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1. I n t r o d u c t i o n  

The main goal of this paper is to give a somewhat simpler exposition of the result 

on circular means proved in [1] and extensions to more general curves. The 

simplifications with respect to [1] consists in avoiding the more combinatorial part 

and most of the interpolation. The basic approach however is the same and also 

here information coming from both harmonic analysis and geometry will be 

combined. 
Let [' be the boundary of a compact convex centrally symmetric body in R 2. Thus 

also U={x ER2,11xH = 1}, where II II is the norm on R 2 induced by this convex 

symmetric body. We assume [" sufficiently smooth and of non-vanishing curvature 

(extensions will be discussed later). Let ~r denote the arc length measure of U. 

T h e o r e m  1. Let f be a bounded measurable function on the plane and define 

for 0 < t < ~ the average 

A~(x) = f ] ' (x  + ty)~r(dy). (1) 

Denote Mf the corresponding maximal operator 

(2) M [  = sup I AJI. 

Then for 2 < p < =, there is an inequality 

(3) ttMfll, --< c(r ,p) l l / l l , .  

Here II lip denotes the L "(R2)-norm. 

This result was proved [1] in the special case U in the unit circle {x E R';  I x I -- l). 

Theorem 1 has the following consequence on differentiation of functions. 

C o r o l l a r y  2. Under the hypothesis of Theorem 1 

(4) f = !iomAJ a . e .  
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If F is the unit circle, Theorem 1 answers a problem posed by E. Stein and S. 

Wainger in [4]. The restriction p > 2 is essential in (3), as is clear from the simple 

examp[e 

I 
f(x) = Ix [log(l/Ix [) Xl,~,~,l 

considering the operator  

Tf(x ) = (5) 
d 

f(x + Ix ) y ) , ~ ( d y )  

(o" = arc length measure of unit circle). Clearly I Tfl <= I M[I and Tf = ~ everywhere 

while Ilfl12 < ~ .  

Related operators, more precisely 

T[(x)=f[(x+(l§ o- = O'r, 

will play a special role in proving Theorem 1. 

In ter/ns of Fourier-transforms, the study of (5) reduces to the pseudo-differential 

operator  

(6) f f(r162 
where ~p @ 5e(R 2) satisfies if, = I on a neighborhood of 0. In this paper, we will in 

particular show the LP-boundedness of (5) for p > 2  by direct geometrical 

considerations rather than working with (6). 

2. T h e  L 2 - e s t i m a t i o n  

Although (3) fails for p = 2, the study of the L2-behaviour is important in our  

approach. Denote  P, (t > 0) the Poisson-semigroup on R 2, ~b,(s r = e -'~t, and define 

for e > 0  small 

MJ=s, u p l f  f(x + ty)(o'* P,)(dy) I 

thus replacing o- by an "e-mollification".  The failure of the L2-bound of M is 

"logarithmic" in the following sense. 

L e m m a  1. 

(7) 

Relation (7) follows from a general 

operators obtained in [2]. 

II M ,ll2 c F,(,og )ff,ll  
LZ-estimate on convolution maximal 
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t e m m a  

Define for j E Z the following quantities : 
2. ConsiderakernelKEL'(RZ) andletK,(x)=t-2K(t- 'x)[ort>O. 

(8) a ; =  sup I/~(~)1 and /3,= sup I<vg(~),~>l. 
2J~1~1~2 )+l 2i~1~1~2 ~+l 

Then 

denoting 

suplt,,(,lll cr(K)llrll,, 
I >l) 2 

r ( r )  Z ''~ = a; (a, +/3 , )  ';2. 
j ~ z  

To derive (7), we let K = (tr * P,) - P,. Thus (tr * P,), = K, + P, and the maximal 

operator  associated to P, is taken care of by the Hardy-Lit t lewood theorem, while 

the expression F(K)  reduces to 

,2. b,),,2 C + ~ a j  t a j +  

where 

a, = supldr(st)[ and b; = supl(Vdr(st),~)l. 

If F is smooth (up to order 5 say) and has everywhere positive gaussian curvature, 

we have a, < C2 -i'2, b, < C2 ';2 as in the circle case. This can be shown by a simple 

direct computation. In fact, C. Herz has shown in [3] that the essential part of dr is 

given by the expression (J st[ > 1) 

P(St) + P(/5) where p(st) = [s t I-"2K-"~(~')e 2"luli'-''"t 

where K(~') is the curvature of F at the point with unit outer normal vector ~" and 

II II. is the norm on R 2 dual to II II, 

Ilxll. = sup I(x,y>[. 

3. R e d u c t i o n  of  the p r o b l e m  

We restrict ourselves in the definition (2) of M to values t _-< 1 (by rescaling, this is 

no loss of generality). 
For k = 1,2 . . . . .  denote ~ the it-algebras generated by the 2-k-size squares in 

the plane obtained by successive diadic refinement of the unit square partition. Let 

Ek be the corresponding expectation operators,  thus 

E~ [f] = E l f  [ ~kl .  



72 J. BOURGAIN 

If f is a bounded measurable function on R 2, we have 

f -- ~ Aft defining Aft = E,f  - E,_,f. 
* = 1  

For v E Z+ and 2-" _-< t < 2 -~+', write 

f = E.tfl + ,Y_-, A4, 

,a,f = A,(E.[/])+ Y- A,(A4). 

A moment 's  reflection shows that 

I A,(E. If')' -<- Cf* 

where f* stands for the Hardy-Lit t lewood function of f. 
Therefore, we are reduced to estimate 

which is dominated by (fixing some p > 2) 

The L*(It ')-norm of latter expression is dominated by 

(9) x,l :P.I IPlz/P / . 

Our main goal will be to prove the following estimate: 

(I0) IsuplA,(g)l] ~ C2-*""llgll,, provided E,+.[g] =0. 
P 

Once (10) is obtained, (9) may be majorized by (since p > 2) 

"-" ' ' 2  2 -a'" I Z II~,+,/II;) --< 2 -~'," II/II, --< Cll/ll,. 

Notice that again by rescaling, it is enough to prove (10) with , = 0. Also, in this 
situation, the problem trivially localizes to the case g is supported by the unit 
square [0,1] 2. 

Consider the following decomposition for the arc length measure o. of F: 

o. = o.o+ ~ 2*-'o', 



where 

and 
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o r  o = ,~ ln~ l l y l l<21 

O'k = Xit~f[yll~u+2-tl-- ~ l l + 2 - t < l [ y f l ~ l + 2 - t + l  I 

(analogous to the expansion of the Dirac measure &) on R in the Haar system). Thus 

(11) ,A,w0t < [ f i(~ + ty)~o(y)dy[ + ~ 2'-' ] f f(~ + ty)~,(y)dyl. 
k = l  

It will thus suffice to have an estimate 

(12, 0 su<P21 f "~ +',)~.(,)",l I =< r 
for some constant a = a ( p ) >  O. Summation over k yields then indeed the bound 

I < 2-~" )11111 < C(p)NJ[N 
p ) 

In fact, as is easily seen, an estimate 

p 
P 

is obtained provided EJ -- O, since the initial terms in (11) can be estimated with the 
inequality 

I f f(x + ty)o~.(y)dyl < C,,f,,p2-'"'. 

Let thus k be fixed and denote n = 2 k. Consider a radius function t(x) ranging in 
[1,2] and satisfying at the point x 

(13) 

Denoting 

sup [ f f(x + ty)o.t(y)dYl 
| < # < 2  

y - x  
~'. = 0~ ( t (x )  ) 

expression (13) becomes 

and we estimate its Le-norm 

= i f [(x + t(x)y)o'~(y)dyl- 

and Vx -- I tTx [ (absolute value), 

I f f(Y)V.(y)dy I 

by dualization. Consider thus a function g on 

{Ixl-< c}, Ilgll0 - 1, q =p/(p-1, and write 
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I(f f(y)Q~(y)dy, g)[ = IIf g(x)V, ax, rll 

L r (I o. t I z) 

Thus the question reduces to proving an inequality :. 

I[ I ~,x,~.~x II ~ c~-,.~.,~, , ~ g q" 

�9 ~ q 

Let 1 < qo< q < q~ < 2. By the Marcinkicwicz interpolation theorem and the fact 

that 

[L%",L~,"]o,q = L ~ = [Lq,,,Lr ~ if 1 = 1 - 0 + 0 ,  
q qo ql 

it suffices to consider a region a C[I x IN c] and estimate (n = 2 ~) 

(14) Ill Q~dxl[ <= Cn-'-~' lll]'"~" 
q 

f l  

Writing 

1 1 - 0  0 - - +  
q 1 2 '  

it follows from H61der's inequality that 

0 0 0 

Of course, there is the trivial inequality 

(16) I[~ Q~dx[[,<=llf V"dx[I,= f ll v.,,dx--~l,~l. 
f l  II  0 

The L~-norm may be estimated using Lemma 1, One clearly has 

0 

and hence from Lemma 1 

,~7, Ill ~dxll ~lLf ~dxlt ~c,o,o,~,..2 
2 2 n 

0 0 
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Substitution of (16), (17) in the right member of (15) shows that in order  to get (14), 

it suffices for given 1-1 to improve a bit on (16) or on (17), i.e. 

(18) f f'xdx , =< O, -'-~ [C~l 
D 

o r  

2 
f l  

In fact, we will split [l = flo + l'l~ where 

$ 

s - I  

each lq,., satisfying 

(20) 

and 

(21) 

Then 

I 
[I,as 

f l  I 

t l  th~ fl l  

where the first term satisfies (18) (by adding up (20)) and the second term satisfies 

(19). 

It should be pointed out that both (18) and (19) considered separately may fail for 

suitably chosen f~ and radius function t(x). 

4.  G e o m e t r i c a l  e s t i m a t e s  

In this section, we first prove some estimates on (V~, Vy) and (Vx, (",) which will 

be used later on. Again c, C will stand for constants (possibly depending on F), By 

the curvature hypothesis on F, one has the following property: 

(22) Ilpll = l= l lq l l~  2P-~] = 1 - c l l p - q l l  2. 
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We will use the following corollary. Suppose lip [[- 1 ~ I[q [[ and lip - q II < c[Ip II, 
then 

(23) dist(q, R p ) -  [lip - q II-  [lip II-IIq II []"2lip - q I[ ''2. 

To see this, assume lip II > Ilq II and let [[ 0 II, = 1 satisfy (p, 0) =[IP [[. Denote 

8 = Ilq II + lip - q I I - l ip  II. 

Writing p = q + (p - q), we get 

(q,O>~llqll-8 and ( p - q , o > > l l p - q l l - 8 .  

Therefore, by (22) 

, s i n A n g l e ( p - q , q ) , -  I[[q- ~ -  P - q , , l -  ( ~ )  '/2 
I I p - q  

dist(q, Re) ~ II p - q [I [ sin Angle(p - q, q)[ - 8 ,/2lip _ q I1% 

proving (23). 
The following lemma generalizes the estimates in the circle case (see [1]). 

L e m m a  3. Denote r~ the radius t(x) introduced in previous sections when 
denning Vx. Then 

(1) The diameter of each of the components of Vx N Vy (vesp. of the unique 
component in case of coincidence) is 

 (ix ) - - -n  - Y  n [ [ I x - y H - [ r , - r , [ [ +  / -"~ n 
(24) 

(2) 

(25) I< ~'.. ',:', )1-<- r  + n lllx (v" v,> - y l l - I , .  - r ,  ll" 

(We assume I x - y l < c  <�89 + ry)). 

FhrooL Let x =(0,1), y =(a ,b) ,  r, =[[xl[, ry =IlYlI. Assume 

Ilx - y I I -  Ix - y  [ - [ a  F + [ 1 - b [ < ' .  

Let h(p)  stand for [[PI[. Notice that by (23) 

(26) [a [ -  dist(y, Rx) - I Ix  - y 11"2[11 x - y II-  f r, - r, II ''2. 

Consider the component of V, N 1/, (V x, I/, referring to the support of the 
respective functions) containing O. 

For I t ]<  1/n, let p(t)= (A(t),/~(t)) be the solution of the equations 

f 4,(-~(t), l-~(t))-4,(o,D--t, 
(27) 

1 
I, ~(a  - A(t), b-p( t ) ) -cb(a ,b )=O,  
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belonging to the 0 -component .  Then  

(28) 
I/n 

d i a m c o m p o n e n t ( %  0 V~)~ f ( I ;~ ( t ) l+ l l2 ( t ) l ) d t ,  
- I In  

(29) 

IIn 

1 
(V, ,  Vy ) - -  n f ( l J ( ( t ) l + l l 2 ( t ) l ) d t ,  

- I In  

IIn 

(30) ](f/., f',)l<---~ f ( l ~ ' ( t ) l + l t 2 ( t ) l ) d t .  
- I / n  

Taking t-derivat ive in equat ions  (27) yields 

f - O=,b( -  A, 1 - tL),( - ,9,4~( - A, 1 - t z )~  -- 1, 
(31) 

t - O~cb(a - A,b - Ix),( - O,ck(a - X,b - ~)/2 = O; 

- & , ~ . (  - A ,  1 - .u , )A"  - , 9 , 6 (  - A ,  1 - p , ) / 2  = 

2 
- a ~ 4 ~ ( -  a,1 - / z ) ( ; / )  

(32) - 2a 2~,~ ( - A. 1 - .u. ),(.ti, - a 2.4~ ( - A, 1 - / . ~ ) ( / 2 )  ~, 

- a . 6 ( a  - ~ ,b  - t~)s  - a, cb(a - ,Lb  - l~)12 = 
- -  0 2 x ~ ( a  - -  i~, b - / , L ) ( ~ )  2 

-20~,~b(a  - a ,b  - ~t),(12 - 0 2 , 6 ( a  - a ,b  - / ~ ) 0 2 )  2. 

Notice  (0x~b ( - A, 1 - / ~ ) ,  0,d~ ( - A, 1 - / x ) )  and (0x6 (a - A, b - / t ) ,  0,~b (a  - A, b - / z ) )  

give the normal  direct ions at the respect ive points  ( - A, 1 - / x )  and (a - A, b - / ~ ) .  

Hence ,  by the curva ture  hypothesis  

(33) = I(1 - b)A + a ~  - a I- 

Clearly we may suppose  Ix - y I - l a I + I 1 - b I ,> n -~ and in proving (25) that 

I I x  - y II-Irx - r , l '>  n - '  or equivalent ly,  by (26), that 

(34) ha2 >> I x - y I. 

If (34) does not hold,  i.e. if 

(35) h a 2 <  C l x -  y l, 

w e  only have to p rove  

(36) diam comp(Vx A Vy) < C n - m ( I  x - y I + l / n )  -m- 
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If (34) holds, then, by (26), (28), (29), (30), we need to prove 

IIn 

(37) f (I)~ [+ I/2 I)dt l_na 
- I I n  

and 

IIn 

(38) f ([ A" [ + 112 [)dt <= Cl Xna-'Y l 
- I I n  

Assume first (35). We may suppose [a [<]1 - b[ since otherwise [x - y I<  cn-' and 
there is nothing to prove. It follows from (31) and (33) that 

(39) 

hence 

[ i  [+[/2 I<  C I ( 1 -  b)A +atz -a l - '  

[1- b l lA~( l <=2la l [~( [ + C. 

Integrating, for It I_- < 1/n, we get 

!1 - b l a ( O  2 <-_ C(1/n + / a  J l~(t)])  

thus 

o r  

I A (t)l <= Cn-"2l l - b [ -''z 

I a ( t ) l  _-< c l , ,  I l l  - b I-'---- On-"21  x - y I - ' '2 

by (35). It is geometrically clear that I/~ (t)[ ~ I a (t)[. Hence (36) is proved, under the 
assumption 

n [11 x - y II - [rx - r, [l < C. 

Assume next (34). 
Then the determinant  value 

la - (1 - b ) A  - a / ~ l - l a  I (40) 

as long as 

(41) 

By (39), it follows 

[A [ < ~ [ a  [ [ 1 - b [ - ' .  

that IA[<Clal  -j, thus [A[<C/na for I t l<l/n,  on the 
component  of V, r Vy containing 0. 

It follows from (34) that n - ' [ a  [-' "~ J a [ [ 1 - b [-'. By previous reasoning (40) 
holds on the 0 containing component  of V, tq V r 
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It follows from (31) and (40) that 

I;( I + 1/2 I - ] a  ]-t ~ (37). 

It remains to prove (38). 
From (32) and (40), we clearly get the following bound on 1,~" ] + I/2 1, 

C [ - O , d p ( a - A , b - l . t )  a , 4 , ( - A , I - . ) ] (  ~ 
lal  a ~ 6 ( a - A , b - l z )  - 0 ~ 6 ( - X ,  1-/-~) n J 

<=Clal-'ll~-nl+lx-yl(l~l+lnl)}, 

where ~,7/ are the right members in equations (32). Hence 

1A'1+1/21- -< Cla  ]-'[x - y I(I,(I 2+ I/2 I:) <-- Eta  [-3Ix- y1=),(38). 

This completes the proof. 

We will also use the following geometrical fact. 

L e m m a  4. Let p < ~ and x, y, z E R z satisfy 

(42) 

(43) 

(44) 

where r ,~ #. Then 

(45) 

~<llxtl ,  llyll< p, 

I l z l l >  1 +  ~p,  ~ l ,  

f l l z - x l l - l - I l x l l l ~  and [ l l z - Y l l - l - I l Y l l l ~ ' ,  

II x - y II - III x I I -  II y III > c ~  Ix - y I - c~-, 

79 
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Proof  of  L e m m a  2. 
indicated above.  It follows from the discussion at the beginning of this section that 

(46)  IIx - y II + Ily - z II---- IIx - z II + c IIx - y Ilsin2 ~.  

From (44) 

(47) II x - y II + II y II + 2~  -> II x II + c II x - y Ilsin 2 ~.  

Similarly 

(48) II x - y II + II y - w II --< 1 + II x II + C II x - y II sin2 ~/ 

and subtract ion from (47) yields 

2 ~  + II y II + 1 - II y - w II --> c II x - y II sin2 ~o - C II x - y II sin24'. (49) 

Also 

Assume Ilx II----tly II. Let  w = - xlllx II and ~o, qJ the angles 

II x II + II z II ~ II x - z II + C ( s i n  2 ~o + sin 24,)11 x II 

and again f rom the hypothesis  on z 

(50) sin 2 r + sin 2 ~ _-> cK - C "r . 
P 

From (49), (50) 

(51) C I I x -  y l l s i n 2 ~  --- - 2 ~ ' + l l y - w l l - l - I l y l l + c x l l x - y l l - c ~ ' .  

A s s u m e  II Y - w  II > l .  T h e n  again 

- d i s t ( y ,  R x )  2 clX-yrsin~,/, 
l + l l y l l - I l y - w l l = < c  I ly l l  ---- p 

and substituting in (51), 

IIx - y II -IIx  II + Ily I I -  CIx - y Isin2 ~ _-> cKlx - y I -  c~-. 

If 1 => Ily - w II---Ily + x/llx II II, clearly IIx - y II----IIx II a nd  ( 4 5 ) i s  tr ivial .  

5. T h e  bas ic  cons t ruc t ion  

Let  now ~ C [0,1] 2 (actually by fur ther  splitting, we may assume that ~ has an 

arbi t rary small d iameter ;  in particular,  [Ix - y II < �89 + ry) for  x , y  E ~ ) .  For  x E f~, 

define the set 

~ --{y ~ ft;J Ilx - y l l -  [r~ - r, I l <  n- '+ '} .  

An easy inductive a rgument  allows us to obtain points xl ,x2 . . . . .  x~ in f l  and a 

complemen ta ry  set ~ C ~  such that 
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ffL, l> n -'§ 

In.,\n.,l > n -'§ 

I f } , , \  U ['}x, > n -l+' 
i<J 

and f}~ = D,\Ui~.,f}~,, with the property that 

(52) If}, fl f}x I < n -'+" for x E i.}. 

Notice that in this construction J_-< n l-*. Define for j = I ..... J 

f}', = f}x, a n d  [l~ = [ l~j \ (12. ,  O " "  O 12~j_,), 

also 
J 

t~o = U ~;. 
i = !  

It will suffice from previous discussion to show that the t}; satisfy (20), thus 

(53) 

and also 

]If Q"dxll, < n'j 

(54) 

lit  

We start with (54), writing by Lemma 3(ii) 

(55) 
fl I f l tx l l t  

(v,, v,} 
l + n l l l x - y l l - l r . - r ,  idxdy. 

Defining 

= {(x,y) ~,0,, x fl, I y e f}~,} 

and using Lemma 3(i), the right member of (55) may be estimated by 

(56) 

From the LLtheory,  the first term in (56) is dominated by 

(57) II f fl 2 -" < ogn  2. t l  X = n -~  
.~ 2 

tit 

81 
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It follows from (52) that the sections ~ ( x )  of ~ CI'I~ • l'l~ satisfy 

I  (x)l < n 

It easily follows f rom a r ea r rangement  a rgument  that given a E R 2, D CR 2, 

f l a - y I-'/=dy --< CI O 13''. (58) 

D 

Hence ,  the second term in (56) is domina t ed  by 

Cn -3/2 I ~'~1 I ~ I x -- Y I-l'2dy ~ CFl-3/2n-3/4+(3/4)'~ J ~"~1 I 

D(x) 

(59) = Cn-~"~+sII'~. I. 

Taking ~ < �88 the proof  of the L2-est imate (54) follows f rom (57) and (59). 

6.  E n d  o [  t h e  p r o o f  

It remains to p rove  (53) for  the sets tq'j. He re  we use L e m m a  4. By hypothesis ,  

IO~l > n -~§ and there  is a point xi with O'i C f~x, Of course,  we may assume x i = 0, 

rx~ = 1. Denot ing  ~ '  = fYj, we then have the p roper ty  

(60) I I I x l l - l r x - l l l < n  -'§ for x E O ' .  

Divide ~ '  in the respective regions [rx --- 1] and [rx > 1]. The  computa t ions  for both 

are analogous and we therefore  only treat  the second case, i.e. 

(61) I1 + l l x l [ -  r~ l<  , - ' "  for  x E I T .  

(To handle  the first case, Lemma  4 has to be suitably restated.)  Since clearly 

we may also assume JJ x JJ -~ n'/2 for  x E ~ ' .  

For  l = 0 ,1 ,2  . . . . .  log n, define 

fl, = {x E IT;2 'n  -'`~ = IIx II---- 2 ' + ' " - ' %  

It will suffice to prove for fixed l an inequali ty 

,62, If 
Nt 

since (53) then simply follows from addi t ion over  I. 
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Let thus 1 be fixed and denote p=2t+~n -m. Let K = n - L  In order to use 

L2-estimates, we need to restrict the functions I~', to the set [llx II > 1 + Kp]. Let thus 
~0 be a [0, 1J-valued function on R" satisfying the conditions 

~ ( z ) = 0  iftlzll=<l+,cp, ~ ( z ) = l  i f l l z l l > l + 2 K p ;  

(63) I V r  C / t c p  

and define for x ~ Ill 

Thus 

~,~ = , ~ . ~ .  

f ' x ( z ) r  1 + Kp. 

Let x, y E l~,. Clearly ( Q., f'y) = 0 unless there is a point z E V. tq Vy satisfying 

IIz II => 1 + ,~p. From (61). we then have 

I1 + IIx II- IIx - z l l  I<  . - '+" + 2 =< 2n-'+L 
n 

Similarly, 

I1 + Ily II-Ily - z II1< 2 n  - '+~ 

in which case, by Lemma 4 (r = 2n - '+ ')  and (61), 

IIIx y l l - l r x  r, l l > c K : l x  Y l -  - ' "  

thus 

(64) 1 / .  + l l l x  - y l l - Irx  - r, ll ~ . - " ( I x  - y I+ 1 / . ) .  

If (Q~, Qy) ~ O, then Vx N Vy consists of 2 (possibly 1) components of diameter (by 

Lemma 3,(i)) at most 

Cn- ,+2 . ( I  x _ y I+ 1 / n )  ~' 

on each of which, by (63), ~p oscillates at most 

-Cn-'+2~(,x - y I +I )-'" 
Kp n 

Hence 

and by Lemma 3 and (64) 

- - "  f § 
P 
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Estimate the left member of (62) by 

~t  !tit 

Since [Ix [[ > p/2 for x E [~t, r~ > 1 + 0/4 by (61) and it follows from construction of tp 
that for each x E ['t' 

II v~(1 - ~o)11, ---- l l eng th (Fx  n [1 -< II~ II ~ 1 + 2xp]) 

and thus (cf. proof of Lemma 4) 

II vx (1 - q,)ll, --< c 
I1 

Hence, the first term in (66) is dominated by Cn -"2-' lilt I. Again since ]]x [[_-< p for 

x E l)t, the function fa, Vxdx is supported by a set of measure at most Cp, and thus 

by the Cauchy-Schwartz inequality and (65) 

I - 2  112 tlf r 
~1 t l l t •  I 

<__ c l n ' l  ,,~ 
,, ( n l w l )  ''~ 

and hence (62), with e ' =  6 / 2 - 5 e ,  since 11)'[> n -~+~. 

Thus the estimates (53) are obtained and the proof of Theorem 1 is completed. 

7 .  E x t e n s i o n  t o  v a n i s h i n g  c u r v a t u r e  

The differentiation result (4) may be generalized to curves I" that are a bit more 

general than those covered by Theorem 1. Let F be the smooth boundary of a 

compact convex body in the plane containing 0 as inner point. Assume that the 

curvature of V only vanishes at finitely many points. We may then approximate the 

arc length measure o" of U by a sum o'~ + o'2 + " "  + O's, 

!1 O" - (O', + " "  + O's)ll~,,~2~ < 

where the O's (1 -< s -< S) are the arc length measures of disjoint curves Fs CF (for 

which the curvature stays away from 0). Each of the Fs can be embedded in a F'~ 

satisfying the conditions of Theorem 1 and hence we have a maximal inequality 

This reasoning yields 
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C o r o l l a r y  3 ,  Let  cr be the arc length measure o f  a curve F as described above 

and A ,[  defined by (1), for f a bounded measurable function. Then 

f = !i~ A,[ a.e. 

It is easily seen that Corollary 3 fails when, for instance, 

F = {max(lx.l,lx2l) = 1} 

is boundary of the square. 
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