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R E S E A R C H  ON THE E X I S T E N C E  OF SOLUTION OF 

E Q U A T I O N  I N V O L V I N G  p - L A P L A C I A N  O P E R A T O R  

W e i  L i  l 'z Z h o u  H a i y u n  z 

Abstract. By using the perturbation theories on sums of ranges for nonlinear accretive mappings 

of Calvert and Gupta(1978),  the abstract result on the existence of a solution u E L p (I2) to 

2N nonlinear equations involving p-Laplacian operator Ap,where ~ p ~ q - o o  and N ( ~ I )  

denotes the dimension of R N,is studied. The equation discussed and the methods shown in the 

paper are continuation and complement to the corresponding results of Li and Zhen's previous 

papers. To obtain the result ,some new techniques are used. 

w 1 Introduction and prel iminary 

Since p - L a p l a c i a n  o p e r a t o r  Ap wi th  p=/=2 a r i ses  f rom a va r i e t y  of phys ica l  phenomena  

such as n o n - N e w t o n i a n  f l u i d s , r e a c t i o n - d i f f u s i o n  p r o b l e m s  and p e t r o l e u m  e x t r a c t i o n , e t c ,  it  

becomes  a ve ry  p o p u l a r  topic  in m a t h e m a t i c a l  f ie lds .  We  have  a l r e a d y  s tud ied  it in d i f ferent  

aspectsE~ 51. In  th is  p a p e r ,  the  fo l lowing  Eq. ( 1 )  wil l  be d i s c u s s e d . f o r  a g iven f E  LP(12) ,  

2 N  
find uELP(12) ,where  ~ - ~ p ~ + o o  and N ~ I  such  t ha t  

- -  Apu q- l u ( x )  lP -Zu(x)  -~- g ( x , u ( x ) )  : f ( x ) , a . e ,  on 12, 

- < ~ , l V u l  ~ 2Vu> E / ~ ( u ( x ) ) , a . e .  on F ,  (1 )  

whe re  Apu--=div(  [~Tu [P-2Vu) is the  p - L a p l a c i a n  o p e r a t o r ,  I~u  [P-Z~Tu is unde r s tood  to be 

zero if ~ u = 0  and v deno t e s  the  e x t e r i o r  no rma l  de r iva t ive  of Y'. More  de ta i l s  on Eq.  ( 1 ) w i l l  

be g iven  in w 2. 

N o w  let X be a real  Banach  space  w i th  a s t r i c t l y  convex dual  space X * .  We use --~ 

and w- l i r a  to deno te  the  s t r o n g  and weak  convergence  , r e spec t ive ly .  F o r  any  s u b s e t  G of X ,  

we deno te  by  in tG its i n t e r io r  and  G its c l o s u r e , r e s p e c t i v e l y .  Let  X ' - - - ' - - -  Y deno t e  t ha t  

space X is e m b e d d e d  c o m p a c t l y  in space  Y. A m a p p i n g  T �9 D ( T )  : X - ~ X *  is sa id  to  be 
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hemi-con t inuous  on X if w - l i m , ~ o T ( x q - t y ) = T x , f o r  any x , y E X .  Let  J denote  the dual i ty  

mapping  f rom X into 2 x* defined by 

J ( x )  = { f  E X"  �9 ( x , f )  = II x II �9 II f II , II f II = II x II / , ~  E x ,  

where  ( �9 , �9 ) denotes  the general ized dual i ty  pair ing be tween X and X* .  It is we l l -known  

that  J is a s ingle-valued mapping  since X* is s t r ic t ly  convex.  

Let A ; X ~ 2 x be a given mul t i -va lued mapping .  We say tha t  A is bounded ly-  

inverse ly-compac t  if for any pair of bounded  subsets  G and G f of X , t h e  subset  G ~ A -1 (G r ) 

is relat ively compact  in X.  T he  mapping  A �9 X--~2 x is said to be accretive if ( ( v l - - v2 )  ,d (u l  

- - u 2 ) ) ~ 0  for any u I E D ( A )  and v i E A u i , i = l , 2 .  The  accretive mapping  A is said to be m- 

accretive if R ( I + I A ) = X  for some 2 > 0 .  

Let B " X - * 2  x" be a given mul t i -va lued mapping.  The  graph  of B , G ( B )  ,is defined by 

G ( B ) =  {Eu,w] ] u E D ( B ) , w E B u } .  T h e n  B " X--~2 x~ is said to be m o n o t o n e  if G ( B )  is a 

mono tone  subset  of X X X  ~ in the sense that  ( u l - - u z , w l - - w 2 ) ~ O  for any [ u z , w i ] E G ( B ) ,  

i =  1 , 2 .  The  m o n o t o n e  opera tor  B is said to be maximal  mono tone  if G ( B )  is maximal  

among  all mono tone  subse ts  of X X X* in the sense of inclusion.  The  mapp ing  B is said to 

(x,, ,x2 ) 
be coercive if lim,,_+~, II x ,  I ~  = ~ 1 7 6  for all [ x , , , x , ~ ] E G ( B )  such that  

lim,_+.~, II x~ II = + c o .  

Next  ,we give some concepts  and we l l -known  resul ts  for the needs in the sequel.  

Defini t ion 1 .1 .  T he  dual i ty  mapping  d : X--*2 x* is said to sa t isfy  C o n d i t i o n ( I )  if there  

exists a funct ion r/ �9 X-~[-0 ,  + o o )  such tha t  

II J u  - , i v  II ~< ~ ( u  - v ) , f o r  V u , v  E X. ( I )  

Def in i t ion  1. 2. Let A ; X--* 2 x be an accretive mapping  and J "- X---~X * be a dual i ty  

mapping .  We say that  A satisfies Condi t ion ( ~ ) i f , fo r  any f E R ( A )  and a E D ( A ) , t h e r e  

exists  a cons tan t  C ( a , f )  such that  

(v -- f , J ( u  - a ) )  ~ C ( a , f ) , f o r  any u E D ( A ) , v  E Au. ( ~ ) 

L e m m a  1. 1. E6j Let  ~ be a bounded conical domain in R N. If m p > N , t h e n  W " * ( ~ )  ~---~'---~ 

C~(12). 

L e m m a  1 .2 .  E~ Let  ~ be a bounded conical domain in R N. If O < m p ~ N  and Np 
qc, = N - - r a p '  

then W ~ ' P ( ~ )  '---~'---~ L'~(12) ,where  l ~ q < q o .  

L e m m a  1.3 .  ~7~ Let  X = L P ( 1 2 )  and /2 be a bounded domain  in R N. For  2 ~ - ~ p < + c ~ , t h e  

dual i ty  mapping  ,lp : LP(g?)--~LP'(g?) defined by Jpu= lu I p ~sgnu I[ u It ~ - ' , f o r  u E L P ( g ? ) ,  

2 N  
satisfies Condi t ion ( I )  ; for ~ @ ~  < p ~ - ~  2 and N ~  1, the dual i ty  mapp ing  Jp : L p (12)---* 

t 1 
L p' (12) defined by ,lpu = ] u I p ~sgnu, for u E L p (12), satisfies Condi t ion ( I ) ,  where  7 + ~7 = 

1. 

L e m m a  1.4.  ETJLet 12 be a bounded  domain in R N and ~4" J2XR---*R be a funct ion sa t is fying 
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Cara theodory ' s  conditions such that  

(i) g ( x ,  ~ ) is monotonically increasing on R~ 

2N 
(ii) the mapping u E L p (g2)--~g ( x ,  u ( x )  ) E L ~ (g?) is well defined, where ~ % p 

-I-c~ and N ~ I .  

1 1 
Let  Jp : LP(J2)--,-LP' ( ~ ) , 7 + ~ = 1  ,be the duality mapping defined by 

2N 
,Ipu - -  l u I~-~sgnu, if N + ~  < p ~ 2, 

lulp-~sgnu Ilul[~-', i f 2 ~ p < + o o  

for uELP(g2) .  Then  the mapping B " LP(g2)--~LP(g?) defined by ( B u ) ( x ) = g ( x , u ( x ) )  for 

any x E g2 satisfies Condition ( ~ ). 

T h e o r e m  1.1. E7]Let X be a real Banach space with a strictly convex dual X* .  Let J : X--~ 

X" be a duality mapping on X satisfying Condition ( I ) .  Let A , B ~  : X--~2 x be accretive 

mappings such that 

( i)  both  A,B~ satisfy Condition ( * ) ,or D ( A ) C D ( B ~ )  and B~ satisfy Condition ( ~ ) ,  

(ii) A + B a  is m-accretive and boundedly- inversely-compact .  

If Bz -" X--~X  be a bounded continuous mapping such t h a t , f o r  any y E X , t h e r e  is a 

constant  C ( y )  satisfying ( B 2 ( u + y ) , J u ) ) - - C ( y )  for any u E X .  Then 

(a)  [ R ( A ) + R ( B 1 ) ] C R ( A + B I + B z ) .  

(b)  i n t [ R ( A ) + R ( B ~ ) ] C i n t R ( A + B ~ + B 2 ) .  

w 2 M a i n  resu l t s  

Let f2 be a bounded conical domain of a Euclidean space R N ( N ~ I )  with its boundary  

F ' E  C 1ES~,and suppose that Green ' s  Formula is available. Let [ �9 [ denote the Euclidean 

norm in R ~', ( �9 , �9 )the Euclidean inner-product and v the exterior normal derivative of f ' .  

Let 9 :  F ' X R - ~ R  be a given function such t ha t , f o r  each x E / ' ,  

( i )  G = ~ ( x ,  �9 ) : R - , - R  is a proper ,  convex , lower-semicont inuous  function with 

9x(0) = 0 .  

(ii) {/~ = 0 ~ (  : subdifferential of G )  is maximal monotone mapping on R with Off 

fix (0) and for each t ff R ,  the function x ff F---~ ( I  +),fix) - 1 ( t )  E R is measurable  for A~ 0. 

Let  g : ~ X R--~R be a given function satisfying Cara theodory ' s  conditions such that  

2N 
for ~ % p % + c ~  and N ~ I ,  the mapping u f f L P ( B ) - - * g ( x , u ( x ) ) f f L P ( d ? )  is defined. 

Fur the r ,  suppose that  there is a function V ( x ) f f L P ( ~ )  such that  g ( x , t ) t ~ O  for I t l ~  

T ( x )  , x E  g2. 

In this section we study the following nonlinear boundary value p rob l em:g iven  . f E  

2N 
LP(~Q),find u ~ L P ( ~ ) , w h e r e  ~ p ~ + c ~  and N ~ l , s u c h  that  
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-- Apu+ lu(x) lP-2u(x) + g ( x , u ( x ) )  = f ( x ) ,  a .e .  ons 

- - @ , l V u  ]P-ZVu) E f l~ (u (x ) ) ,  a .e .  o n / ' .  (1) 

Def in i t ion  2. 1. ET? Define g+ ( x )  = l i m  inft~+~,g(x,t) and g_ ( x )  = l i r a  sup . . . . .  g ( x , t ) .  

Fur ther ,def ine  a {unction gl : ~)<R--~R by 

[ (inf,>~,g(x,s)) A (t -- T ( x ) ) ,  V t ~ T ( x ) ,  

gl (x , t )  = ~0, V t ~ [-- T ( x ) , T ( x ) ] ,  

(sup,<~tg(x,s)) V (t + T ( x ) ) ,  V t ~ - - T ( x ) .  

Then ~' x E l"2,gl ( x , t )  is increasing in t and l imt~:~gl  ( x , t )  = g •  (x ) .  Moreover  ,gl  " ~)< R 

--~R satisfies Cara theodory ' s  conditions and the functions g• ( x )  are measurable  on g2. 

And , i f  g 2 ( x , t ) = g ( x , t ) - - g l ( x , t ) , t h e n  g2(x , t ) t~O for ] t l ) T ( x ) , x E O .  

2N 
L e m m a  2. 1. ET~ For ~ - - ~ % p % + o o  and N ~ I  ,define the mapping B1 " LP(I'2)--~LP(g2) by 

( B l u ) ( x ) = g l ( x , u ( x ) )  , for  V uELP(J'2) and xEa"2, then B1 is a bounded,cont inuous  and 

m-accretive mapping.  Also define Bz : LP(f2)--~LP(D) by (13zu) (x )=gz(x ,u (x ) ) ,where  

g2(x,t) = g ( x , t ) - - g l  ( x , t )  , then Bz satisfies the inequality 

(Bz(u + y),dpu) ~ - -  C(y) (2) 

for any u , y ~ L P ( ~ ) , w h e r e  C(y)  is a constant  depending on y and Jp �9 LP(~)-~LP'(a"2) 

1 1 1. denotes the duality mapping ,where __~-+P~= 

L e m m a  2.2. E4~ Define the mapping ~p : W*'P(J'2)---R by r = j rg.(u [r(x) )dF(x) ,  for 

2N 
any u~WI"P(O),where ~ - ~ ( p ( + o o  for N ~ I .  Then  ~p is a p roper , convex  and lower- 

semi-continuous mapping on Wt'p(g2). 

2N 
L e m m a  2. 3. Define the mapping Bp : W I ' P ( f 2 ) - - - ( W I ' e ( g 2 ) )  * , for  ~ ( p ( q - c ~  and 

N ~ l , b y  

(v,B,u) = fa(l~7ul'-2~Tu,Vv)dx + fn lu(x)  l ' -2u(x)v(x)dx 

for any u, v ~ W ~ 'p (s Then  Bp is everywhere  defined, monotone ,  hemi-continuous and 

coercive. 

Proof.  This  result is a special case of Lemma 2.1 in [-4]. 

2N 
Def in i t ion  2.2.  Define a mapping At, : LP((2)--~2 Lp(a),where ~ % p % + c ~ o  for N ~ I  as 

follows : 

D(Ap) = { u E L P ( D ) ] t h e r e  exists an f~Le(J'2) such that  f ~ B ~ u + 8 ~ ( u ) } .  

For u~D(Ae)  ,let A/,u= {f6L/'(a"2) If6Beu+8~5e(u) }. 

2N 
L e m m a  2.4.  The  mapping Ae : L~'((2)--~2 e'e(m for ~ p ~ + c . >  and N ~ I ,  is accretive. 

Proof.  We will prove this lemma in two cases. 
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Case 1. If p ~ 2 , t h e  duality mapping Jp : LP(gJ)--~L p' ( ~ )  is defined by Jpu = l u[ p-1 �9 

1 1 
sgnu [I u II ~-P for u E L ' ( D ) , w h e r e  -~-+~-7= 1. It suffices to prove that for any u, E D ( A , )  

and v, E Apu, , i =  1 , 2 ,  

(V 1 - -  v 2 , J p ( u  1 - -  U2)) ~ O. 

Then it leaves us to prove that both 

([Ul -- uzl*-~sgn(u~ -- us)II u,  - u~ II ~,-',B,ul - B ,u2)  >~ o 

and 

( [ U l - - U  2 [ ' -~sgn(u , - -u2)  [1 U l - - U 2  II ~,-,,ar162 are available. 

Now take for a constant k > 0 , Z ~  : R--~R is defined by Z ~ ( t ) =  I (t Ak)  V ( - - k ) [ e - ' s g n t .  

Then  X~ is monotone,Lipsehi tz  with Z~(0 )=0  and Z'~ is continuous except at finitely many 

points on R. This gives 

([u~ -- u~ [P- 'sgn(ul  --  uz)II ul  - u~ II ~ - , , a r  - a ~ , ( u 2 ) )  = 

l i m  I[ u~ - -  uz II 2--P()~k(Ul - -  " 2 ) , l ~ p ( U l )  - -  a l ~ p ( U 2 ) )  ) 0 

and 

( l U l  - -  uz I p - l s g n ( u ~  - -  u 2 ) I I  ~ - u~ II ~ - P , B p u ,  - -  B p u z )  --- -  

II Ul 

2-~ I (lu~ I ' - ~ u ,  - 1,21'-2,~)lUl - uz IP-lsgn(u~ - u 2 ) d x  ~ O. i l - i  - u2 I I ,  

The last inequality is available since :~k is monotone and Xk(0)=0.  

2N 
Case 2. If ~ - ~ < p % 2  and N ~ I  , the duality mapping Jp : L P ( D ) - - " L  p' (g2) is defined 

1 1 = 1. It suffices to prove that for any u~ E by J p u =  lu tP-lsgnu for u E L P ( ~ )  and ~-+p--7 

D(Az)  and v i E A p u i , i = l , 2 ,  

(v ,  - -  v 2 , J p ( u l  - -  uz ) )  ~ O. 

Now,we  define the function :g,, : R--~R by 

t 1 

I t [P- ' sgnt ,  if It[ ~ n '  

:L(t)  = p-2 

Then  :gn is monotone,Lipschi tz  with :g, ,(0)=0 and :g~n is continuous except at finitely many 

points on R. So (Z .o (u l - -u2 ) ,Oc I~p (u l ) - -O~p(uz ) )~O .  

The n ,  for ui E D (Ap)  , vl E Apui ,  i = 1 ,2 ,  we have 

(vl  - -  v2 , , lp (u ,  - -  u l )  ) = ( l u l  - -  uz I~-lsgn(ul -- u2),Bpul --  Bpu2) + 

( lul  - -  uz IP-lsgn(ul - -  uz),~ibp(ul)  - -  ~(lSp(uz)) = 

( lu l  -- u2 IP-lsgn(ut - -  u 2 ) , B p / ~ l  - -  Bpu2) -]- lim . . . . .  ( Z n ( U l  - -  U 2 ) , ~ ( ~ p ( U l )  - -  O l ~ p ( U 2 ) )  ~ 0 .  

This completes the proof. 
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Remark 2. 1. Since the methods in [1-5]  cannot be used to show that Ap " LP(g2)---'2 Lp(a~ is 

accret ive,a new method and some new techniques are applied in Lemma 2.4. 

2N 
Lemma 2.5 .  The mapping A~ " LP(s Lp(a) for ~ - -4 -~%p%- / -oo  and N ~ l , s a t i s f i e s  

R ( I - b 2 A p )  =LP(I'2) ,for any 2t~0. 

Proof.  Firs t ,  define the mapping Ip : W 1 'p ( g 2 ) - ~  ( W  1 "p (/ '2))~ by Ipu = u  and ( v ,  

2N 
Ipu)(w'.p~m~" • = ( v ,  u)L2(m for u,  v E W l'p ( ~ ) ,  where ~ < p <  + oo for N ~  1 and 

( �9 , �9 )L~a) denotes the inner product of L z ( o ) .  Then from Lemma 2.3 in [ 4 ] ,  we know 

that Ip is everywhere def ined,monotone and hemi-eontinuous. 

Secondly,  for any 2 > 0 , d e f i n e  the mapping Ta " WI"P(a'2)---~2 ~ue''p~a~" by T a u = I p u - k  

2N aBeu+aO,:l,p(u) ,for u E W l'p (t2) ,where ~ % p %  -boo and N ~ I .  Then  Ta is maximal ,  

monotone and coercive,so it follows that R ( T a ) =  (WI'P(g]))" for any fl>0.  

Next ,not ic ing the following facts.  

1 1 
if p ~ 2  , then WI'P( I '2 )CLP(I '2 )~L  p' (I'2) ~ (WI"P(a'2)) * ,where 7 +7 7  ----- 1 ; 

2N Lp, if ~ -@-~<~p~2 , s ince  WnP(s ~---~-~ (/'2) when N ~ 2  by Lemma 1. 2 , and  WL'P(g2) 

~---'--~ C~(~)  when N =  1 by Lemma 1 .1 ,we  have 

1 + 1  
WI 'P(~)  ~ LP'(I'2) ~ LP(a'2) C (WI 'P(D) )  " ,where ~- 77 = 1, 

So for any J ~ L P ( g 2 ) , t h e r e  exists uEWI'P(a'-2) such that 

f = Tau = I~u + flB~u -b ) . ~ ( u )  = u -b flB,,u -t- 2tO~,,(u). 

From the definition of Ae,i t  follows that R(Iq- .1A/ , )=L"(I -2) , for  g 2 > 0 .  

2N Proposition 2. 1. The mapping Ae : L~(g2)--~2;~(m,for ~ < p < - b  ~176 and N ~ I  is m- 

accretive. 

Proof.  In view of Lemmas 2.4 and 2 . 5 , t h e  result is available. 

2N 
Lemma 2. 6. The mapping Ae : Le(g2)-+2 e?<a~ has a compact resolvent for ~ @ - i < p < 2  

and N ~ I .  

Proof.  Since A~ is m-accretive by Proposition 2.1 ,it suffices to prove that if u §  

~>0) and {j} is bounded in Le(g2) , then  {u} is relatively compact in Le(s Now define 

functions Z,,,~,, : R--~R by 

l[ tl e-*sgnt,if  I tl ~ 1 

Z,( t )  = l ,  1 'p z 
f i n )  t , i f  t t ~ l ' n  

and 
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I It[Z-~sgnt,if Itf > / 1 ,  

1 __1 1 Noticing that Z ' , , ( t ) = ( p - - 1 ) X  X(~' . ( t ) )P, for  [ t ]~  ,where ~-+~-7----1 and Z'.(t)  

= (~ ' . ( t ) )P, for  Jtl~l,we can know ( Z . ( u ) , O ~ p ( u ) ) ~ 0  for u E WI'P(~) since Z. is 
n 

monotone,Lipschitz with Z,,(0)=0 and Z'. is continuous except at finitely many points on 

R. Then 

( I u I p- ~sgnu, Apu) = lim ..... (Z. (u),  Apu) ~ lim . . . .  (Z. (u),  Bpu) = 

lim ..... fn I ~TulPZ'.(u)dx + lim~ F. >/ 

. . . .  fn Igrad (~e" (u)) lpdx ~ constlim 

constf  I grad(Iu 
2 

[Z-Tsgnu ) IPdx. 
3 D 

We now have from f = u + 2 A p u  that 
2 

2 
}1/]] p Jl lu]2-Tsg nu II @ ~> ( lu)P- lsgnu, f )  = 

2 ( p - - l )  

(]u IP-Zsgnu,u) -F 2( [u ]p-lsgnu,Apu) ~ (3) 
2 ?2 2 

I[ [u [2-Tsgnu [I z(J,~-,~,~ 4- 2const I] grad( lu [Z-Tsgnu) [[ 5, 
g ( p - - I )  

1 1 where ~ - + ~ r = l .  This gives 

2 2 ( / , ?  1 ) 2 II Iul z 7sgnu II, ~< [[ [ul~-Tsgnu[[2'~Y')~ I l f l l , ~<cons t  
2 ( p - - l )  

in view of the fact that p < ) (  1) when ~-@-~<p<2 for N ) I .  Again from (3) ,we have 

2 2 
II grad( lu I z 7sgnu) I[ p~const. Hence {f} bounded in Lr([2) implies that {lu IZ-Tsgnu} is 

bounded in WI'p(~). 

.__/_2_ 
We notice that W~'P(~) '--~'--*- z~2(p-~)(g2) when N ~ 2  by Lemma 1. 2 and W]'P(g2) 

2 
"-~"--" C~(~)  when N = I  by Lemma 1. 1,hence {lu IZ-Tsgnu} is relatively compact in 

Lz(~-l) (/?). This gives that {u} is relatively compact in L*(/~) since the Nemytskii mapping 

_/__ 
uEL2(p-I) (~)--~ lu I ~(p(~)sgnuQL~(~) is continuous. 

Remark 2.2. Lemma 2.6 is a new result compared with those in [1-5] since the solution of 

2N 
Eq. (1) to be found in this paper is in Lr(g2),where ~ - @ - ~ < p < + o o  and N ) I .  

2N 
Remark 2.3. Since ~r(u+a)=q)r (u )  for any u~W~'~(~)  and aQC',;~([2),where ~-@--f< 

p < + c ~  and N ~ I ,  we have f Q A r u  that implies f=Bpu  in the sense of distributions. 
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2N 
Propos i t ion  2.2.  Let  f E L P ( O )  and uELP(g2) be such that  f E A p u , w h e r e  -N- -~%p%-t -oo  

for N ~ I .  Then 

(a)  - : Z ~ p u + l u ( x ) [ P - 2 u ( x ) = f ( x ) ,  a .e .  x E ~ ,  

2N 
(b)  - - ( u ,  I V u l P - ~ u ) E f l ~ ( u ( x ) ) , a . e .  x E P , f o r  ~ p ~ + ~  and N ~ I .  

Proof .  (a)  Similar to the proof of Proposi t ion 2.2 in [-5], the result  of (a) is true. 

(b) We' l l  prove it under the additional condition I fl~ ( u )  I ~ a  I u I p 4 + b ( x ) , w h e r e  

1 1 b(x)  E L p' (P) -fi , q-~-T=l  and a E R .  Refer to the result of [-9] for the general case. 

N o w , f r o m  ( a ) , f 6 A p u  implies that  f ( x ) = - - - @ u +  l u (x ) IP-Zu(x)GLP(Y2) .  By using 

Green ' s  F o r m u l a , w e  have for any vEWI'P(g2) that  

f (u' l V u l P - Z V u ) v l r d I ' ( x )  = o div(I Vul'-2Vu)vdx + f ~ ( ' V u l p - Z V u ' V v ) d x "  

Then (Id, ]~TU I P--2~TU 1 , 1 -- E W - 7  "p ( N ) =  (W~'P(P))  " ,where  WT"P(P) is the space of traces 

of WI'P(g2). 

1 1 
Now let the mapping B , L P ( I ' ) - - ~ L P ' ( I ~ ) , ~ q - ~ r = I , b e  defined by B u = g ( x ) , f o r  any 

u E L p ( F ) , w h e r e  g ( x )  = / 3 ~ ( u  ( x ) )  a. e. on _P. Clear ly,  B = a ~  where ~ ( u )  = 

f % ( u ( x )  a p rope r , convex  on (_P). Now ) d F ( x )  is a n d  lower-semi-cont inuous function L ~ 
P 

define the mapping K : W 1 'p (12)---~L p (/-') by K (v)  = v I r for any v E W 1 'p ( ~ ) .  Then  K ~ B K  : 

WI'P(I2)---~(WI"P(12)) " is maximal monotone since both K , B  are continuous. F ina l ly , fo r  

any u , r E  WI'P(O) ,we have 

~ ( K v )  ~ ( K u )  

f , d A u  l a x )  ) (v  I ~ ( x )  - u I ~ ( x ) ) d / ' ( x )  = 

( B K u , K v  -- K u )  = ( K * B K u , v  -- u). 

Hence we get K ~ BK~Oqbp and so K ~ B K =  OcIop. T h e r e f o r e , w e  have - - ( u ,  ]Vu lP-ZVu ) E  

/3x(u(x))  ,a. e. on F. 

2N 
Remark  2.4.  I f / 3 , ~ 0  for any x E F , t h e n  O~p(u)-~O for V uEWl"P(g2) ,where  ~ < p %  

+ o o  and N ~ I .  

I 2N Propos i t ion  2.3.  I f / g x ~ 0  for any x E F ,  then { f  ~ LP(O) I a f d x  = 0} C R(Ap)  for N- t -~  

% p % + c ~  and N ~ I .  

Proof .  We can easily know that  R ( B p ) =  (W"P(g2))"  in view of Lemma 2.3. Note that  for 

with 3 fa " f d x =  O, the linear function u E W" ' (g2 )  --- J f a f u d x i s  an element of J 6 L ' ( ~ )  a n y  
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(WI"P(g2)) " . So there exists uEWI"P(I2) such that 

fafvdx = fa< I Vulp  Vu,Vv)dx + falul,-Zuvdx 
for any v E W I ' P ( O ) ,  thus f=Apu from Remark 2.4. 

D e f i n i t i o n  2 . 3 .  CT:For t E R , x E  F , l e t  /9 0 ( t )E/9~( t )  be the element with least absolute value 

if f l ~ ( t ) ~  and /9~(t)= + c o , w h e r e  t > 0  or <0 , r e spec t i ve ly , i n  case /9 , ( t )  =q~. Final ly , le t  

/9i ( x )  = lira . . . . . .  fl~ ( t )  (in the extended sense) for x E P. /9, ( x )  defines measurable 

functions on _/",in view of our assumptions on/9, .  

P r o p o s i t i o n  2.4.  Let f E L P ( s  such that 

fr/9 ( x ) d F ( x ) <  fafdx < f /9. (x)dF(x),  (4) 

2N 
where ~ < p < q - c ~ . o  and N ~ I  , then fEintR(Ap).  

Proof.  Let f E L P ( I ' 2 )  and satisfy ( 4 ) , b y  Proposition 2. 1 , there  exists u. ELP(K2) such 

that ,for any n ~ l , f = l u , , + A p u , , .  In the same reason as that of Proposition 3.4 in [ 7 ] , w e  
n 

only need to prove II u,, il p 4 c o n s t , V  n ~ l .  

u .  , let Indeed,suppose to the contrary that 1 4  il u. I ! F ~ c o , a s  n---~co, with v.---- ii u. [[ p 

" R---~R be defined by ~b(t)= It IP,O~b:R---~R be its subdifferential and for ,u>O,O~b. �9 R--'~ 

R denote the Yosida-approximation of O~b. Also let 0. " R---~R denote the indefinite integral 
; 1 

of [(O~b,,) ]7 with 0 . ( 0 )  = O , s o  that (0 ' . )  p :  ( a~ . ) ' .  In view of Calvert and Guptal rJ ,we 

have 

(a~b,,(v,,).acI)p(u,,)) > frfl . ,((1 -]- .uS~b)-')(u,, r ( x ) ) )  X a~. (v .  I v ( x ) ) d r ( x )  > 0. (5) 

Now multiplying the equation f=lu.-]-Apu,, by 8~b.(v.,),we get 
1l 

(Or --- (c3r + (O~b,,(v,,),Bpu,,) + (8~b.(v,,),&ar~p(u,,)). 
n 

Since c3,tbp(0)=0,it follows that (c~O.(v,,) ,u,,)~O. Also,we can know 

fa 2 fa " - z  a 
(ao.(v, ,) .B,u, ,)  = <lvu,  l '  Vu,,.Vv,,>(ao.)'(v.)dx + lu., u. ~(v . )dx>~ 

I u,, II N - ' [  J grad(O.(v,,))I'dx. 

Then we get from (5 ) .  
g 

II . .  II ~ 'in Igrad(0.(v,,))IPdx + 

i t/9.,((1 + t~3~b)-'(u,,Ir(x) ) ) • a~b.(v,,[r(x) )dl'(x) 4 

(cOg, (v,,) , f ) .  
Since ]c3#,,(t)141cq~b(t)l for any t E R  and , u ~ 0 , w e  see from il v,, IIp 

(6) 

= 1  for n ~ l  that 
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l] O~b,,(v,,) ]l p,~_C for r  C is a constant which does not depend on n or /1 and 

1 + ~ ,  = 1 .  
p 

From (6) we have 

f I] u~C nlgrad(0,,(vn)) ]Pdx ~< ]] $-1 for/~ > 0 and n ~ 1. (7) 

Now we easily know (O~)P=(O~b~)'--~(O~b) ' as /1--~0 a.e .  on R. 

Letting/~--~0,from Fatou 's  lemma and (7) we get 

; 2 rl a ]grad( Iv, ] Z-Tsgn%)]Pdx ~ II ~-1. (8) 

g 
From (8) we know ]v, lZ-Tsgnv,--~k. (a constant)  in Le(O),as n--~q-oc. 
Next we'll  show that k:/:0 is in Le(g2) in two aspects. 

(i) If p ) 2 , s i n c e  [1 ]v,, z 2 [Z-7sgnv, lip = II v, I1 2ze 72~.~ --~ II v,, I1 ;--~ = 1  ,it follows that k:~0 

in LP(~)  

2N z 2 2-! e 
(ii) if ~ - i < P % 2 ,  I[ Iv, I z 7sgnv~ II ~= Ir ~,o I[ =~ 2-72 ~ II v,, I1 e e = l , t h e n  { Iv,[z-7 �9 

sgnv,} is bounded in WI'P(aQ). By Lemma 1.1,Wt'e(g2) '---'--- Cu(~)  when N = I  and W I'p 

pg 2 
(22)'---'--- L ~ ( Y 2 )  by Lemma 1.2 when N ~ 2 .  So {Iv,, [ z 7sgnv~} is relatively compact 

pZ 
in L2~=i5-1~ (s Then there exists a subsequence of {Iv,, 12--~sgnvn} ,which for simplicity,we 

2 z 
denote by {Iv,, IZ-Tsgnv,} ,satifying Iv,, 12-Tsgnv.--'g in L2(p-,)(g2). By noticing that p ~  

p2 2N 
when ~ - ~ % p % 2  for N ~ l , i t  follows that k=g a.e.  on ~ . N o w ,  

2 ( p - - l )  

1 = II ~,~ II ~ = al  I~,,I ~ 7sgnv,,]z(e-~mx~ 

const( J I1~,, : ~ 2 _ .  ' '  IZ-Tsgnv~ -- glz(,-lmx + const II g II ~'P-~ p2 , 
O 2(p--l) 

and it follows that g:/=0 in LP(O) and k=/=0 in Le(O) .  Assuming now k > 0 , w e  see from 

(6 ) ,  

'v/9~ ((1 q- /~O~b)-~(u,, I t ( x ) ) )  X 0~bu(v,, I F ( x ) ) d F ( x )  ~< (O~,(v,,) , f ) .  

Choosing a subsequence such that u,, Ir(a:)--~q-oo a.e.  on P ,  and letting n--~+oo,we have 

O[/~+ (x )d / ' ( :~ )~<  OCfff(:r)dx' which is a contradiction with (4). Similarly,if  k < 0 , i t  also 

leads to a contradiction. Thus fEintR(Ap).  
Theorem 2. 1. Let fELP(g2) be such that 

fc fl_ (x)dF(J) + fag_ (x)dx % fa f (x )dx  % J'cfl ~ (x)dF(x) + fag§ ( x ) d x ,  

2N 
then Eq. (1) has a solution in L/'(g2),where N ~ % p % + o o  and N ~ I .  
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Proof .  Let Ap �9 L P ( J ~ ) - ~ 2  Lp~m be the m-accretive opera tor  defined in Def. 2. 2 and B, : 

LP(O)-~LP(F2) be given by ( B , u ) ( x ) = g i ( x , u ( x ) )  as those in Lemma 2.1 ,for xEg2  and i 

= 1 , 2 .  By Lemma 1.4  and Lemma 2. 1,B1 satisfies Condition ( ~ ) and B2 satisfies ( 2 ) ,  

respectively. By Lemma 1 . 3 , t h e  duality mapping Jp : L p (E2)--~L p' (f2) satisfies Condition 

(I) .  

It then suffices to show that  f E R ( A p + B x + B z )  in view of Proposit ion 2. 2 which 

would be implied by f E i n t [ R ( A p ) + R ( B 1 ) ]  in view of Theorem 1.1. 

Next  we will check that  the conditions of T h e o r e m 1 . 1  are verified. 

F i r s t , w e  will prove that  Ap+B1 is boundedly- inversely-compact .  

In fac t ,we  only need to prove that  if w E A p u + B ~ u  with {w} and {u} being bounded 

in LP(12), then {u} is relatively compact in LP(g2). Now we discuss it in two aspects:  

(i) if p ~ 2 , s i n c e  

f I ~TulPdx ~ (u ,Bpu)  = (u,Apu) -- ( u , O ~ , ( u ) )  ~< 

(u ,A ,u )  + (U,BlU) = ( u , w )  ~ II u II p II w II p' ~ const ,  

1 + ~ ,  = 1 .  Then {u} is relatively it follows that {u} is bounded in W l'e ( O ) ,  where P 

compact  in Le(s since WI'P(g2) ' -~ ' ---  LP(f2) ; 

2N 
( i i )  if ~ @ - ~ % p % 2 , f r o m  the above fact that  w E A e u + B l u  with {w} and {u} being 

bounded in L P ( f 2 ) , w e  have W--BlUE A~u with {W--BlU} and {u} being bounded in 

LP(g2), which gives that  {u} is relatively compact  in L P ( I ] )  since Ap is m-accretive by 

Proposit ion 2.1 and has a compact  resolvent by Lemma2 .6 .  

By using the similar methods for the proof of the result in [-3], the other conditions of 

Theorem 1. 1 are also satisfied. Fur the rmore ,  as in the proof of the result  in [ 3 ] ,  by 

dividing it into two cases and using Proposit ion 2. 3 and 2 . 4 , w e  also have f E  i n t [ R ( A p ) +  

R(B1)-]. 

Remark  2.5.  From the proof  of Theorem 2.1 ,we can see that Lemma 2. 6 is the key step to 

2N 
prove that  Ap+B~ is boundedly- inversely-compact  when -~ - -~%p%2.  
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