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By 

R. R. H A L L  

1. I n t r o d u c t i o n  

The work presented here is a sequel to my paper [4] in which I considered the 
class �9 of non-decreasing functions ~ : [0 ,  2r R such that 4,(2~r- 0 ) - ~  (0)=< 

2~r, and the Fourier series 

(1) e '*~~ ~ c.e ̀ "~ 

However, my primary aim now is to establish certain isomprimetric inequalities for 
the class of closed convex curves F with perimeter 2~r, similar to those of H. Sachs 

[5] and R. Wegmann [7]. Let 

(2) ~o: = {& E �9 : co = 0}. 

Each & ~ 0  is associated with one of the curves F through the relation 

(dXIds, dYIds)  = (cos 4~(s), sin &(s)) where (X, Y), (s, &) denote Cartesian, intrin- 

sic coordinates, respectively. We write 

X(s) = ~Ao + ~., (A,  cos ns + B. sin ns), 

(3) 
Y(s) = �89 .~. ((7. cos ns + D. sin ns), 

and define the invariants 

(4) 

(5) 

h(F) :  = A~+ B2~+ C~+ D~, 

A. (F) = A . D .  - B .C~ .  

With ~b ~ Do and F related as above, we have 

(6) a . ( r ) - -  (Ic. 12- I c_. 12). 

It is sometimes easier to study the larger class �9 even in problems arising 
specifically in ~o. In my previous work [4] I evaluated the Heinz constant 

(7) ~o~ = inf I,(r) = 27/2~r 2 
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by showing that 

(8) inf{�89 ] c_, 12 +lc0l 2 + �89 c, 12: ~ ~ 0} = 27/8,r 2, 

and in w below I give a general result of this type concerning sums of the form 
Ya, l. (F). This includes Heinz' constant, and a theorem quoted by Wegmann [7] 
and derived from the work of Sachs [5] that the moment of inertia of I,, regarded as 
a wire of unit density, satisfies 

(9) ~ i, (r) __> 4,r2/27. 
n i i 

The extremal r in these problems is the equilateral triangle. 
An important theorem of Choquet [1] implies that in (1), [c,l_-__ [c_, I, or 

infAt(r)= 0. In w I show that in fact 

Ic, for all n, 

which implies AI(F) > n [A,(I,)I. The area inside I, is given by the formula 

(10) Area(i,) = ,r ~ nA, (i,) 
n I - 

and in w I prove an area theorem, 

(11) Area(i,) _-< (2,rs/81)A,(i,). 

The constant on the right is 7.5560... and it would be interesting to know its best 
possible value. The circle shows that this must be at least ,r. 

In w I prove the conjecture of J. L. Uliman and C. J. Titus [6] that 
I~(F) + 2AI(F) > 16/,r 2. In the notation of (1) this is simply 

(12) inf{[c~l : ~ E*0} = 2/~r. 

Equality is attained when I" collapses to a (double) line segment of length ,r. This 
has an application to the theory of harmonic univalent mappings developed by J. 
Clunie and T. Sheil-Small [2]: let h(z) be a harmonic, univalent, sense-preserving 
map from the unit disc onto a domain ~. Let h be normalized by the conditions 

Oh[ =1. h(0)=0, 

Then ~ has a boundary point w such that [wE< ,r/2. The constant 1r/2 is best 
possible. 

2.  A n  a r e a  t h e o r e m  

T h e o r e m  1. Let I" be a closed convex curve with perimeter 2 ,r. Then 

(13) Area(i,) < (2~r'/81)A1(i,) 
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where the left-hand side denotes the area within F and A1(F) is defined by (3) and 
(5). 

P r o o f .  Given ~b E �9 the function e'* may be continued into the unit disc to 
give a harmonic function h(z )  = [ ( z ) +  g(z )  where 

[(z)=~co+c,z +c2z2+... 
(14) 

g(z  ) = �89 + ~-iz + ~-2z 2 + . . . 

are analytic. For [ ~'[ < 1 let 0, E �9 be such that 

1+ ~e i~ 

and ~1(0) = 0 (01(0)). The harmonic continuation hffz ) of e ~' is [l(z ) + ~l(z) where 

f,(z) = r~l  + ?z) - �89 g(O), 

(15) 
gl(z ) = g ( ~ )  + �89 g(~')). 

Hence f~(0) = (1 -]g" ]2)f'(~'), g~(O) = (1 -[~" [2)g,(r For any [ and g as in (14) we 
have If'(0)] 2 + [ g ' ( 0 ) [  2 = ]c,]" + ] c - , I  ~ =< 1 (by Parseval's identity applied to (1)). 
Applying this to ] f ; (0)12+ I gl(O)l 2 yields 

(16) if,(~.)r + ig'(Ol~_-< (1 - ] ~12) -', I~r]< 1. 

We recall from [4] that there exists w(z) ,  analytic for ] z ] <  1 and such that 
I w ( z ) l =  < 1, g ' (z ) - -w(z) f ' (z ) ,  (Jz I< 1). This follows from the fundamental in- 
equality ]c_,l_-<lc, I via the M6bius transformation above. We now have 

Area(F) = rr ~ n A, (F) 
r l - 1  

12_ = ~  - ( I c .  Ic-.I 2 ) 
n = l  n 

1 2~r 

1 
= 2 f rlog2 r dr f (]f'Cre'O)]2-1g'(re'~ 

0 0 

after differentiating (14) and applying Parseval's identity to the inner integral. But 

from (16) 

1 - I w(re'~ 2 1 ] f'(re'~ - l g'(re '~ <= 
l + lw(re '~  2 ( 1 -  r-~ 

and so 
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2~  f 1-1w(re")2 
Area(F) =<-~2 sup 1 + i w(re,~)]2 dO. 

0 

The integral does not exceed 2~r(1-  I w(O)12)/(1 + I w(0)12). To prove this, we may 
assume w(0) real. Then Cauchy's theorem gives (with C the circle z = re'~ 

1 - w ~ . ,  ~ 1 f l-w(z) az 
l+w(0) = ~  l + w ( z y ' z  

r 

2 ~  

1 ~ 1 -  .(re'~y 
= 2---~ j 1 + w(re'e) 2 dO. 

0 

The inequality follows on taking real parts. We now have 

!c,I Area(F) 
6 I c , r+lc- , l ' -  3 / , ( r ) '  

and apply (7) to the denominator. This gives the result stated. 

3. The  func t ion  K 0 - )  

Given d) E (I) we define 

2tr  

(17) K 0 " ) : = ~  [ s in (d~(x+r) - t~ (x ) )dx= ,=-| Ic, 12sinnr, 
0 

where the range of definition of 4) is extended to R by setting 4)(0+2~r)~- 
d)(0)+2zr. We note that K is sub-additive in the sense that 

(18) K(rt+r2)<<-K(rl)+K(r2) ( 0 _ - - - r l - _ <  2~r ,  0 =~_ "r2 --~ 2 ' t r  - , r l ) .  

For the function sin 0 is sub-additive in the same sense and so 

2~r 

1 
/ sin(d)(x + ~'~ K(r, + r2) = ~ + r2) - d~(x))dx 
0 

2 ~  

_ _ 1  
/ sin(d)(x + r, + r2 ) -  (/)(x + r2))+ sin(r + r2 ) -  r 

- 2 1 r  
0 

_-< r(~,)  + K(~). 

T h e o r e m  2. The [unction K defined by (17) satisfies K ( r )  => 0 lot 0 < z <= ~r 
and every r E ~. 

In fact K(z)s in  r _-> 0 for every real r. 
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C o r o l l a r y .  For every dp E dp we have 

(19) [lc.[2-[c-.l~[<-_n([c,[2-]c_~12), n >  I, 

(20) n l a . (r) [ -< a,(r), n => 1, $ E*o, 

(21) A,(F) =< _.2 Area(F), 4' E *0. 
" / r  

We begin with the corol lary.  Since 

~r 

i .l ' i c . i  , =-2 f r(z)sin (22) nrdT 
0 

and [sin n r  [ _-< n sin r for  0 < r < ~r, (19) follows. For  ~ E 0o, (20) is equivalent ,  by 

(6). Next  we have  

(23) 

f (Tr - r)K(r)d'; jc'12-1c-'len 

= ,r ~ n A . ( F ) =  Area (F )  
n m l  

for  ~ ~ 0o. W e  deduce  (21) f rom the inequal i ty  sin 7 < Ir - r (0 _-< r _-< ~'), and (23). 

We  m a y  assume in the  p roo f  of  the t h e o r e m  tha t  , > ~r/2. Else the re  exists 

m E Z § such that  ~- '= m r  E (~'/2, lr] and,  by the sub-addit ivi ty,  we shall have  

KO" ) >-_ m- lK(mr )=  m-IK(, ' ) ,  so we only need  to p rove  that  K(r')  > O. Now let 

a E [0, 2 , r )  be given. Since $ ( x  + r )  - $ ( x )  is per iodic  we can change  the range  of 

in tegra t ion in (18) to [a - r, a - r + 2,r].  We  write this as [a  - r, a - ~" + 1r/2) U 

[a, a + ,r /2)  O E. These  ranges  are disjoint  ( r  > , r /2)  and we m a k e  the subst i tut ion 

x---, x - 7  in the first of them.  We  then have  

a * ~rF2 

2 2 d~(x) dx 
a 

f 
+ I sin(r (x + I") - r 

E 

We now vary the funct ion ~b on the range  [a, a + ~r/2). This  does  not  affect the 

integral  over  E and we show that  there  exists a suitable c, ~ ( a ) _  <- c _-< r + Ir /2)  

such that  if we m a k e  @ ( x ) =  c for  x ~ [a, a + Ir /2)  then  the value of the first 

integral  above  is not  increased.  

L e m m a  1. Let F:R+--~R be  continuous and strictly decreasing, xl  < x2 < 

�9 �9 �9 < xN be  g i v e n  a n d  t h e  w e i g h t s  wi > O, 1 < i < N .  T h e n  t h e  m i n i m u m  o f  
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N 

S : = ~  w , F ( [ x , - y , I )  

obtained by varying the numbers y~ subject to the constraint u <= yl <- y2 ~ �9 �9 �9 <-- ys <- 

v is attained when y~ = y2 . . . . .  y~ = y, for some y ~ [u, v]. 

P r o o f .  We begin by assuming xl < x2 < �9 �9 �9 < xN and w~ > 0. The  min imum is 

clearly attained. Suppose that for some i < N ,  we have y~ <y~+,. Then  

F(Ix , - y , I )<=F( Ix , - y ,+~ l )  else we should replace y~ by y~§ As F is strictly 

decreasing, we deduce that  Ix,-y,l_->lx,-y,+ll, that  is x, => �89 + y,+~). Also 

r(lx,+t - Y,+~ I) =< F(I  x, +~ - y, [) with implies 

Ix,+,-y,+,I--->Ix,+~-y,[ or x,+L_--<�89 

Since x~ < x,+, this is a contradiction and the result follows, subject to the 

assumption above about the x~ and w,. Since F is continuous the general case may 

be established by a limiting argument. The values y~ for which the minimum is 

attained may not be unique. 

We apply the lemma to the Riemann sums approximating the first integral above. 

We divide [a, a + ~-/2) into N intervals, with ~ a point in the i-th interval, 

I<=i<=N. We put 

x ,  - + = 2 w, = 21, sin ~b(~j + z ) -  4)(~ z)  
' 2 

where l~ is the length of the i- th interval. As  ~b is non-decreasing,  we have x~ -<_ x~§ 

and as ~" =< zr, we have ~b(~ + z)  - ~b(~, - r )  =< 2~r and so w~ _--- 0. We  put  F = cosine: 

since 

I~ (x  + r ) - ~ k ( x ) _ ~ ( x ) - t k ( x - r ) l <  
2 2 =rr  

we have F strictly decreasing. Finally u = 6 ( a ) ,  v = ~ ( a  + 7r/2), y, = ~b(~). By the 

lemma, each Riemann  sum attains its min imum when ~b(x) takes a suitable 

constant value on [a, a + zr/2): hence  this is true of the integral itself. 

We now split [0, 2~r) into four  ranges of length rr/2, taking a = 0, rr/2, ~r, 3~r/2 

successively, at each stage replacing 4) by a suitable constant  and not  increasing the 

value of K(r  Af te r  all four  stages, we have replaced ~b by a step funct ion with 

equal steps and jumps  al ,  a~, a~, a4, say, where a~ + a~ + a~ + a~ = 2r But  then for 

~r/2 < 7 --- ~r, 

(24) K ( r )  = ~ - ~ sin a, + ~ - sin(a, + a,+~) 

(in which a~ is to be interpreted as a~). Since a ~ +  a~ = 2 ~ r -  a ~ -  a~, a 4 +  a~ = 

2~r - a~ - a~ the second sum on the right is zero.  The  first sum is _-__ sin 2rr = 0 by 

the sub-additivity of  the sine function.  Hence  the original K ( r )  was non-negat ive .  
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4. Ad mis s ib l e  f u n c t i o n s  

In this section we establish the basic inequali t ies required  for  w and the proof  of 

the Ul lman  and Titus conjecture .  This lat ter  appea r s  to be  ha rde r  than,  for 

example ,  the evaluat ion  of He inz '  constant ,  because  in addi t ion its p roof  requires ,  

in this t r ea tmen t ,  bo th  the A r e a  T h e o r e m  and the inequal i ty  n I A. (F)[ <= A~(F) 

arising f rom T h e o r e m  2. 

We say that  a funct ion F : [ 0 ,  *r]--~R § is admissible if it has a represen ta t ion  

(25) F ( r )  = ~ S, (r) ,  0 < ~" _-< rr, 
n = 2  

where  S.(r)->_0,  is suppor ted  on [0 ,2 r r /n ]  and is symmet r i c  abou t  7r/n, i.e., 

S. (2rr/n - r )  =- S. ( r) .  Any  decreasing funct ion is admissible,  we put  

S2(r) = F ( r ) ,  zr/2 = r - rr, 

S , ( r )  = F(~') - S2(r), zr/4 <_- r -<_ 7r/2, 

Ss(z) = F(r) - S2(z)- S4(r), rr/8 _--- r -< 7r/4, 

and so on. In general  (25) will not hold at ~" = O. 

L e m m a  2.  Let F be admissible. For a given dp E �9 let 

2 r r  

1 f (q~(x+r)-qb(X))dx (26) J(r) = ~ sin 2 2 

o 

and K(r) be as defined by (17). Then 

�9 r *r 

(27) / {2J('r)-AK(r)}Ft~')d1" <- x(A) I F(r)dr 
0 0 

where K(A) = (9 -3A ~3)/4~r, (A < 1/3"k/3), K(A)= 2/m (A >---- 1/3X/3). 

P r o o f .  We  need the following e l emen ta ry  inequali ty:  if O. _-> 0 (1 <_- n _- N )  and 

0 , + 0 2 + ' - . + 0 N = 2 r r  then 

,-~ 12sin ~ - ^  s in0 .  N2~'K(A).  

We note  that  when  the s u p r e m u m  on the lef t-hand side is a t ta ined,  any two 

non-zero  0 , ' s  must  be  equal  and so there  exists N~ _--< N such that  0. is e i ther  21rIN~ 
or 0 for  every n N N. W h e n  A < 1/3 X/3, N~ -= 3. Otherwise  N~ = 2. This proves  (28). 

Now put L ( r )  = 2 J ( r ) -  AK(r ) .  Then  if r .  - 0, (1_<- n --- N )  and 

z~ + ~'2 + �9 �9 �9 + rN = 2zr we have  
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N 

(29) ~ L( r , )  < 27rK(X). 

We use (28) in the same fashion as in the proof of Lemma 2 [4]. 
We have to show that for an admissible F, (27) holds. It is enough to prove (27) 

for each S.. But 

2~r/n 

0 

2 "rr l n 

= / s. 
0 

21rift 

= ~  f s~(,-) t. 
0 

From (29), we have n { L O ' ) + L ( 2 1 r / n -  r)}<_--21rK(A) and so the integral above 
does not exceed 

2rrln 2 ~ l n  

0 0 

This completes the proof. 

5. T h e  c o n j e c t u r e  of U l i m a n  and  Ti tus  

T h e o r e m  3. We have, /or  ct as in (1), 

(30) inf{[c~ 1: ~ ~ Do} = 2[rr. 

Indeed the stronger result 

(31) It(F) + ~At(F) => 16/~r 2 

holds for every F. 

S, (T)Td'r. 

2~r 

1-21(r)=~--ff~ cos(4,(x+'O-4~(xI)dx= Ic. cosn~, 
0 

Since 

Equality holds in (30) when $ ( x )  = 0 (0=  < x < ~r), = ~r (lr =< x < 2~r) and in (31) 
when F is a double line segment of length lr. In the original conjecture the factor 
before A,(F) (which is of course positive) was 2. In this form Uilman and Titus could 
prove their conjecture in the special case when qb(x + It) = $ ( x ) +  It. 

We consider the integral 

~r 

(32) t: = 1 - 2J(~) + 
0 
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moreover K(~-) satisfies (17), we have 

4 d~ + 4 nd~ 
I = l c - , 1 2 + 2 [ C o l ' + l c , 1 2 + 3 ~ x / - - - ~ , ' -  ~ 3zr V,-----~ ~"  n2 1 , 

where d, = I c. 12- I c-,  12, n => 1 and E', Y~" denote summation over odd, 

positive integers. Now let ~b U ~0. Then Co = 0 and d, = n 2A, (F), hence 

4 4 ~ , ,  n An (F) 
I =  c_~+,c~2+37r2v,3Area(F)-~ I I I I _ _  3r rV3 n ~ - t  " 

The Area Theorem gives 

4 Area(F) N 2487 3 ~,(F) N 0.59~,(F) 
31r2V'3 W'3 

and since n IA~ (F)I < A~(F) by (21) we have 

4 na~(D.~ 2 
31rV'3 ~ "  n 2 -  1 =3~rV'3 a ' ( r ) -<-~ 

Hence 

(33) 21 ~ l , ( r)  + ~a,(r). 

177 

even 

On the other hand (1 + cos z) decreases on [0, ~r] and so is admissible. Lemma 2 
yields 

~-)dr. 
0 

r 

0 

The right-hand side is 2 - 8/Ir 2, hence we have ! => 8/r 2 and we insert this into (33). 
This completes the proof. 

6. O n  an  i n e q u a l i t y  of  H.  Sachs  

Finally we prove an inequality which includes as special cases my result [4] on the 

Heinz constant, and that of Sachs concerning the moment of inertia of F. 

T h e o r e m  4. Let ao, a,, a2 , . . . ,  be such that the [unction 

(34) p(r):  = ~ao + al cos r + a2 cos 2r  + . . .  

is non-negative on [-or,  rr], non-increasing on [0, or] and convex on [2~'/3, It]. 
Then the functional 

(35) A(4,, p) := aolCop + a,(I c-,  I' + lc, 12)+ " " " 

is minimized by the [unction 
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(36) 4~(x) :=0 (0_-<x < - ~ 7 ) ,  _~  ( _ ~ = < x < 7 ) ,  _~E (_~E__<x< 2"n') . 

That is to say 

27 ,~ a.___~_~ 
(37) A(~b, p)  => 4rr 2 ,.., m z i 

m ~ l  
m ~0 (rood 3) 

R e m a r k .  No doubt the conditions on p can be weakened somewhat, How- 
ever, they are satisfied by some interesting examples. If we set a0 = 1, al = �89 a, = 0 
for n => 2 we obtain (8). If we set a0 = 27r-'/3, a, = 2/n 2 for n ->_ 1 (which makes 
p ( r )  = ( r r -  r)  2) we obtain (9). For r < 1 we may set a, = 2r" so that p ( r )  is the 
Poisson kernel. 

Proof .  

(38) 

We denote by q(~') the even function of period 2zr/3 such that 

q(7) = p ( r  + - ~ )  , 0=< ~- < 7r/3, 

and write 

(39) q(~ ' ) - '~b .+  b3 cos 3~" + b, cos 6r  + . . .  

where 
~/3 

b,k =--6 ( 
7/" 

0 

"rt 

q(r)cos3kzdr =--re6 f p('c)cos3krd~" 
2 ~ / 3  

in view of (38). Thus bo=>0 and for k > 0 ,  
r r  

2 f sin3kzdp(r). b3k = 7rk 
2 ~ r / 3  

Since p is non-increasing, and convex on [2zr/3, zr], we deduce that b3k ~ 0 by the 
second mean value theorem. 

Next, put pl(z)=p(r)-q(r) ,  which is non-negative and supported on 
[ -21r /3 ,2rr /3] ,  and consider the integral 

2f (40) I ' (~b) :=--  (1 - 2J(~'))p,(r)d~" 
7/" 

f l  

where J ( r )  is defined by (26). We have 

l'=(ao-bo)lc.~ +(a.-b.)(Ic_,12+lc,12)+ ...  
(41) 

-- A(4~, p)  

because b. >_-0 for every n. 
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We write p,(z)= p2(r)+ p~(~-) where 

p2(~') = p(~')- p(27r/3) (0 =< r < 2,r/3), 0 else, 

p3(~') = p ( 2 , r / 3 ) -  q( r )  ( 0=  < T < 27r/3), 0 else. 

so that p2(r) is non-increasing and therefore admissible in the sense explained in w 
Since p3 is an $3, we see that pl is admissible and Lemma 2, with A = 0, yields 

~r 

f ( 9 r )  (42) I'>2-zr 1-~--~ p,(r)d, .  
0 

The function $3 has J ( r )  = 9r/8rr (0 < 7 = 2,r/3) and since pl(r)  = 0 for z > 2zr/3, 
the right-hand side of (42) is simply I'($3). When 4) = $3, we have I c. [2 = 27/47r2n 2 
(n - 1 (rood 3)), = 0 else. Since b, = 0 unless n = 3k, we have 

(43) I'($3) = ~ 27a,. 
..=1 4,r2m 2 = A($j ,p) .  

m # 0  (rnod 3) 

Combining (41), (42) and (43) we obtain our result. 

R e m a r k .  We notice that the proof gives a slightly stronger result than (37), 
inasmuch as we can replace A($, p)  on the left by A1($, p)  in which a. is replaced by 
a. - b.. For example, when a. = 2r" and p ( r )  is the Poisson kernel, 

(44) b ~  12 arctanTr {@33 (~-+--rr)l-r} . 

If we ignore the other b. 's we get 

(45) (1-6arctan{ 1 (1-r)})[col2+.~ - ~  ~ (ic_ .[2+[c.12)__> 27 ~ r"  
- -  = 4 ~  2 =1 ~ " 

m # O ( m o d 3 )  

The coefficient of I co r is O(r) as r ~ 0. Hence we may multiply by (l /r)(log l/r) ~ 
(a > 0), and integrate over [0, 1]. For a suitable c(oL)< ~o this yields 

( 4 6 )  c(,,)1col2§ )=Tg  § 

where ff denotes the Riemann zeta-function. The inequality is sharp: equality is 

attained when 4) = $3. 
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