AVERAGES IN THE PLANE OVER CONVEX CURVES
AND MAXIMAL OPERATORS

By
J.BOURGAIN

1. Introduction

The main goal of this paper is to give a somewhat simpler exposition of the result
on circular means proved in [1] and extensions to more general curves. The
simplifications with respect to [1) consists in avoiding the more combinatorial part
and most of the interpolation. The basic approach however is the same and also
here information coming from both harmonic analysis and geometry will be
combined.

Let I" be the boundary of a compact convex centrally symmetric body in R*. Thus
also I'={x €R%,||x|| =1}, where | | is the norm on R’ induced by this convex
symmetric body. We assume I sufficiently smooth and of non-vanishing curvature
(extensions will be discussed later). Let o denote the arc length measure of I'.

Theorem 1. Let f be a bounded measurable function on the plane and define
for 0<t <= the average

) Afx)= [ fx + y)otay).
Denote Mf the corresponding maximal operator

@) Mf =sup|Af|.

>0

Then for 2< p <=, there is an inequality
3) IMfll, = CE,p)Ifl-
Here || |, denotes the L?(R*)-norm.

This result was proved [1] in the special case I" in the unit circle {x €R*;|x|=1}.
Theorem 1 has the following consequence on differentiation of functions.

Corollary 2. Under the hypothesis of Theorem 1
) f=limAf ae
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If T is the unit circle, Theorem 1 answers a problem posed by E. Stein and S.
Wainger in [4). The restriction p > 2 is essential in (3), as is clear from the simple
example

1
H) = T Tog(Wx ¥

considering the operator

©®) 1) = [ fx +1xly)otdy)

(o = arc length measure of unit circle). Clearly | Tf| = | Mf| and Tf = © everywhere
while || f|[; < c.
Related operators, more precisely

1) = [ fx+ (s D)o@y o=

will play a special role in proving Theorem 1.
In terms of Fourier-transforms, the study of (5) reduces to the pseudo-differential
operator

©) | s Tg‘f,—l/(f e’ Oiehdg

where ¢ € $(R’) satisfies ¢ =1 on a neighborhood of 0. In this paper, we will in
particular show the L°-boundedness of (5) for p >2 by direct geometrical
considerations rather than working with (6).

2. The L ‘-estimation

Although (3) fails for p = 2, the study of the L*behaviour is important in our
approach. Denote P, (1 > 0) the Poisson-semigroup on R, ¢,(£) = e "¢, and define
for € >0 small

Msf=slg‘rg ff(x+ty)(a*P;)(dy)

thus replacing o by an ‘“e-mollification”. The failure of the L’*-bound of M is
“logarithmic” in the following sense.

Lemma 1.

™ 1M1= o) (log 2 il

Relation (7) follows from a general L°‘-estimate on convolution maximal
operators obtained in [2].
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Lemma 2. Consider a kernel K € L'(R?) and let K,(x)=tK(t™'x) for t > 0.
Define for j €EZ the following quantities:

®) o= sup K@ and B = sup [(VK(£).6).

2 s5lgl=2i"!

Then

supl+ K.1| = crais.

>0

denoting
N(K)= 2 a/*(a; +B)".
jez

To derive (7), we let K = (o * P,)— P,. Thus (o * P,), = K, + P, and the maximal
operator associated to P, is taken care of by the Hardy-Littlewood theorem, while
the expression I'(K') reduces to

C+2aja+b)"
jzn
where

a, =sup|6(£)l and b = zll{[;’l(V&(f)wa-

1€1~27

If T is smooth (up to order S say) and has everywhere positive gaussian curvature,
we have a; < C27'7, b; < C2'* as in the circle case. This can be shown by a simple
direct computation. In fact, C. Herz has shown in [3] that the essential part of & is
given by the expression (| &[> 1)

p(E)+p(E)  where p(¢) =& K1 (g)erm e

where K({) is the curvature of I' at the point with unit outer normal vector { and
| |, is the norm on R? dual to | |,

x|, = sup [{x,y)|.
Iyls1

3. Reduction of the problem

We restrict ourselves in the definition (2) of M to values ¢t = 1 (by rescaling, this is
no loss of generality).

For k =1,2,..., denote 9, the o-algebras generated by the 27*-size squares in
the plane obtained by successive diadic refinement of the unit square partition. Let
E, be the corresponding expectation operators, thus

E.[f] = Elf|2.].
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If f is a bounded measurable function on R’, we have

f= 1‘5:-1 Af defining Af=E.f—E, [

For vEZ, and 27" = ¢ =<2""", write

f=Elf1+ 2 84,

Af = AE[D+ Z AB).
A moment’s reflection shows that
|AE.[fD=Cf*

where f* stands for the Hardy-Littlewood function of f.
Therefore, we are reduced to estimate

sup sup

vz0 27 s1527"*

which is dominated by (fixing some p >2)

{ 2z [2 suP'IA,(A.uf)I ]p}wé i{ > [‘sgP,IA'(A»ﬂf)I F}I/p

vZO L g=0 -2 s=0\ p20

The L*(R*-norm of latter expression is dominated by

© S{Zlseiae.nl]”

3=\ p20H1-~-2

Our main goal will be to prove the following estimate:

(10) |sp1 40| = c2etgl,  providedak...151-0.
~ [

Once (10) is obtained, (9) may be majorized by (since p > 2)

= ip 23
3 2er (i, fk) = S 2o lfl, = Clfl,

Notice that again by rescaling, it is enough to prove (10) with » = 0. Also, in this
situation, the problem trivially localizes to the case g is supported by the unit
square [0,1].

Consider the following decomposition for the arc length measure o of I':

o =0+ 2 2 g,
k=)
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where
Oy = X nislyls2)

and

O = Xuislylst+274 ~ X(1+2 -  <lylzt+274 Y

(analogous to the expansion of the Dirac measure 8, on R in the Haar system). Thus

an  1Af0I=| [ 10+ miodnay|+ S 27| [ 10+ mionray

It will thus suffice to have an estimate

(12) | sup | [ 7cx + mronoray ‘ps c2 ],

1<g<?

for some constant a = a(p) > 0. Summation over k yields then indeed the bound

Jswpiasi] = c(E2)ist = cons,
1~ P =
In fact, as is easily seen, an estimate
usu?IA.fII sc2*|fl,
Lt 4

is obtained provided E,f = 0, since the initial terms in (11) can be estimated with the
inequality

|[ 16+ mranay | s cipp 2.

Let thus k be fixed and denote n = 2*. Consider a radius function ¢(x) ranging in
[1,2] and satisfying at the point x

13) sup

t<t<2

[ 1+ oy | = | [ 162+ emrmnnran |
Denoting

V,.=o0, (ﬁ—;) and V, =|V,| (absolute value),

expression (13) becomes

|[ 1yv.000a|

and we estimate its L°-norm by dualization. Consider thus a function g on
{IxI=c}, lgl, =1, ¢ =p/(p — 1) and write
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'U f(y)\'/,(y)dy,g>l = l<[g(x)dex,f>]

<1f1) | 8o Ve

Liqoay)

Thus the question reduces to proving an inequality

j g(x)Vidx| = €27 g],.
q .

Let 1< g,< g < ¢,<2. By the Marcinkicwicz interpolation theorem and the fact
that

1-6, 0

o1
L' L9, =L1=[L%L% - ,
[ ’ ]B‘q [ ,L ]a.q if q % 7

it suffices to consider a region QC[|x|=c] and estimate (n = 2%)

(14) || v.ax] = cnmerpe
a q
Writing
1 1-0,8
g 1 ‘2

it follows from Hélder’s inequality that

qg lu V.dx

Of course, there is the trivial inequality

= ‘u V.dx

The L*-norm may be estimated using Lemma 1. One clearly has

8

]

2

(15) |] [ v.as

J V.dx
Q

16) [ v.ax = [iviax~Lial

([ vasy=<| {sup 17+ (o« Pu I} e

o

and hence from Lemma 1

(17) [ v.ax §“ [ viar| = clegmap
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Substitution of (16), (17) in the right member of (15) shows that in order to get (14),
it suffices for given Q to improve a bit on (16) or on (17), i.e.

(18) |U Vdx| =Cn ' |Q]
0 '
or
(19) lU Vdx|| =Cn ' |Q)"
2
0

In fact, we will split Q) = (), + (1, where

s
QO: U QO.J’
s=1
each Q,, satisfying
(20) “ [ Vx| = cneeiud
- 1
and
(21) “j Vx| =Cn ' Q"
a, :
Then
‘U V.dx é”j Vx| + |I V.dx
q q q
[ 0y 0o,

where the first term satisfies (18) (by adding up (20)) and the second term satisfies
(19).

It should be pointed out that both (18) and (19) considered separately may fail for
suitably chosen () and radius function t(x).

4. Geometrical estimates

In this section, we first prove some estimates on (V,, V,) and (V, \7,) which will
be used later on. Again ¢, C will stand for constants (possibly depending on I'). By
the curvature hypothesis on I', one has the following property:

+ .
@ Ipl=1=lq1>|E59) s 1-clp—qr.
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We will use the following corollary. Suppose [[pll~1~|lq]l and ||p —qll<clpl.
then

(23) dist(q,Rp)~[llp — qll-1lpl-liq]"lp —ql".

To see this, assume [|p||>]lq |l and let |8]), =1 satisfy (p,8) =||p|. Denote

s=lql+lp-ql-lpl.
Writing p = q +(p — q), we get
(9.0)=lqll-8 and (p—gq,0)=[p—ql-é
Therefore, by (22)

_ 8 12
. A | —-q, ~n—g—— P qll~( ) ’
Isin Angle(p - 4.0)l ~ {1 =T =41~ \Tp =41

dist(q,Rp) ~lp — q|Isin Angle(p — q,q)| ~ 8" p — q|'’,

proving (23).

The following lemma generalizes the estimates in the circle case (see [1]).

Lemma 3. Denote r, the radius t(x) introduced in previous sections when
defining V,. Then

(1) The diameter of each of the components of V., NV, (resp. of the unique
component in case of coincidence) is

(29) é%‘(lx—)'H%)— (|||x—y||-|,,_,y|,+%)'
2
(25) '(V,, V,)lg C- (Vx’ Vy)

T+nllx-yl-lr—nIl
(We assume [x —y|<c <i(r,+r1)).
Proof. Let x =(0,1), y =(a,b), r, =||x|, r, =y}l Assume
[x=yl~lx—yl~lal+|1-b|<i.
Let ¢(p) stand for ||p]l. Notice that by (23)
(26) la|~dist(y,Rx)~llx — yI"*[lx ~ yl—Ir. —r,]]'"*.

Consider the component of V, NV, (V,, V, referring to the support of the
respective functions) containing 0.
For {1] < 1/m, let p(t) = (A(1), u (1)) be the solution of the equations

{ (A1), 1-pu()-60.)=1
é(a=A(t), b-p(t)-d(ab)=0,

@n
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belonging to the 0-component. Then

1/in

(28) diam component(V, N V, ) ~ f (IX @)+ (0)))dt,
(29) 1 oy ;

VoV~ [ @i+ aoha
60) =S [ aiol+laoha

—1/n

Taking t-derivative in equations (27) yields

{ = 3d(~A1-ph —4,¢(—A1-p)i =1,
(31)
~dd(a~Ab—pu)X —d,¢(a—Ab—p)i=0;
(= 3b(—A1—p)h~d,6(—A1-p)i =
- 3Lb(=A1—-p)(AY
32) =20%,6(~ A 1-p)Ai = 35,6(—A1- )Y,

—d.p(a—Ab—p)A —d,6(a—Ab—p)i=
—aLe¢(a—Ab—p)AY

=20%¢(a—A,b~pAi — 3,d(a —A,b— p) (L),

Notice (d.¢(— A, 1— ), d,¢(—A,1—p))and (d.¢(a—Ab—pn),d,¢(a—Ab—p))
give the normal directions at the respective points (—A,1— ) and (a —A,b - p).
Hence, by the curvature hypothesis

dd(—A1-p) ay¢(_A’1_#') ~
det [ax¢(a—A’b_P') ay¢(a—A’b—#‘)]'

EWEY
det[a—)« b—p

(33) =|/(1-b)A +ap —al.

Clearly we may suppose |x —y|~|al+|[1—=b|>n""

lx=yll=lr.—r,|>n~" or equivalently, by (26), that

and in proving (25) that

(34) na®*>[x—y|.
If (34) does not hold, i.e. if

(35) na*<Clx -yl
we only have to prove

(36) diam comp(V, N V,)< Cn™"*(|x —y |+ 1/n)"2
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If (34) holds, then, by (26), (28), (29), (30), we need to prove

I/n

G7) [ axi+tana~-L
and
(38) f (1);'1+1,z;)dzgcl"7;<ﬂ.

=1/n

Assume first (35). We may suppose |a [ <|1— b]since otherwise |x —y|< cn™' and

there is nothing to prove. It follows from (31) and (33) that
(39) [AI+[i]=Cla-b)A +ap—al
hence
[1=b||AX|=2]a]|X|+C
Integrating, for |t|=1/n, we get
[M=blAG@Y=C/n+]al[r@)))
thus
[A()|=Cn"?|1-b]| "
or
[A@I=Clal|t=b|"'=Cn "|x-y| "
by (35). It is geometrically clear that | u (¢)| <|A(1)|. Hence (36) is proved, under the
assumption
nflx=yl-{r.-rli<C

Assume next (34).
Then the determinant value

(40) la-(1-b)A-an|~|a]
as long as
(41) Al <wblallt=b["

By (39), it follows that |A|<C|a|™, thus |A|<C/na for |t|<1/n, on the
component of V, N V, containing 0.

It follows from (34) that n™'|a|" <|a||1—b|"'. By previous reasoning (40)
holds on the 0 containing component of V., N V,.



CONVEX CURVES 79

It follows from (31) and (40) that
X +ld]~]al"=>@37).

It remains to prove (38).
From (32) and (40), we clearly get the following bound on |A |+ 4],

_Q[-aycb(a—/\,b—n) 3¢ (—A1-p) ](f\
lall d.¢(a-Ab-p) —dd(-A1-p)i\n)/

=Clal{lé-nl+Ix—yl(&[+]nD}
where £ 7 are the right members in equations (32). Hence
X +l@l=Clallx =y (AP +]iP)=Clal™|x - y|>(8).
This completes the proof. n
We will also use the following geometrical fact.

Lemma 4. Let p <q; and x,y,z €ER® satisfy

(42) H<lxhlyl<e,
43) lzl|>1+kp, k<1,
(44) Hz-xf-1=lxlll<r and [|z-yl-1-]yll<n

where 1 < p. Then

(45) lx —yl=1lxl-Hyllzex|x—y|~Cr.
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Proof of Lemma 2. Assume |[x||Z]ly|l. Let w = —x/|[x| and ¢, ¢ the angles
indicated above. It follows from the discussion at the beginning of this section that

(46) Ix—yl+ly -zllzllx - zll+ cllx - y[sin’ ¢.
From (44) |

(47) [x —yl+lyll+27=|x[+cllx - ylsin’ .
Similarly

(48) Hx =yl+lly = wli=1+[x]+ Clx - yllsin*¢

and subtraction from (47) yields
49) 2r+|lyl+1-lly-wlzcllx - yllsin°e ~ Cllx — y|sin’y.
Also

lxll+lzll=lx - z[l+ C(sin* @ +sin§)] x|
and again from the hypothesis on z
(50) sin’ @ +sin” ¢ = cx — cﬁ :
From (49), (50)
&) Cllx —ylsin*y = —2r +|ly = wl-1-|ly |+ cxlx -yl - Cr.

Assume ||y — w||> 1. Then again

dist(y,Rx )’ x — y [*sin®
1+lyl-ly-wi=c %" V< ol ypl ¥

and substituting in (51),
lx —yl=lxll+lyl~ Clx - ylsin®¢ = cx|x — y |- Cr.
If1z|ly —w| =y + x/| x|, clearly | x — y || = || x || and (45) is trivial. n

5. The basic construction

Let now QC[0,1] (actually by further splitting, we may assume that ) has an
arbitrary small diameter; in particular, ||x — y | <i(r, +r,) for x,y € Q). For x €Q,
define the set

Q. ={yeq;|lx-yl-lr.-rll<n}L

An easy inductive argument allows us to obtain points x,,X,...,X, in {} and a
complementary set (2, CQ such that
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’Qx|!> n—-l+8

Q. N\, | >n"

> n—l+&

QU Q,
j<J

and Q, = W\ isi€l, with the property that

(52) Q,NQ,|=n"? forx €.

Notice that in this construction J = n'"®. Define for j=1,...,J
=0, and Q=0,\Q,U--UQ, ),

also

J
Q= U Q.

i=t1

It will suffice from previous discussion to show that the (}; satisfy (20), thus

(53) "I Vx| <Cn|Q
n;- !
and also
(54) ll f Vx| =Cn 't |Q|"
2
(]

We start with (54), writing by Lemma 3(ii)

2< <VX’VY)
=C ” T+ nllx =y = Tr —r | &4

(55) “ j V.dx
n, 0,x0,
Defining
P ={(x,y) EQ x|y EN,}

and using Lemma 3(i), the right member of (55) may be estimated by

e 1
(56) n fj (V, V,)dxdy + Cffwdxdy.

nha D

From the L’-theory, the first term in (56) is dominated by

f V.dx

@

(57 n"*

2
=n “J%l(log ny.
2

81
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It follows from (52) that the sections @ (x) of @ CQ, X {}, satisfy
|D(x)| < n'*e,

It easily follows from a rearrangement argument that given a €R?>, D CR?,
(58) [1a-yrrayscip

D
Hence, the second term in (56) is dominated by

Cn —3/2 ’ QI l f 'x -y l—llzdy = Cn —3/2n—3/4+(3/4)5 |Q| |
D(x)
(59) =Cn —(9/4)+slﬂl '

Taking & <3, the proof of the L’-estimate (54) follows from (57) and (59).

6. End of the proof

It remains to prove (53) for the sets (2}. Here we use Lemma 4. By hypothesis,
[Q;]>n~"** and there is a point x; with ;C(},. Of course, we may assume x; =0,
r, = 1. Denoting ' = (), we then have the property

(60) x| =1r.=1]|<n™"* forx € Q.

Divide €)' in the respective regions [r, = 1] and [r, > 1]. The computations for both
are analogous and we therefore only treat the second case, i.e.

(61) M+]|x]|—r|<n'* forx € ().

(To handle the first case, Lemma 4 has to be suitably restated.) Since clearly

= n—l—s 'nl’
1

| [ va

Ixfsn='12

we may also assume [x||= n'” for x €)'
For 1 =0,1,2,...,log n, define

Q={xeQ;2n"=|x|=2""n"}

It will suffice to prove for fixed ! an inequality

(62) H [ V| = i
1
7

since (53) then simply follows from addition over L
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Let thus | be fixed and denote p =2"'n""". Let k =n"". In order to use
L*-estimates, we need to restrict the functions V, to the set {||x | > 1 + «p]. Let thus
¢ be a [0,1]-valued function on R* satisfying the conditions

e(z)=0 if|z]|=1+«p, e(z)=1 if||z|>1+2kp;
©) Vel < Clxp
and define for x € (),

V,=V, e
Thus
Vi2)#0>]z]|>1+«p.

Let x,y €Q, Clearly (V,,V,)=0 unless there is a point z € V, N V, satisfying
|lz||= 1+ xp. From (61), we then have

M+xl=lx—z]|<n +%§2n‘”‘.

Similarly,
1+yll-lly —zll|<2n™"
in which case, by Lemma 4 (7 =2n"""*) and (61),
Mx=yl-lr=rllzex—y|=Cn™",
thus
(64) Un+|lx=yl-lr.=rllzn™(x-yl|+1/n).

If (V,, V,) #0, then V, NV, consists of 2 (possibly 1) components of diameter (by
Lemma 3,(i)) at most

Cn—l+2:(

x—yl|+1/n)"
on each of which, by (63), ¢ oscillates at most

_£ —l+2€( — _1_ )—I
p n |x—y|+ ol B
Hence

A - - C _iin 1\
(Ve VI S 10 D)1+ (Vo V1St (13 =y +3)
and by Lemma 3 and (64)

_ l)_z
x y|+n .

(65) (V. V)] é-gn“‘*" (
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Estimate the left member of (62) by

(66) [ 1v.a-oyhas +

‘ f V,dx
€,

Since || x || > p/2 for x €Q,, r, > 1 + p/4 by (61) and it follows from construction of ¢
that for each x € ('

| V.(1 - o)l S length(T, N1 5]z ]| 1+ 26p])

and thus (cf. proof of Lemma 4)

IV~ o)lhs cYE.

Hence, the first term in (66) is dominated by Cn~""*"'{(1,]. Again since |[x [ = p for
x € (), the function f,, V,dx is supported by a set of measure at most Cp, and thus
by the Cauchy-Schwartz inequality and (65)

- -2 12
“J Vx| = Cp”z{ jf pine (]x —y[+%) dxdy}
Q I Qxqy
J|_n
§ C n (n|QII)l/2

and hence (62), with £’ = §/2 — 5S¢, since |Q'|>n""*2
Thus the estimates (53) are obtained and the proof of Theorem 1 is completed.

7. Extension to vanishing curvature

The differentiation result (4) may be generalized to curves I' that are a bit more
general than those covered by Theorem 1. Let I' be the smooth boundary of a
compact convex body in the plane containing 0 as inner point. Assume that the
curvature of I only vanishes at finitely many points. We may then approximate the
arc length measure o of I' by a sum o, + 0, + -+ gy,

lo—(o+ -+ 05)|luar< &

where the o, (1 =5 = §) are the arc length measures of disjoint curves I', CT (for
which the curvature stays away from 0). Each of the I, can be embedded in a I,
satisfying the conditions of Theorem 1 and hence we have a maximal inequality

f f(x +ty)o.(dy)

sup

>0

=CeEDIfl.  @>2)

This reasoning yields
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Corollary 3. Let o be the arc length measure of a curve T’ as described above
and Af defined by (1), for f a bounded measurable function. Then

f=limAf a.e.

—0
It is easily seen that Corollary 3 fails when, for instance,
I ={max(x,/,|x.[) =1}

is boundary of the square.
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