,. We deduce (21) from the inequality sint = 7 — 7 (0 = r = #), and (23).

We may assume in the proof of the theorem that 7 > n/2. Else there exists
m €Z" such that 7' = mr € (w2, 7] and, by the sub-additivity, we shall have
K(r)Z m'K(m7)=m"'K(1'), so we only need to prove that K(7')=0. Now let
a €[0,2) be given. Since ¢ (x + 7)— ¢(x) is periodic we can change the range of
integration in (18) to [@ —7,a — 7+ 2m]. We write this as [a —7,a — 7+ w/2)U
[a,a + 7/2) U E. These ranges are disjoint (7 > 7/2) and we make the substitution
x — x — 7 in the first of them. We then have

a+wf2

K(r)= j ZSin(ﬂx +‘r);d’(x—?))cos

¢(x + Tl; Q(X — 7)_¢(x) dx

+ I sin(¢ (x + 7)— ¢ (x))dx.

E

We now vary the function ¢ on the range [a, a + 7/2). This does not affect the
integral over E and we show that there exists a suitable ¢, ¢(a)=c = ¢(a + n/2)
such that if we make ¢(x)=c for x €[a,a + 7/2) then the value of the first
integral above is not increased.

Lemma 1. Let F:R*"—>R be continuous and strictly decreasing, x, = x,=
-+ = xn be given and the weights w; =0, 1 =i = N. Then the minimum of
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S:=‘§j:1 wF(|xi —y:|)

A

obtained by varying the numbers y; subject to the constraint u Sy, <y, <-- = yn
v is attained when y, =y, =---=yy =y, for some y €[u,v].

Proof. We begin by assuming x; <x,<--+ < xx and w; > 0. The minimum is
clearly attained. Suppose that for some i< N, we have y; <y, Then
F(|x — y:|)S F(Ix; ~ yis1|) else we should replace y; by yi.;. As F is strictly
decreasing, we deduce that |x —y;|Z|x — yi.i|, that is x Z3(y: + yis1). Also
F({ X1 = Yiar|) = F(| xivs — y;|) with implies

Ix.+1~—y.-+l[§|x.-+1—yi| or xl'+l§%()’i +)’m)-

Since x; < x., this is a contradiction and the result follows, subject to the
assumption above about the x; and w;. Since F is continuous the general case may
be established by a limiting argument. The values y; for which the minimum is
attained may not be unique.

We apply the lemma to the Riemann sums approximating the first integral above.
We divide [a,a + #/2) into N intervals, with & a point in the i-th interval,
1=i=N. We put

L —dE= ) ot T)
' 2

, w; =2l sin X (s 7)'2' ¢~ 71)

where [, is the length of the i-th interval. As ¢ is non-decreasing, we have x; = x;.,,
and as 7 = m, we have ¢ (& + 7)~ ¢(& — 7) =27 and so w; = 0. We put F = cosine:
since

$(x +72)—¢£Q_¢(xt§>£—f) <

we have F strictly decreasing. Finally u = ¢(a), v = ¢(a + 7/2), y; = ¢(&). By the
lemma, each Riemann sum attains its minimum when ¢(x) takes a suitable
constant value on [a, a + 7/2): hence this is true of the integral itself.

We now split [0, 27) into four ranges of length m/2, taking a =0, #/2, m, 37/2
successively, at each stage replacing ¢ by a suitable constant and not increasing the
value of K(7). After all four stages, we have replaced ¢ by a step function with
equal steps and jumps a,, a,, as, as, say, where a, + a, + a; + a4 = 27. But then for
w2<1T=m,

24 K(r)= (% —E:r;) 2 sin a; + (-2% —%) .Z sin(a; + ;+1)

(in which as is to be interpreted as a). Since a;+ @ =27 —a1— @, @i+, =
2m — a; — a; the second sum on the right is zero. The first sum is = sin27 =0 by
the sub-additivity of the sine function. Hence the original K (7) was non-negative.
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4. Admissible functions

In this section we establish the basic inequalities required for §6 and the proof of
the Ullman and Titus conjecture. This latter appears to be harder than, for
example, the evaluation of Heinz’ constant, because in addition its proof requires,
in this treatment, both the Area Theorem and the inequality n|A.(I')|= A,(T)
arising from Theorem 2.

We say that a function F:[0, w]— R" is admissible if it has a representation

(25) F(r)= 22 S. (1), O<r=m,

where S,(7)=0, is supported on [0,27/n] and is symmetric about =/n, i.e.,
S.(2m/n —7)=S.(7). Any decreasing function is admissible, we put

Sy(7)= F(7), T2=1=m,
Si(7)=F(1)— S«7), TlAZ = 7)2,
Se(7) = F(7)— Sa(7)— S«(7), w/8=7=1m/4,

and so on. In general (25) will not hold at 7 =0.

Lemma 2. Let F be admissible. For a given ¢ € let
(26) J(r)= —jsm( B2 1) = (0)) 4y
and K(7) be as defined by (17). Then
27 f {2J(r)— AK(T)}F(7)dr = k(A) f F(r)dr

0 0

where k(A)= (9 =31 V3)dx, (A <1/3v/3), k(A)=2/m, (A Z1/3/3).

Proof. We need the following elementary inequality: if 6, =0 (1 = n = N)and
8|+03+"‘+0N=21T then

(28) 2 {2sm S —Asiné, }<2m<()\).

We note that when the supremum on the left-hand side is attained, any two
non-zero 6,’s must be equal and so there exists N; = N such that 6, is either 27/N,
or 0 for every n = N. When A <1/3v/3, N, = 3. Otherwise N, = 2. This proves (28).

Now put L(r)=2J(r)-AK(r). Then if .20, (1=n=N) and
T+ 7+ + 1™ =27 we have
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(29) i L(7,) =27 (A).

We use (28) in the same fashion as in the proof of Lemma 2 [4].
We have to show that for an admissible F, (27) holds. It is enough to prove (27)
for each S,. But

2min 2min

j S, ()L (1)dr = f s,(ZT"— )L(zni’—f) dr

-1 T $u(7) {L('r)+ L(32- 7)] dr.

From (29), we have n{L(r)+ L(2w/n — 1)} =2mK(A) and so the integral above
does not exceed

2min 2@/n

k(A) f Sa(t)(m/n)dr = k(A) j S, (7)7dr.
0 0
This completes the proof.

S. The conjecture of Ullman and Titus
Theorem 3. We have, for ¢, as in (1),
(30) inf{|c:|: ¢ € B} =2/
Indeed the stronger result
(31 LN +30(D) = 16/7°
holds for every T.

Equality holds in (30) when ¢(x)=0(0=x <m), =7 (v = x <2w)and in (31)
when I is a double line segment of length 7. In the original conjecture the factor
before A,(I') (which is of course positive) was 2. In this form Ullman and Titus could
prove their conjecture in the special case when ¢(x + 7)= @ (x)+ .

We consider the integral

(32) =—72; f (1 2J(1)+ 3775 \/3 K(’r)) (1 + cos 7)dr.

Since

©

1- 2](1’)—-— I cos(p(x +7)— ¢ (x))dx = ZJC,. |* cos nr,



A CLASS OF ISOPERIMETRIC INEQUALITIES 177

moreover K(r) satisfies (17), we have

4 :d" " nd,,
v ?{+3n\/32 ni-1°

I=[c.[+2|cof +]eif +
where d. =|c.|"=|c-a|’, nZ1 and ', " denote summation over odd, even
positive integers. Now let ¢ € ®,. Then ¢, =0 and d. = n’A, (I'), hence

I=lc.f +IC1|2+—mArea(F)+3 \/3 2""A (E)

The Area Theorem gives

— \/3 Area(l)=> 483"\/3 A{T)=0.59A,(T)

and since n|A, ()| = A(T) by (21) we have

A M) 2 -
T3 2 T S5 DD S0.130(D).
Hence
33) 21 = I(T) +3A.(D).

On the other hand (1 + cos 7) decreases on [0, 7] and so is admissible. Lemma 2
yields

%f(ll(r)—m K('r)) (I1+cost)dr=— J' 7(1+cos 7)dr.

The right-hand side is 2 ~ 8/, hence we have I = 8/7” and we insert this into (33).
This completes the proof.

6. On an inequality of H. Sachs

Finally we prove an inequality which includes as special cases my result [4] on the
Heinz constant, and that of Sachs concerning the moment of inertia of I'.

Theorem 4. Let ao,a,,4a,,..., be such that the function
(34) p(1):i=3a0+ a,cos 7+ a,cos 27+ -

is non-negative on [— m, m], non-increasing on [0, 7] and convex on [27/3, 7).
Then the functional

(35) A(#,p):= aol o' + ar(|cif +]ei )+ -

is minimized by the function
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(36) ¢3(x):=0<0§x<T), ?(?§x<T), %”(Tgxaw).

That is 10 say

o

G7) Nop)zEh 3

m %0 (mod 3)

Remark. No doubt the conditions on p can be weakened somewhat. How-
ever, they are satisfied by some interesting examples. If we set a; =1, a, =3, a, =0
for n =2 we obtain (8). If we set ao=27"/3, a, =2/n’ for n =1 (which makes
p(r) = (m — 7)’) we obtain (9). For r <1 we may set a, =2r" so that p(r) is the
Poisson kernel.

Proof. We denote by g(7) the even function of period 27/3 such that

(38) Q(’r)=p<'r+g3lr>, 0§T<ﬂ'/3,
and write

(39) q(7)~%bu+b30053’r+b(,c0567-+...
where

3

El S

q(r)cos3k‘rd7=% f p(r)cos 3krdr

2wf3

s
T

R

in view of (38). Thus b, =0 and for k >0,

T

by = _'7}% f sin3krdp(r).

2mw/3

Since p is non-increasing, and convex on [27/3, 7], we deduce that by, =0 by the
second mean value theorem.

Next, put pi(7)=p(7)—q(r), which is non-negative and supported on
[—27/3,27/3], and consider the integral

(40) 1'(¢):=% f (1-2J(x))p(r)dr

where J(r) is defined by (26). We have
I'=(ao—bo)| cof +(ar = b)(lc [ +]er[)+ -+
=A(¢,p)

because b, =0 for every n.

41)
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We write pi(7) = pa(7)+ ps(7) where
pAT)=p(r)—-pRn/3) 0= 7<2m/(3), O else,
p(T)=pQuf3)—q(r) (0= 1 <27/3), O else,

so that p(7) is non-increasing and therefore admissible in the sense explained in §4.
Since p, is an S, we see that p, is admissible and Lemma 2, with A =0, yields

(42) ;%f(l—— pl(r)d'r

The function ¢, has J(7)=97/8#% (0= v =2x/3) and since p\(v) =0 for r > 27 /3,
the right-hand side of (42) is simply I'(¢;). When ¢ = ¢,, we have | ¢, [F=27/47°n’
(n =1 (mod 3)), =0 else. Since b, =0 unless n =3k, we have

27a,,.
1ot = A3, P).

(43) I'(¢)) = i

Combining (41), (42) and (43) we obtain our result.

Remark. We notice that the proof gives a slightly stronger result than (37),
inasmuch as we can replace A(¢, p) on the left by A,(¢, p) in which a, is replaced by
a, — b,. For example, when a, =2r" and p(7) is the Poisson kernel,

(44) bo= % arctan {\}3 (11::)} .

If we ignore the other b,’s we get

a m
r
> 2 m

m 0 (mod 3)

(45) (1-9arctan{v3 (1+r)})|co|2+2r (|c-n 12+|cn|2)_

The coefficient of | ¢o|* is O(r) as r — 0. Hence we may multiply by (1/r)(log 1/r)*~"
(a >0), and integrate over [0, 1]. For a suitable c(a) << this yields

@)  c@lol+ ¥ gslenfHaPzihera) (1-5)

where ¢ denotes the Riemann zeta-function. The inequality is sharp: equality is
attained when ¢ = ¢,.
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