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RESEARCH ON THE EXISTENCE OF SOLUTION OF
EQUATION INVOLVING p-LAPLACIAN OPERATOR

Wei Li***  Zhou Haiyun®

Abstract. By using the perturbation theories on sums of ranges for nonlinear accretive mappings

of Calvert and Gupta (1978), the abstract result on the existence of a solution « € L? (2) to

<p<—+ooand N1

nonlinear equations involving p-Laplacian operator A,, where

N-H

denotes the dimension of RY,is studied. The equation discussed and the methods shown in the
paper are continuation and complement to the corresponding results of Li and Zhen’s previous

papers. To obtain the result,some new techniques are used.

§ 1 Introduction and preliminary

Since p-Laplacian operator A, with p72 arises from a variety of physical phenomena
such as non-Newtonian fluids,reaction-diffusion problems and petroleum extraction,etc. it
becomes a very popular topic in mathematical fields. We have already studied it in different

aspects{’, In this paper,the following Eq. (1) will be discussed:for a given f€ L* (),

find « € L*(§2) ,where 55—=<{p<+o0 and N>1 such that

N+1
— A+ Ju(@) | u(x) + g(x,ulx)) = f(x),a.e.on {2,
— W, | Vul|? iV u) € B.(u(x)),a.e.on T, (D

where A,u=div(|Vu |’ *Vu) is the p-Laplacian operator, |Vu |?~*Vu is understood to be
zero if Vu=0 and v denotes the exterior normal derivative of I". More details on Eq. (1)will

be given in § 2.

Now let X be a real Banach space with a strictly convex dual space X*. We use —
and w-lim to denote the strong and weak convergence,respectively. For any subset G of X,
we denote by intG its interior and G its closure,respectively. Let X «=<= Y denote that

space X is embedded compactly in space Y. A mapping T : D(T)=X—>X" is said to be
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hemi-continuous on X if w-lim,., T (x+¢ty)=Tx,for any x,yE X. Let J denote the duality

mapping from X into 2% defined by

J@y={feX iz, D=zl - I £ NS = l=xl}.x€X,
where {( + , ¢ ) denotes the generalized duality pairing between X and X *. It is well-known
that J is a single-valued mapping since X * is strictly convex.

Let A : X— 2% be a given multi-valued mapping. We say that A is boundedly-
inversely-compact if for any pair of bounded subsets G and G’ of X ,the subset G A7 (G")
is relatively compact in X. The mapping A ¢+ X—2%is said to be accretive if ((v;—w,),J (4,
—u,)) 20 for any «,€ D(A) and v; € Au,,i=1,2. The accretive mapping A is said to be m-
accretive if R(J+AA) =X for some A>>0.

Let B : X—2% be a given multi-valued mapping. The graph of B,G(B),is defined by
GB)={[u,w]|u€D(B),wE Bu}. Then B : X—2% is said to be monotone if G(B) is a
monotone subset of X X X" in the sense that (u;—u,,w,—w,;) =0 for any [u;,w, |E G(B),
{=1,2. The monotone operator B is said to be maximal monotone if G(B) is maximal
among all monotone subsets of X X X" in the sense of inclusion. The mapping B is said to

be coercive if lim,,»M)M:OO for all [x.,x,; ]€ G(B) such that
[EN

lim, .o | 2, | =+o0.

Next,we give some concepts and well-known results for the needs in the sequel.
Definition 1. 1. The duality mapping J : X—2% is said to satisfy Condition(I) if there
exists a function 7 : X—[0,+o0) such that

| Jou — Jo || < 9(u — v),for ¥V u,v € X. (D
Definition 1. 2. Let A ¢ X— 2" be an accretive mapping and J : X—X" be a duality
mapping. We say that A satisfies Condition ( * ) if ,for any fE R(A) and a € D(A) ,there

exists a constant C(a,f) such that

(v — fydJuw—a)) =Cla,f), forany u € D(A),v € Au. (%)
Lemma 1. 1. "' Let £ be a bounded conical domain in R". If mp>N,then W™/ (2) ——
Cy (D).
Np

Lemma 1. 2. Let £2 be a bounded conical domain in R". If 0<mp<{N and ¢,=

Y

N—mp
then W™ (2) —<— Li(£2),where 1< qg<q.

Lemma 1. 3. Let X=L’(£) and 2 be a bounded domain in R¥. For 2<p< -+ oo,the
duality mapping J, : L’ (2)—L" (2) defined by J,u=|u|" 'sgnu || u || " for u€ L (),

satisfies Condition (1);for N?_’A_Il < p<2 and N=1,the duality mapping J, :+ L"(2)—
L” () defined by J,u= |u|’ 'sgnu,for u€ L’ () ,satisfies Condition (I),where %%—%:

L.
Lemma 1. 4. "Let 2 be a bounded domain in R and g+ 2 XR—R be a function satisfying
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Caratheodory’s conditions such that

(i) g(z, * ) is monotonically increasing on R;

(ii)the mapping «u € L* () —>g(zx,ulx)) € L?(2) is well defined, where
+co and N>=1.

2N
N——+1<p<

Let J, : L*UD—=L" (D), » —f—p——l,be the duality mapping defined by

; {u/’_lsgnu, ifNZﬁl<P<2
U =
" isgna w5, if 2 p <+ oo

for u€ L?(£2). Then the mapping B + L*({)-—>L?(£2) defined by (Bu)(x)=g(x,u(x)) for
any x € £2 satisfies Condition( * ).
Theorem 1. 1."'Let X be a real Banach space with a strictly convex dual X*.Let J : X—
X" be a duality mapping on X satisfying Condition (I). Let A, B, + X— 2% be accretive
mappings such that

(i) both A, B, satisfy Condition ( % ),or D(AYCD(B,) and B, satisfy Condition ( % ),

(i1) A+ B, is m-accretive and boundedly-inversely-compact.

If B, : X—X be a bounded continuous mapping such that,for any y& X, there is a
constant C(y) satisfying (B,(u+73),Ju)=—C(y) for any « € X. Then

(a) [RCAY+R(B)]JCR(A+B,+B,).

(b) int[R(AY+R(B,)JCintR(A+B,+B,).

§ 2 Main results

Let {2 be a bounded conical domain of a Euclidean space RY(N>>1) with its boundary
'€ C'®¥,and suppose that Green’s Formula is available. Let | ¢« | denote the Euclidean
norm in RY, (¢, » Ythe Euclidean inner-product and v the exterior normal derivative of I'.

Let ¢+ I'XR—R be a given function such that,for each x€I",

(i) ¢. =¢(x, » )+ R—>R is a proper, convex, lower-semicontinuous function with
©.(0)=0

(i) ,81 9¢, ( : subdifferential of ¢,) is maximal monotone mapping on R with 0 €&
B3.(0) and for each t € R,the function x & I'>=(I+A8.) "' (¢) €R is measurable for A>0.

Let g : 2XR—R be a given function satis{ying Caratheodory’s conditions such that

for

N+1 ,» the mapping ¥ € L*({2)—>g(x,u(x)) € L (2) is defined.

Further, suppose that there is a function T (x) € L’ (£2) such that g(x.,t)¢==>0 for |t]| =
T(x),x€ .

In this section we study the following nonlinear boundary value problem:given f¢&

—-N———<p<+oo and N>=1,such that

» »
L (.Q),fmd uEL (.Q),where N 1
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— A+ |u(@) [T u(x) + gla,u(x)) = f(x), a.e.on(?
— | Vu |77V y) € B.(ulx)), a.e.on I, (1

Definition 2. 1. " Define g, () =lim inf,.,..g(z,¢) and g_ (z) =lim sup,._..g (z,2).
Further,define a function g, + 2XR—R by
(infog(x,s)) A ¢ —T@)), VYVez=T&),
gi(x,t) =<0, Vi€ [—T),T)],
(sup,c.g(x,sD V ¢+ T(x)), YVi<—T(x).
Then ¥V € 2,g,(x,¢) is increasing in 7 and lim,.;..g,(x,¢) =g, (x). Moreover,g; + 2XR
—> R satisfies Caratheodory’s conditions and the functions g. {(x) are measurable on .
And,if gz(x,z)Zg(x,t)—gl(;r,t) then g,(x,t)t=0 for || =T (x), € Q.

Lemma 2. 1. " For 5=—<(p<+oo and N>>1,define the mapping B, : L*(2)—~L*(2) by

N+1
Bu)x)=g (x,ulx)),for ¥ u € L7 () and x € 2,then B, is a bounded,continuous and

m-accretive mapping. Also define B, : L*(2)—L"(2) by (B,u)(x)=g,(x,u(x)),where
g:.(x.t)=g(x,t)—g,(x,t),then B, satisfies the inequality

(B (u + y),J,u) =2— C(y) (2)
for any u,y€ L’(),where C(y) is a constant depending on y and J, : L*(£2)—~L" (2)
denotes the duality mapping,where ;—}-; 1.

Lemma 2. 2. ') Define the mapping @, : W'*(@2)—R by @,(x) = J @.(u | r(x)Al(x) s for

any u EW'"(2) ,where s5——=<p<+oo for N2=1. Then @, is a proper,convex and lower-

N+1

semi-continuous mapping on W' ().

Lemma 2. 3. Define the mapping B, : W' ({2)—> (W' (2))" ,{or N
N?l,by

+1<p<+00 and

(v,Bu) = j | Vul|”*Vu,Vo)de + J lu(x) | () v(x)dr
a a

for any u,v € W"” (). Then B, is everywhere defined, monotone, hemi-continuous and
coercive.

Proof. This result is a special case of Lemma 2.1 in [4].

Definition 2. 2. Define 2 mapping A, : LN )—>2"? where A%]_}\_/-I<P<+OO for N>=1 as
follows ;
D(A,)={u€ L"(£2) |there exists an f€ L"(£2) such that f€ B,u+0®,(u)}.

For u€ D(A,)\let Aju={f€ L' ()| f€B,u+0P,(w)}.

Lemma 2. 4. The mapping A, + L’ (§)—~>2""? for ]\%j\_,l<p<+00 and N>=1, is accretive.

Proof. We will prove this lemma in two cases.
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Case 1. If p=>2,the duality mapping J, : L*(§2)—L" (2) is defined by J,u=|u|?""

sgnu || u || 277 for « € L?(£2) ,where %—%—1%:1. It suffices to prove that for any w, € D(A,)

and v,€ A,u,»1=1,2,
(v — v,y —4,)) 20

Then it leaves us to prove that both

Cluy — uy [P tsgnuy — ws) | uy —w, || 277, Buy — Byuy) 220
and

luy—uy |* 7 'sgnCuy—uy) | uy—uz | 377,09, (w,) —0®P,(u,) ) =0 are available.
Now take for a constant £>0,% : R—>R is defined by % (z) =G A&V (—k)|* 'sgnt.
Then ¥ is monotone, Lipschitz with ¥,(0)=0 and ¥', is continuous except at finitely many
points on R. This gives
(luy — up|* 7 'sgnluy, — up) | uy — uy || 577,09, (u)) — 0P, (uy)) =

kETm Moy — wp | 277 (X Cety — ) 3P, () — 0D, (1)) =0

and

(luy — u, |77 sgn(uy — uy) || u, — u || i_P’Bpul — Bu,) =

ey = e | 57 lim [ (Va2 = | V|72 Vit Vit = Vi) sty — wddl +

|, — u, || i_an( Loy |77 %0, — lug | "7 %uy) lu, — u,|""'sgn(u; — uy)dx = 0.
The last inequality is available since ¥, is monotone and ¥,(0)=0.

Case 2. If —+—<p<C2 and N>1,the duality mapping J, : L*(2)—L* (£2) is defined

N+1

by J,u=|u{’"'sgnu for u € L”({2) and l~}-l,=1 It suffices to prove that for any u, €

p P
D(A,) and v,i€ Au;si=1,2,
(v — vgyd J(uy —uy)) 20
Now ,we define the function ¥, : R—=R by

|t|*"'sgnt, if |t] =
X.(2) =

p—2

LV, i<

n

> 1)
n
1
n

Then ¥, is monotone,Lipschitz with ¥,(0)=0 and }', is continuous except at finitely many
points on R. So (X, (u;—u,) 0D, (u,) — 0D, (u;) ) =0.
Then,for «; € D(A,) ,v.€ Aui»i=1,2,we have
(v, — vy d (g — uy)) = (luy — uy |"7'sgnuy — uy) s Byuy, — Bu,) +
Cluy — wy | 'sgn(uy — ), 0@, (u,) — P, (uy)) =
(lu, — u, | " 'sgnu, — uy) s Byuy — Byuy) + lim, oo (X, (uy — u,),09P,(u,) — 0P, (1)) =0

This completes the proof.
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Remark 2. 1. Since the methods in [1-5] cannot be used to show that A, : L?(2)—2" is

accretive,a new method and some new techniques are applied in Lemma 2. 4.

Lemma 2. 5. The mapping A, : L’ (Q2)—>2"? for 5= <p<<+oo and N>1, satisfies

N—{—l
R(I+2AA,)=L"(2),for any A>0.

Proof. First, define the mapping I, : W' (2) — (W' (2))" by I,u =u and (v,

L) vt reon* xwiray = (v, ud 2 for u,v €W (§2), where N?——ili<p<+oo for N>=1 and

(+ 4 * );2q denotes the inner product of L?(£2). Then from Lemma 2. 3 in [4],we know

that 1, is everywhere defined ,monotone and hemi-continuous.

Secondly, for any A>>0,define the mapping Ty s Wor(@)—=2%" " by Tyu=1Iu-+

AB,u-+3®,(u) ,for u € W' () ,where 77=<p<+occ and N==1. Then T, is maximal,

N+1
monotone and coercive,so it follows that R(T,)=(W"?{{2))" for any A>0.

Next ,noticing the following facts:

if p>2.then W' (DCL (D CTL (DS W (D))" where +/7= ;
if I\?i\{l<p<2,smce W' (Q) == L () when N2 by Lemma 1. 2,and W' ()
=t Cy(f]) when N=1 by Lemma 1. 1,we have

W () C LY (@) C LA () C (W ()" ,where }1; T ;% =1

So for any f€ L&) ,there exists « € W""(£2) such that
f=Tw=1u-+ AB,u + 23®,(«) = u -+ AB,u + A0®,(u).
From the definition of A,,it follows that R(J+AA4,)=L*{§2).for ¥ A>>0.

—N<p<+00 and N=1 is m-

.. . 2
Proposition 2. 1. The mapping 4, : L" (2)—2Y, for NI1

accretive.

Proof. In view of Lemmas 2. 4 and 2. 5,the result is available.

Lemma 2. 6. The mapping A4, * L*(€2)—>2"“Y has a compact resolvent for ]\%—_]:T<P<2
and N>=1.

Proof. Since A, is m-accretive by Proposition 2. 1,it suffices to prove that if «+2AA4,u=f(A
>0) and {f} is bounded in L?(£2),then {u} is relatively compact in L”(£2). Now define
functions X..§, : R=R by

[£|" " tsgnt,if |t] = gl

X.() =+ -
(—1—) £,if 2] <L,
n n

and
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¢t 4sgne,if |¢] >%,

-z
(-1—] Lol [t < -
n

n

£, =

Noticing that x’,,(t)z(p—l)x(]; ) X (&, ()", for lt1> ,where -—+—-*1 and ¥, (2)

= (&), for |t|<—=,we can know (¥,(x),d®,(u)) =0 for u € W"?(£2) since Y, is

monotone,Lipschitz Wlth X%.(0)=0 and ¥', is continuous except at finitely many points on
R. Then
(Je|*~'sgnu, Ap) = lim, .o (X, (@) y Aju) = lim, oo, (X, (@) , Byu) =

lim ,»mf [Vul?X, (u)dr+llm,,mj la |27 2y, (w)dx >

constlirn,,»wf |grad (&, (u)) [*dx >
fel

constfnfgrad( |u ['“%sgnu) [#dx.
We now have from f=wu+AA,u that
10 s | T2 > Culisgnu, £ =
(la|?"'sgnu,u) + A(lu|""'sgnu,A,u) = (3)

22 F/éﬁ -2 14
[| lee|* #sgnu || *%z" + Aconst || grad(|u|*"Fsgnu) | 4,
26e—=1)

where i—-{-%—l This gives
T
I e |> Fsgnu | 577 < || Ja|* Fsgnu Lk ”< I £, < const
. P <
in view of the fact that p<————2 =1 when N+1<p<2 for N>>1. Again from (3),we have

| grad( |u|27%sgnu) || ,<<const.Hence {f} bounded in L”(£2) implies that { lulz"%sgnu} is
bounded in W'*({2).

2
We notice that W'*(2) —~<— Lz»-D (2) when N>=2 by Lemma 1. 2 and W'/ (£2)

> C, ({2) when N=1 by Lemma 1. 1,hence {|u IZ'%sgnu} is relatively compact in
2
L7~ (£2). This gives that {«} is relatively compact in L?(£2) since the Nemytskil mapping

2
u€ LT ()~ ]ulz—ﬁagﬁsgnuel/’(ﬂ) is continuous.

Remark 2. 2. Lemma 2. 6 is a new result compared with those in [ 1-5] since the solution of

Eq. (1) to be found in this paper is in L”{£2),where -—=<p<{+oo and N>=>1.

N+1

Remark 2. 3. Since @,(u+a)=,(u) for any u EW'*(£2) and « € C; (§2) ,where N—z—i\%<

p<+oo and N=1, we have f€ A,u that implies f=B,u in the sense of distributions.
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Proposition 2. 2. Let f€ L”(2) and « € L*(2) be such that f€ A,u,where

for N>=1. Then
(@) —Autlulx) | 2ulx)=f(x), a.e.x€Q,

N+1<1’<+°o

(b) =, [Vul" Fu) € B.(u(x)) a.e. 7€ T for ———<p< +oo and N>=1.

N+1
Proof. (a) Similar to the proof of Proposition 2. 2 in [5],the result of (a) is true.

(b) We’ll prove it under the additional condition | B, (u) |<<alu |# 4+ & (x), where

b(x)E LY () ,%-}'1%:1 and a €R. Refer to the result of [9] for the general case.
Now,from (a),f€ A,u implies that f(x)=—A4,u~+ |u(x) |? 2ulx) € L*(2). By using

Green’s Formula,we have for any v € W7 () that

[ W | Va | #2 Yy | pd M () = j div(| Vu |7t Va)vdr + J (| Va2V Vo)dr.
r n n

Then — <, |Vu | " u) EW“%""(F)Z (W%"’(F))* ,where W%"’(F) is the space of traces

of Wh* ().

Now let the mapping B:L*(I')—L* (I'),— » +p1 1,be defined by Bu=g(x),for any

u € L’ (I'), where g (x) = B, (u (x)) a. e. on I'. Clearly, B = 0¥ where ¥(u) =
Lgo,(u(x))dl“(x) is a proper,convex and lower-semi-continuous function on L’ (I"). Now

define the mapping K : W'*(Q)—L?(I") by K(v)=v|rfor any vEW"*(£2). Then K* BK ;
W (2)— (W"*(0))" is maximal monotone since both K, B are continuous. Finally, for
any u,v€EW"?(2),we have

V(Kv) — T (Ku) = Jr[%(v\p(x)) — o (ul (@) Al () =

Jrﬂx(u‘r(ﬂr))(vh(x) — ulpeNdl(x) =
(BKu,Kv — Ku) = (K*BKu,v — u).
Hence we get K* BKCo@, and so K* BK=0®,. Therefore,we have — (v, [Vu|""WVu) &€
Bulx)),a.e.on I'.

Remark 2. 4. If 3,.=0 for any & I',then 0@, («)=0 for ¥ « € W"*({2) ,where ]\?—ifl<p<

+c0 and N2=1.
Proposition 2. 3. If 5,=0 for any €T, then {f € L’ (D) |Jnfdx = 0} C R(A,) for 75— N

< p<+oo and N=1.
Proof. We can easily know that R(B,)=(W""(§2))" in view of Lemma 2. 3. Note that for

+1

any f& L”(£2) with Jnfdx = 0, the linear function « € W"*({2) —>J fudxis an element of
el
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(W'2(02))". So there exists «€ W' (£2) such that
J Svdxr = J O Vul? 2Vu,Vuddr + j || 2uvdx
a 0 a

for any v€ W' (). thus f=A,u from Remark 2. 4.

Definition 2. 3. " -For t€R,z€ I',let B(¢) € B,(¢) be the element with least absolute value
if 3,(6)¥%#® and B5(¢) =+ oo,where t>>0 or <0,respectively,in case 8,(¢)=¢. Finally,let
By (x)=Ilim,....8%(¢t) (in the extended sense) for x € I'. f; (x) defines measurable

functions on I',in view of our assumptions on fS,.

Proposition 2. 4. Let f€ L?(2) such that
[ 8 @irew <] fie<| g, @drw, @
2N
N-+1
Proof. Let f€ L’ (2) and satisfy (4),by Proposition 2. 1, there exists u, € L?(£2) such

< p<{+co and N=1,then fE€IntR(A,).

where

that,for any n>=1 ,f=—711—u,,—f—A,u,,. In the same reason as that of Proposition 3.4 in [7],we

only need to prove | u, || ,<const,¥ n>>1.

Indeed,suppose to the contrary that 1<C i u, | ,—>oc,as n—>co, with 'u,.=”—.let

n”P

¢+ R—>R be defined by ¢(z)=1t|”,3¢:R—R be its subdifferential and for x>0,3¢, : R—
R denote the Yosida-approximation of 9¢. Also let 8, : R—R denote the indefinite integral

of [(89[),,)’:]% with 6,(0) =0,so0 that (§,)?=(3¢,) . In view of Calvert and Guptal’l, we

have

(0¢,(v,),0D,(u,)) = Jrﬂ_,.((l + p0¢) "), p(x))) X 3, (v,[r(x))d(x) = 0. (5)

Now multiplying the equation f= %u,,—{—/l,,u,, by 9¢,.(v,) .we get
(8¢, (v,),f) = (atl),,(v,,),%u,,) + (0¢,.(v,) . Bu,) + (B¢, (v,),0P,(x,)).
Since 9¢,(0)=0,it follows that (3¢,(v,) yu,)==0. Also,we can know

¢, (v,) Bu,) = j Vu,l? *Vu,,Vu,>(0¢,) (v,)dx + j |, " *u, ¢, (v,)dxr =
a a

b ou, |l ;_'j -grad (8,(v,)) |*dx.
0
Then we get from (5).

e, il 4 IL, |grad (8,(v,)) |*dx +

L/i,((l + 2O " (u, | r(x))) X B¢, (v, | r(x)dl(r) < (6)

CIRCBIAR
Since |3¢, (1) | < |8¢(s) ]| for any t ER and p>0,we see from | v, | ,=1 for n221 that
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| 8¢, (v, || »<<{C for p2>>0,where C is a constant which does not depend on » or x and

;+;=.

From (6) we have

f lgrad (8, (v,)) |"dx < for £ > 0 and n > 1. (7

[ || A
Now we easily know (8,)*=(3¢,.) —(9¢)" as x>0 a.e. on R.
Letting g#—0,from Fatou’s lemma and (7) we get

_ ¢
e 157

%sgnv,,—*k. (a constant) in L?(f2) ,as n—>-oo.

J‘n|grad(}v,,|2'%sgnv,,)|”d1< (8)

From (8) we know |v,|%”

Next we’ll show that 2740 is in L”{(£2) in two aspects.

27_

(i) U p=2,since || |v, | /’sgnv,, o=l vl 2p222 |l v, |5 » ——1,1t follows that 2%0
in L'

(i) if

;
2N 1 o1 Esgnon Il o= o |7 < | v | & =1,then {|v,|* 5

ZpZ

N+1
sgnv,} is bounded in W'?(£). By Lemma 1. 1,W"?(£2) =< Cyx({2) when N=1 and W"*

2
()~ LT T1(02) by Lemma 1.2 when N2>22.So {|v, sz%sgnv,,} is relatively compact
' 2
in L7#=1 (). Then there exists a subsequence of {|v, |2_%sgnvn} »which for simplicity,we

2 . 2 . £ ..
denote by {|v,|* »sgnv,},satifying |v, |* ssgnv,—>g in Lz»=D (£2). By noticing that p=<C
g g g

?* 2N .
= - . . ’
=D when N_'_1<p<2 for N>=1,it follows that k=g a.e. on . Now
2
L= llwll s = | 1w l* g, wonds <
n
2 4
constj | v, \“%Sgnv,, — glz—(pp—_ndx + const || g || *:7,
7] 20—

and it follows that g=0 in L?(£) and 2540 in L’ (£2). Assuming now 2>0,we see from
(6),

J B.((1 + #3) 7w, | 1(2))) X 3¢, (v, | (@) (x) < (B (w,), ).
Choosing a subsequence such that u, |r(z)—>-+cc a.e. on I', and letting n— oo, we have
J By (0dIMN(x) < Jnf(:r)dx, which is a contradiction with (4). Similarly,if £<C0,it also
r

leads to a contradiction. Thus f€ intR(A,).
Theorem 2. 1. Let /€ L7 (£2) be such that

Lﬂ, (x)dlM(x) + Lg_ (x)dx < Jnf(x)dx < Llﬁ ()dI'(x) + fﬂgu (x)dx,

then Eq. (1) has a solution in L”(£2) ,where < p<+oo and N=1.

2N
N+1
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Proof.Let A, : L’ (2)—>2"® be the m-accretive operator defined in Def. 2. 2 and B :
LA (D—>L?(2) be given by (Biu)(x)=g,(x,ulx)) as those in Lemma 2. 1,for x&€ 2 and {
=1,2. By Lemma 1.4 and Lemma 2. 1, B, satisfies Condition ( * ) and B, satisfies (2),
respectively. By Lemma 1. 3,the duality mapping J, ¢ L?{Q2)—L* () satisfies Condition
(1.

It then suffices to show that f€ R(A,+ B,+ B;) in view of Proposition 2. 2 which
would be implied by f€int[R(A,)+R(B,)] in view of Theorem 1. 1.

Next we will check that the conditions of Theoreml. 1 are verified.

First,we will prove that A,+ B, is boundedly-inversely-compact.

In fact,we only need to prove that if w&€ A,u-+B,u with {w} and {«} being bounded
in L?(£2) ,then {u«} is relatively compact in L?(£2). Now we discuss it in two aspects;

(i) if p=2,since
Jﬂl Vul|’de < (u,Bu) = (u,A,u) — (4,00, (u)) <

(u,Au) + u,Baw) = (u,w) < |ull, | wl , < const,
it follows that {«} is bounded in W** (£2), where %—}-1%: 1. Then {u} is relatively
compact in L?(£2) since W' (2) —<— L7 ({D);

(i) if Nz—i\_]—l<p<2,from the above fact that w&€ A,u+ Bu with {w} and {«} being
bounded in L’(£2), we have w— Biju € A,u with {w— Bju} and {«} being bounded in
L?(£2), which gives that {«} is relatively compact in L” (£2) since A, is m-accretive by
Proposition 2. 1 and has a compact resolvent by LLemma2. 6.

By using the similar methods for the proof of the result in [3],the other conditions of
Theorem 1. 1 are also satisfied. Furthermore, as in the proof of the result in [37], by
dividing it into two cases and using Proposition 2. 3 and 2. 4,we also have f€int[R(A,)+
R(BD].

Remark 2. 5. From the proof of Theorem 2. 1,we can see that Lemma 2. 6 is the key step to

2N

prove that A,+ B, is boundedly-inversely-compact when N+1<p<2.
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