ON GROWTH OF SOBOLEV NORMS
IN LINEAR SCHRODINGER EQUATIONS
WITH SMOOTH TIME DEPENDENT POTENTIAL

By

J. BOURGAIN

¢ Introduction

In this paper, we consider a linear Schrodinger equation of the form
0.1 iug + Au+V(z, thu=0

with periodic boundary conditions (i.e. z € T¢). Here V is a real potential, smooth
in z and ¢ and periodic in z. Thus we do not specify any further structure with
respect to the time dependence of V. Denote by S(t) the flowmap of (0.1). Clearly,
there is L2-conservation

0.2} 15(£)ell2 = [|ll2-

If ¢ € H(T9), s > 0, then S(t)¢ € H* for all time. The problem we are concerned
with is the growth (if any) of ||S()¢|| g+ for ¢ — oco. Simple considerations permit
us to bound ||S(¢)¢||g- by a power of ¢; thus

(0.3) 1S(®)gl|lg: < Ct*  fort— oo

(see Lemma 6.2 below). T. Spencer [S] observed that if we assume further that V' is
periodic in time, a much better bound holds. More precisely, let V be real analytic
and periodic in z and ¢ (with arbitrary, fixed periods). Then, for ¢ € H*(T¢),
1S(t)¢|l g grows at most like a power of logt for ¢ — oo. This fact holds in
any dimension. In [B1], we essentially extended the preceding to the case of a
potential V' = V(z,t) with quasi-periodic time dependence. We also produced
examples showing that those logarithmic estimates are necessary, even in the time
periodic case. Let us mention that the problem of growth of higher Sobolev norms
has also been considered in equations (0.1) where V = V{z,t) is assumed to have
certain random behaviour in time.
The main result of this paper is the following rather general
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316 J. BOURGAIN

Proposition 1. Consider (0.1) in arbitrary dimension d (periodic b.c.),
assuming V' is bounded, smooth in z and i, and periodic in x. Then, for all
§<00,e>0

0.4) 15l ae < Cest®lollme  fort — oo

This statement is surprising, since we do not make any specification on the time
dependence of V except smoothness. In fact, the proof is relatively simple and
based on ideas very similar to the time-periodic case. Observe that if we restrict ¢ to
a large time interval [0, T'], one may always replace V by a potential V; = Vy(z, t)
which is periodic in ¢, say with period 4T'. This permits us to consider specific
solutions of (0.1) (Bloch waves) of the form

0.5) u(z, t) = Pz, ),

where e*TF is an eigenvalue for the unitary operator S;(47") and ¢ is periodic in
z, 4T-periodic in ¢. Thus one may write

(0.6) Yz, t)= 3 D(n, k)Y,
n,kCZ

The main part of the argument then consists (as in [B1}) in estimating P (n, k) and
establishing a certain localization. It turns out that the methods as used in [B1] are
considerably less restrictive regarding certain specific properties of the potential
assumed in that paper. Proposition 1 leads to simpler proofs of the results from
[B1] for quasi-periodic potentials in time, although the conclusion is a bit weaker.
The proof of Proposition 1 for d = 1 occupies Sections 1-7. In Section 8, we
sketch the argument in arbitrary dimension d > 1. It turns out that the only basic
ingredients are the separation properties of the sequence of squares {n°} and, in
higher dimension, the “separated-cluster” structure of the set {(n, |n|?)|n € Z4}.

The second part of this work consists in obtaining estimates from below on
|S(t)$|| g for t — oo in a model (0.1) where V' = V(z,t) is analytic in = and has
a random behaviour, with restricted smoothness, in time. More precisely, we take
V of the form

(0.7) Viz,t) = Z[gj (W)e™® + g;w) e y;(1)

J
where {g; } are independent, complex, normalized Gaussians and {-y; } are disjointly
supported bump functions, satisfying

(0.8) sup ||yl z= < co.
J

We prove the following.
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Proposition 2. For an appropriate choice of {v;} in (0.7), satisfying (0.8),
one may ensure that

Am ) >0, almost surely

Jor any data ¢ € H*, ¢ # 0.

Again, the argument is simple. Letting « = S(t)¢, one has that

(0.10) dii( / [uz(t)|2dm) =2 m / V, T,

Restricting ¢ to a small interval [0, T], we may expand (0.10) as a power series in
V. The key point in the analysis is then the structure of the quadratic term.

Acknowledgment
As for [B1], these investigations were motivated by discussions with T. Spencer.

I. Proof of Proposition 1

1 Reduction to the periodic case with large period
Consider the equation
(1.0 g + Uge + V2, t)u=0

with periodic be.
Assume that V is real and smooth in z and ¢, and that

(1.1 [Vieo < 1.

Fix T large and consider the evolution for 0 <t < 7.
Take smooth ¢ such that
0<¢p<1
(1.2) p(t)=1 forlt|<T
p(ty=0 for|t| > 2T

and let

(1.3) Vilz,t) = > V(z,t +4T5)p(t + 4T5).
JEZ
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Thus
(1.4) Vi(z,t) =V(z,t) for0<t<T,
(1.5) Vi(z,t) = Vi(z, t + 4T).

Since V; is 2n-periodic in z and 4T -periodic in ¢

nEZ,kEZL
Also
(1.7 1628/ V1| < Claj+1a1-

Fix a large number M7 = M1 (T) > log T and let

(1.8) Va(z,t)= > Vi(n,k)elnat 59,
|m|< My
\kj<MLT
From (1.7),
1.9 Vi — Valloo < CaMi%(logT) < CuM[* forall a.

Observe that from (1.4), (1.1) is equivalent to
(1.10) Ty + Uge + Vi(z,)u =0
for0<e<T.

2 Bloch waves

Consider the equation

2.0 s + gy + Valz,t)u = 0.
Fix ng € Z,
(2.2) [ng| > M > (log T)'°

with M, to be specified.
Fix M3 and define

(2.3) B={neZ |n—-no| < Ms},
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24) Pgp = d(n)e™.

neB

Consider the IVP (ODE)

(2.5) {“"t + Wae + Pp[Va.w] =0,

w(0) = etro=,

Thus w = Pgw. Also, since

(2:5) 2Im (_w:l:a: - PB[Vz'lU], 'IU)
2.6) =2Im {{wy, w;) — (Vaw,w)} =0,
there is conservation of LZ-norm
1/2
@n el = (X omor) " =1
neB

Denote by S(t) the flowmap corresponding to

(2.8) Wi + Wy + Pu[Va.w] =0,
acting on
2.9) [e™®|n € B] = CBI.

Since V; is 4T -periodic, we have
2.10) S(t) = S(t —4T)S(4T) fort > 4T.

Thus, denoting (£,, E,) an orthonormal basis of eigenvectors for the unitary map
S(4T)

(2.11) S(4T)Eq = P&y,
we have
2.12) S(t)€a = e Fu (2, 1),

where 1, is 2m-periodic in z and 47T -periodic in t. {E, is specified up to a multiple
of 27.)
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Hence, writing in particular e,,, = e'"°®,

(2.13) €no = 3 _{€ng: Ealar

o

(2.12), (2.13) permit us to write

(2.14) Seny = Y. EH Y (x,t)
|Bot4ndT|<m
(2.15) = 7m0t N eifat g (x, 1),

where ¢/, ¥ are 2m-periodic in z, 4T-periodic in t,

= |Ea 9 T
(2.16) Bal = | 22 4n| < 2
and, by (2.7), for all ¢
(2.17) |I"7Za(t)“2 = |(enov ﬁa)l-

3 Fourier transform estimates

Fix o and denote 9, by 4. Thus ei(EB«~md)ty(z, t) satisfies (2.8).
Our next purpose is to get more information on b,

(3 1) 1/)(:13’ t) —_ Z ,J;(n’ k)ei(nm-}-gﬁ,’“—t) .

nepB
kEZ

Substituting (3.1) in (2.8) thus gives forn € B, k € Z

3.2) (n? = n2+ =k + Ba )(n. k) - Vagh(n, k) = 0.
: 0 2T o 3 H

Let A, B satisfy (cf. (2.2))

(3.3) 2M; < A< B< %|n0[

Then, by (2.16), it follows that for

34 AT < |k| < BT,

STA-1>4 ifn=mne

2 .2, T, i
(3.5 n n0+2Tk+Ea 5

T -
==k
|+ B




ON GROWTH OF SOBOLEV NORMS 321

and
(.6)  [n*-ni+ %k+Ea| > 2lng| — gB — 2> |ng| > 2B  ifn#mne.
Also, by (1.8)

neB
AT<|k|<BT
neB

1 4T 27!’
<= Va|?
[8T7r _A; /0 V2l
(A—M)T<|k|<(B+M1)T

< [Vall| ) B, 1) v

nch
(A—M)T<|k|<(B+M)T

1/2
a7y G c( v % (n, k)12> .

neB,(A—M1)T<|k|<(B+M1)T

- 1/2
Vb (n, k)lz)

N ‘ NG 1/2
Z P(n, k)elne+irt) dzdt]

From (3.2), (3.5)+(3.6), (3.7), it follows that

R 2 o R 1/2
2 2
6y | > donr] <S4 X B i)
AT<|k|<BT (A—M:)T<|k|<(B+M1)T

By ¢-fold iteration of (3.8), assuming say

(3.9 10gM; < |ngl,
we get
R 1/2 R 1/2
[ 3 w(n,k)P] <M;Q( T |¢(n,k)|2)
nEB nEB,k
2gM1T<|k|<%|no|T
1 AT o \ 1/2
— —qgy_
~u gz [ [ e e
(3.10) < MI(0)]l2

by L?-conservation (2.17).
Next, we establish some decay estimates for n away from ng. One has again
from (1.8)

(3.11)

( > Ve, k)lz) v < C( > ¥ (n, k)|2>1/2;

neB, [n—no|>gM; nEB,|n—ng|>(g—1)M;
|k|<}Ino|T |k|<(}Ino|+M1)T
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hence, by (3.6), (3.11),

(3.12)

N 1/2 C N 1/2
(X wewr) <= 0% Rwwr)
n€B,{n—no|>gM; 0 n€B,|n—ng|>(g—1)M;
[k|<}|no|T k| <(%|nol+M1)T
Iteration of (3.12), taking (3.9) into account, then implies

()" <5 (5 000)

neEB,|n—ng|>gMy nEBk
|k|<§Ino|T

(3.13) < o) ~92]|5(0) .

Also, by (3.6), for n # ng

(2, or) < ora)”

|k|< § Ino|T
c

< 2

< Tl l1%(0)1l=
(3.14) < Ino|7H*[[4(0) l2-
Assume
(3.15) 100M; < |no|To.
Then, for n € B, by (2.3),

1

(3.16) In —no| < Ms < T66|”°|%

and, if ¢ = [[2522l], necessarily (3.9) holds. Thus, from (3.13), (3.14), for n # n

-~ 1/2 L1 In—ng|
3.17) ( ) |¢(n,k)12) < no|"H0 ) 1p(0) .

k| <%Ino|T

It will also be useful to have a similar bound with respect to the L>°-norm. For
n # no fixed and |k| < £|no|T, the sequence

1
n2—-ng+2—"_,1—,k+1§'a

(3.18)

has multiplier norm on L*(dt) bounded by In%[
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Also, for |n — ng| > qM;

(3.19) Z @(n, k)e%r—Tk’t

k< |nol|T

<
Ly

Z J(n', k)ei%t

[k|<(f|no|+M1)T

Thus from (3.2), (3.20), we deduce that for |n — ng| > qM;

(3:20) (log [nolT)|[Valloo- M [

max
[n/—ng|>(g—1) M,

> dmbet) <)

(k1<% Imolr Ly 1Mo
3.21 < —1/2[ max b(n, k)etirt ]
(3.21) | omax S ke

Ikl <(Lpl+My)T
Iteration then again gives the bound

S (ke

k< lmo|T

In—ng]
< [no| T IR p(0)]|,  for m # no.
Lge

(3.22)

4 Localization
With 4 = 9, as above, define (cf. (3.1))
@1 Uo(z,t)= D> P(nk)elmtiey,

neB,|k|<}|no|T

Recall that ¢ satisfies the equation
“4.2) ity + Yoz + (ng — Ea)tb + Pa[Vay] = 0.
Write by (1.8)

(43) PB[Vz‘I'a] - [ Z @(n, k) ei(nz-}-%t)]
nEB,|k|<iino|T
SIPAT+| Y Tall(n,k) et
nEB,[k[<%|no|T
with
(44) \IJ;((L', t) = Z 12;("’1,, k)ei(nw+-2’%1’%t),
neB, (L|no|—M1)T<|k|<i|no|T
(45) \I/Z(.’L“’ t) = Z ,‘Z(n, k)ei(n:z:+§§’?.-t).

neB, (§no|-M1)T<|k|<(}|no|+M1)T

J
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Thus
e e 1/2
149l < 8ol | 3> (VT )P + Taaon )
neB,k
(2.3) R N 1/2
< C(MslnolT)”"‘( S (8, W) + [T, k)F))
neBk
(4.4)+(4.5) ~ 1/2
£ ety ) s 17 |
neB
(%InuI—Ml)T<|iI<(%l"01+M1)T
(3.10) _ 4 lnol
(4.6) <" C(MslnolT)M? My ™ 1% ||y(0)la.
Take in (2.2)
(4.7) My = M? + (log T)™°.
Thus the factor in (4.6) is
(48) < Ino,T1/2e—9]no|1/2 < 6_8’n°11/2
and
(4.9) 1(4:3)]lc0 < 781" |(0)] 2.

From (4.2), (4.9), we see that ¥,, satisfies (4.2) approximately, in the sense that
(4.10) Wy + ATy + (nd — Eo) ¥, + Pg[Va¥a] = O(e8mel" ||y (0)|])

where O( ) refers to the L*®-norm. Recall (2.17)

@11 1%(0)ll2 = [{eng, &a)l-
Define, cf. (2.14), (2.15),
(4.12) Fro(@ t) = 3" Bty (1),
(4.13) Fro(®,8) = e F, (z.¢).
Since
(4.14) > eno, €a)l < 1BM2len, || < 20572,
it follows from (4.10), (4.11) and (4.12) that
i84 frg + Afng + N3 fro + Po[Vafny] = O(e—8|no|1/2M31/2)

(4.15) < O(e_7|,"011/2)_
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Similarly

(4.16) 18y frg + A fug + PslVafng] = O™,

Since, by (2.8) and the integral equation

4.17 5 (S(2)eny) = €ny + 160" /é t =B PRlVa(7)S(T)en, )dT,
we have for |t| < ¢, ¢ a sufficiently small constant,

@18) (1= S Deng (m0)] < llem — €H(S(Weno)l2 < Ol < 15-

Consider a smooth bump function on R satisfying

4.19) 0<p<1,supp ¢ C [~
(4.20) / =1,
421 160V < Ce™"?

From (4.18), (4.20),
(4.22) ( / 3 S en, (no).tp(—t)dt' > %
From (2.15), (4.1), (4.12), (4.21), the left side of (4.22) gives
S [ 8 uta)sol-ty

> Ek:f;a(no, k)@({%,— + -ZLWEQ)

I

(4.23) < / f;(noﬁp(—t)dt‘+0(M3Te—%fno|‘/2)
4.24) = /ﬁo(no)eingtw(—t)dt +0(e_1"°ll/3)
(4.25) <o o)z +O(e™ ™).

1t]<e

Hence, from (4.22), (4.25),

(4.26) [ Faotmollzz.. > 5-
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Next, take n # no. From (4.12), (4.13), (4.1), (3.22), (4.11), (3.15),

1 e ()lloo < 3 1 Ta(m)loo

=

o

S aln k)i

|kj<3ino|T

(3.22) 14, In—ngl

2 g R0 22 >(Zn¢a(o>nz)
[ ]

(1 l2galy

o0

(4.11) 1
< B[ |ng| %

~a+el)

(4.27) < |ng

By (4.16), (4.26), (4.27) and normalizing, we may then clearly get from f,,, an
approximate solution f;, of (2.8),i.e.,

(4.28) i fh, + AfL + Pe[Vafi ] = O(e—7|no|1/2)

satisfying, for some lig| < ¢,

(4.29) fi (no)(to) = 1,

(4.30) | fno Go)lloo < 2,

(4.31) fr(n)=0 if|n—no| > Ms,

(4.32) 17 ()lloo < 3lnol RS for n £ mo.
Estimate

I1Ps[Vafn,) = Vafn,lloo

n X e

[n—n0|>M3 — M,

<(log M3)

o0

—— (4.32) 1M
@) <o) X Ile] ol
|[n—no!>Mz—M;
Taking also (1.9) into account, we see that (4.28) implies
M:
(4.34) 18,y + Afhy + Vifh, = 0™l 4 ng| 738 4 M),

where o > 0 is arbitrary.
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Recall (2.2), (3.15), (4.7):
M1 > ].OgT,
Ing| > Mz > (log T)1°,
10005 < l’noll/lo,
M,y = M? + (log T)'°.

Hence, letting

(4.35) My =T¢, Ms=M;, e=¢s),
we gt
(4.36) B fh, + AfL +Vifl, =O(T™) forall .

Also ng is assumed to satisfy
4.37) |ng| > 19,

where 6§ = 100e. The “O” in (4.36) depends on ¢,
Let S(t) denote the flowmap for the equation

iu; + Au+ Viu=0.

Then (4.35) and the integral equation imply for0 < ¢ < T

i

@38) 11200 - SObuallzerz < | [ swse) o ar|  <core,
0 L1

where

(4.39) bno (@) = £1(2,0)

It follows in particular from (4.18), (4.29), (4.30) and (4.38) that

1= [{ i t0), o)l > [ty t0), S(t0)ena)] = 35 > (S (t0)6rnas Sleoena)l — 25

3
= I<§n0’en0>| - _16
Thus, taking (4.31), (4.32) into account, we may ensure
(4.40) €no(m0) =1,
(4.41) [1€nolloo <2,
(4.42) £ny(n) =0 for n— ng| > Ms,

(4.43) o ()] < Blro| ¥ for 1 £ .
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5 H°-bounds (1)

Take ¢ such that
(5.1) p(n)=0 if|n| < T% or |n| > T4,
where A is a fixed large constant.

Define
(5.2) $1=  d(n)tn,

where {£n| |n| > T?} are obtained above.
From (4.40), (4.43), we have the approximation

16— éullas = (Zlmlzs 2)1/2
( |m|23< > 16(n)] |nlm) l)z)l/z
|z
1)

(Z g(n)(gn - e'n): em)

n#EmM

. — 241/2
rml”( 3 1B |nf~#O+ ‘)) ]
(5.

(-3 < Co T | ¢llne
Also, from (5.1), (4.42), (4.35),
(5.4) $i(n) =0 if|n| <T?® —T% or [n| > T4 + T,

which permits us to iterate approximation (5.2), (5.3).
Assume T sufficiently large (depending on ¢, 5, A).
Fix Ny to be specified.

Estimate for 0 <t < T

(% mes@amr)

|m|<Ng

(% e

{m|<No

s (X impe

|m|< Ng

)1/2 (4.38),(5.1)
<

3 8(n)3()En(m)?

2\ 1/2
) - O(NSTAP=g]L).

3 @(n) 74(t)(m)

Recalling (4.31), (4.35), we have
(5.6) fi)m)=0 iflm—n|>M;=T%.
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Thus, by (4.35), (5.4),
- b= ¥ B =0
|n|<4 Mg
Define for £ > 1
(5.8) be = > B(n)eime.
261 M3 < |n| <2442 M3

Estimate, taking (5.6) and (5.7) into account,

S 1/
5.9) o< Y | L ahmanm|)”
im|<2Mz n
(5.10) + 5@ M) ( > 3 de(n) £42)(m)
£>1 2 M3<|m|<2t+1 M3 ' n
(5.11) +O(NgT™*(|¢ll2)
<
61> ey Samne)|
£>1
(5.13) +O(NGT™*(|9ll2)
(4.38)
<
(5.14) > @MY || Y de(m)S()
221
(5.15) +O(NST™ “Il¢llz)
<
(5.16) > @ M) || Y pe(n)én
>1 n 2

(5.17) + O(N;T™%| 8ll2)-
Taking in (5.3) s = 0, it follows in particular that

(5.18) i < 2[|¢ll2-
Thus
(5.16) < Y (2" M3)* || el
&1
(5.19) e Iodlla-.

o1
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Since the range of £ < AlogT, by (5.1), it follows from the preceding that
(5.20) (5.5) < (Ca,slog T)||¢ll e + O(NGT~||¢]l2)

(5:21) "2 (s logT + NgT=) 611

Next estimate

1/2
(5.22) ( 3 lmlzsls’ﬁ\wmﬁ) -

{m|>Np

Denote by Q the (Fourier multiplier) operator
(5.23) QY= mip(n)e™,

where -y, is the multiplier

x‘ Yn=1
(5.24) | [ |

Coming back to the equation

(5.25) iy + Au+ Viu =0
and denoting
(5.26) L) = (Qu -,

we get (assuming s > 2 even)

fy = ZHQu)E)E = 2Re ((—A)'Qu, Qui)
= —2Im {(—A)*Qu, Q(V1v))
=21m ((—A)*/2Qu, (- A)*?Q(Viu))
s27) < [Qu(O)lm- I(~A)"2Q(Viu) - Vi(~A)"*Qula

From definition (5.24) of v, one clearly has
Cs
I(=2)?Q(Viu) — Vi (—A)"2Qull> < [[[Q, Villl llu(®)lla- + YV;HU(t)Hm

C,
(5.28) < —No—”u(t)“Hs.
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Substitute (5.28) in (5.27); it follows that
(5.29) ] < 217 lu ) ..
Ny

With u = S(t)¢, estimate (5.21) and the definition of v in (5.24) show that, for
0<t<LT,

(5.30) |(w — Qu)()l#= < [ClogT + NgT~%]|| 1| s
Hence
(531 [w@)|me < ()% + [Clog T + NST 11 2+,

and from (5.29)

(5:32) L] < T2 + (T + N T
Thus, for0 <t < T,

(5.33) L(8) < S+ NET) ol
provided Ny > C,T. Take

(5.34) No =T

From (5.33), we get in particular

(5.35) 1Qu)(O)llme < ll¢1llr- for0<t<T,
which, combined with (5.30), yields

(5.36) 1S@) 1l < CllogTH|p1llgs for0<t<T.

Invoking the approximation procedure (5.2), (5.3), (5.4), one may also derive
(using an iterative argument) that

(5.37) IS@@ll= < ClogT)|gllm= for0<t<T,

provided ¢ satisfies (5.1).

6 H*-bounds (2)

In this section, we estimate

IS@®)¢lla. (0<t<T),
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assuming that ¢ € H* satisfies
(6.1) $(n) =0 for|n| < T4
The following bound holds for ¢ € H® without further assumptions.

Lemma 6.2.

(6.2) S@)olla- < Cs(1+[2))* [l 2o

Proof. Assume that s is an even integer and define
(6.3) L) = IS5
Then, again writing u(z) = S(¢)¢, we have from the equation

|1 = 2/ Im ((—A)°w, Viw)|
= 2| Im ((~A)*%u, (~8)**Viu)|
6.4) < Cllu®)| = 1u®) | 7o

By interpolation, we have

(6.5) (@)l < @l lu@lie = 16ll3° lu@)ll".

Substituting (6.5) in (6.4), we get

(6.6) L] < Cyllglly T2 1/%,
6.7) L)% < ||gllHe + Callelly*t,
and hence (6.2).

For N; to be specified, let
(6.8) QY=Y mp(n)e™

with v = (v, ) the Fourier multiplier (cf. (5.14))

\J /_— V=1
(69) ] | J B

Let

(6.10) I(8) = 1(Qu)()I--
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From (5.29), (6.2), we get
(6.11) TARS %Hqﬁllm(l + [t L%

hence, for0 <t < T,

Ts+1
(6.12) 1Qu(t)lge = L(t)** < ||gllze + Call¢ll s N
Choose
(6.13) N > C, T,

it follows from (6.12) that, for 0 < ¢t < T,

(6.14) 1QS@)gllm- < 2||l 5=

Finally, estimate

(6.15) Q. SOl ze— 5o
Since
(6.16) (i, + 82 + V3)Qu = [V4, Qlu,

we get from the integral equation
Qu(t) = S@)IQu(O) +i | SOS(r) V(7). Qur)ar,

6.17) @, 5@)]4ll&re S/O IS®)S(r) " Va(7), Qlu(r) || e dr-

Thus, by (6.2) and a commutator estimate,

(6.17) < C, /; (1+)°(1+ T)"—]% ()| e dr

(6.18) < Co(1+ )% N Mgl g
Thus
3s+1
(6.19) (6.15) < ¢, AHOT
N,
Take

(6.20) A=10s
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in (6.1) and
6.21) Ny =T%,

Collecting estimates (6.14), (6.19), we obtain for < ¢t < T

(6.22) 188l = = 1St)Qelz- < 2¢ll &= + 1[Q, SN me < 3l 2=
provided
(6.23) pecH® and @(n)=0 for|n| < T,

7 H*-bounds (3)

From (5.37), (6.22), it follows that, if
(7.1 peH, ¢n)=0 forln|<T%,
then, for 0 < t < T,
(7.2) 1Sl rre < Clog T)lig|lzz--

We now conclude the proof.
Denote by S(t1, t2) the flowmap from ¢, to ¢5.
Let N = [T%] and

(7.3) Prp= ) $(n)e’™,
[n|EN

the restriction operator.
Write, for0 <t < T,

15(0, )8ll e < 115(0,8)(¢ — Prd)llu= + 11S(0, )( Py a=

(7.4) L el + 150, )Pyl
(7.6) +11S(1L, )P S(0, 1) Pyl -

Again from (7.2), (6.2),

(1.7) (7.5) < T¢||S(0,1) Pyl sz« < C,TN"||¢]l.-
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Iterating, we get an expression (r < t)

(7.8) 1S((r, ) PrS(r — 1,7)PgS(r — 2,7 — 1) --- P5:S(0,1) Pyl s <
(7.9) IS(r +1,0)(I — Pgr)S(r,r + 1)PS(r — 1,7) - - - Pir¢|| a1
(10)  +1IS(r+ L)PyS(rr + )Py Pyl

and, by (7.2), (6.2) and L?-conservation,

(7.9) <T°||S(r,r + 1)PxS(r — 1,7) - - P ;=
< CT*N°||PgS(r — 1,7) - - Pyl o
(7.11) < C,T*N°|| ).

Collecting previous estimates, we see that for 0 <t < 7T

IS@®)glla= < T)gllz= + CT N |9]l2
< T1+6+26S|I¢I|H"

(7.12) < T?||¢|| s,

taking ¢ = e(s) sufficiently small (6 = 100¢).
Interpolating with the L?-conservation

(7.13) 15(@)ll2 = lbll2,
one concludes that, for

(7.14) 0<s <s,
(7.15) 1Sl rer < T2 ||| zren

for 0 < ¢ < T and T sufficiently large (depending on s).
By (1.4), the same statement holds for the flowmap of the original equation
(1.0). Consequently,

(7.16) [1S@)¢llme: < Cop (1 + [E])* ||l s

for all s; and k > 0.

8 Dimensiond > 1

The same result may be obtained in arbitrary dimension d > 1 using a similar
approach. The main ingredient is the following well-known fact on separations in
the set {n, |n|?}, due to A. Granville and T. Spencer (cf. [B1]).
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Lemma 8.1. Fix
8.1) 0<p< 15
Then there is a partition of 72
(8.2) 7¢ =\ JQa
such that the following properties hold with
(83) %, = {(n,Inf?) :n € ).
Ifn € Q,, then
8.4) ' diam ), < [n|’.
Ifny € Qq, ne € Qg and o # (B, then
(8.5) Iny —ng| + | [n1[* = |naf?| > |
Jor some 0 < p; = p1(p,d) < p.

Consider f = f(z) on T¢ such that

(8.6) supp f C B(0,2N)\B(0,N)=D; N >N =T%.

Denote

8.7) B= |J {neZ’:dist(Qa,n) < N'/?},
Q.ND#¢

and let S{t) be the flowmap of

(8.8) iug + Ugr + PeluVa] =0,

where V; is defined as above, cf. (1.8),

(8.9) Va(z,t) = 5. Viln, k)elm=+ 800 Ay =T,
fn|<My
!k|<M1T

One may then write

(8.10) F= (fr€a)bas

where {£,} is the orthonormal eigenvector basis for S(4T) acting on C'l; cf.
@2.11), (2.12).
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Thus
@8.11) S =Y e (a,1)
with
8.12 ol < =
(8.12) |Bal < 75
(8.13) etBaty! satisfies (8.8);
hence, from L2-conservation,
(8.14) o (®ll2 = 1(f,€a)| forallt;
(8.15) ., is 2m-periodic in z and 47 -periodic in t.
Fix o and denote ¢/, by 1. Thus, cf. (3.1),
(8.16) P(z,t) = p(n, k)elnet &Y
neB
kEZ
satisfies, by (8.8),
(8.17) (In)? + %k + Eo)ip(n, k) — Vagh(n, k) = 0.
Define
5 d+1 2, T ||
(8.18) Qa_{(n,k)eZ :n € Qaand |n? + k| < T
By (8.4), (8.5),
(8.19) diam{(n, %) S (n,k) € Qa} < 2ln?;
and for (ny, k1) € Qu, (na, k) € Qp, a # 5,
kl 2 1 P1
(8.20) A((n1, k1), (n2-k2)) = |y — no| + T o] > giml
Denote
(8.21) D= |J @

QaND#¢

337
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and
(8.22) Dy ={(n,k): A— dist((n, k),Dl) < E%N”‘}
so that
(8.23) Dy CDyCBxZ
From (8.18), (8.20), (8.21), it follows that if (n, k) ¢ D; and
(8.24) A — dist((n, k),Dl) < }IN‘”,
then
2, T _1~ P
(8.25) In}® + 2Tk' > 200N

and thus, cf. (8.12),

> _LNPI .

2, T 3
|n| + k’+Ea 200

T
From (8.17), (8.26), one deduces easily that

(8.26)

10-3NP1

> Bkl < (g)

10-2 NP1 <A—dist((n,k),D1)<10-1N”1

(8.27) < TR [ (0)]2-
Define
(8.28) Tz, t)= Y. ¥(n, k)einet 35

(n,k)eD2
Taking (8.22), (8.27) into account, we see that each ¥ = ¥, satisfies
(8:29) iU, 4 Uy — Bo¥ + Pa[UV3] = O(e™ %1 [[5p(0)]|2).

Thus, returning to {8.11) and denoting
(8.30) o(z,t) = Y eBatw (x,1),

we obtain an approximate solution of (8.8), i.e.,

i@y + Byy + BVy = i®, + By + Pa[OV5)

NG (Z o)

(8.19) _10HPL
< O(NC@ % | 7ll,)

< 0@ || f]l2)

(8.31) <0 T |If]l2)-

SN
(Zk [P 17
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Next, we need an estimate on || ®(t)||o. Write for 0 <¢,t’ <4T

47T
, d
(8.32) 1215 - 18| < [ | 1815 jar
Hence
47T
2
(8:33) 121 <7 [ 18()1ger
4T d 5
(8.34) +A i@z dr
Let ¢ be a smooth bump function such that
(8.35) 0<p<1,
(8.36) ¢=1 on]0,1],
(8.37) p=0 outside [-2,2],
(8.38) 1P| < CeV?
By (8.11)
(8.39)

2
t

! ¢ 1 m i ZE+Ea
7 [ 150118 (g5 )t = 7 3 [ | S tm est+ o
Write in (8.39)

Z POREID DR

k€Da(n) kEDa(n)

2
x|z

-+
kEDQ ('n.)

2

(8.40)

>

kgDa(n)

ore( P )(;Z;;)'

k€Da(n)

To estimate the contribution of the last term in (8.40), denote

(8.41) Da(n) D Dh(n) = {k: A — dist((n, k), D1) < 102N}
and write

[kE’Dz(n)] Le;z(n)} }
®42 [kev' (n) ] Lﬁl%;(ﬂ)]

(8.43)

| UWN—

[kEZDz (n)]

|2
kED2(n)\Dj(n)
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Observe that by (8.22), (841), if k € D}(n), k' & Da(n), then

1 11 1
8.44 Toows (Lo L)ye s Le
(8.44) 7k —F]> (20 100) ~ 30

Thus, from (8.38), the following bound on the contribution of (8.42) is obtained:

(8.45)

4—}_7:/[ > Z@(n,k)ei(g%ma)t” S Zﬁ(n,k,)ei(%wmt]%ﬁ)
keDy(n) @ D)

bounded by

(8.46) S L k) [ (n, B e K 1 RO+ B D12

|k—k'|> g5 TN

. 1/2 L 1
<ce s S (SR nE) (S RhmP)
k k

a,of

(8.47) < NC'e—é(TN"I)lﬂ [ZZ l@(n’ k)lz] .
a k

/2

Summing (8.47) over n gives by (8.14) the following bound on the (8.42)-
contribution:

(8.48) NOe (TN (Z II%(O)H%) < e HIN g2,

For (8.43), estimate by (8.37) and Cauchy-Schwarz

(8.49) Z!:FZ /

S Y (n R)eE

(i)

S dh(n k)i

ool keDa(n)\Dj(n) k€Da(n)
. 1/2 o 1/2
®850) <cY ( Y i k)lz) (Z 9 (m, k>|2)
a,o’ kEDg(n)\Dé(n) k

Summing (8.50) over n and applying estimate (8.27) to the first factor (taking
definitions (8.22), (8.41) into account) gives the following bound on the (8.43)-
contribution:

(8.51) ¢S e OHE [y (O)l2 bl (Ol < e N £13.

a,a’

From (8.48), (8.51), it follows that the contribution of (8.40) in (8.39) is at most

_ P / _ /
(8.52) [e=#TNDYE L =N 212 < 17113
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From (8.36), (8.52) and definitions (8.28), (8.30), we may conclude that

ws9< 2 [o(H)T| £ S

n ' kEDy(n) @

1 t
<5 [ o2 JIs@tz + 113

(8:53) 2 101112,
Next, consider (8.34). Writing
ZI8(2)13 = 2Re (2(1), &(1)
and substituting (8.31) gives an estimate
(8.54) cle@lze™" |1 £ll2-

Thus
(8.34) < CTe~ ™" IIfIIz( sup ||<I>(t)||z)
0<t<AT
(8.55) SIlsz( sup u@(t)nz)
0<t<AT

Finally, from (8.33), (8.34), (8.53), (8.55),

(8.56) sup II‘P(t)Il%S101|f|l§+llfllz( sup u<1>(t>uz);
0<t<AT 0<t<AT
hence
8.57) sup [|8®)]lz < 51/l
0<t<4T

From the integral equation and L?-conservation,

1507 -~ fla = | [ DA 5(r) £ V()

(8.58) IIf ll2

100

for |t| < ¢, ¢ some constant.
Take ¢ satisfying (4.19)+(4.21). Thus

(859 | [1se)s, 4 o-oar] > F1s12

341
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Since
(8.60) eitAf — Z J’c‘(n) ei(nz_[n|2t),
neD
we have
[is5, @ po(-az ©
Z/eiE'*t(lﬁ;(t),eimf)cp(—t)dt (8.16)£(8.60)
In2  E.\ (8.28),(8.18),(4.21)
IACEID) 6 ( g+ ok + 52 C2e2
* wer
nl*> | Ea
Z:;‘I’ a(n, k)f(n)so(4T + ——) +
o(Tle@lelsls| ¥ )
* in + 55 1"};1:001\,“
(8.61) o2 [ (@0, prot-tas + ore" i1

From (8.57), (8.58), (8.59), (8.61),
| [iso 20, e > (— = 55+ 0T ) 1113
(8.62) > lefll%-
Thus, for some |¢] < ¢,
(8.63) S(to) @ (t0), 1)] > ZIFIB:
From (8.31) and the integral equation, it follows that, for0 <t < 7,

12() — S(8)8(0)]|l2 < O(Te™ """ ||fl2)
(8.64) <e ¥ | fla

In particular, letting t = ¢, we have
(8.65) 15(t0) ™ 8(to) — 2(0)][z < ¥ || s
and (8.63), (8.65) imply

(8.66) [{(2(0), )| = 317113
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Moreover, by (8.57),
(8.67) 120)l2 < 51 fll2;
and by (8.23), (8.28), (8.30),
(8.68) ®(n)=0 ifngsB.
Observe that by (8.4), (8.7),
(8.69) n€B= N-2NY2 <|n| < 2N +2NV2,
1

Also, from (8.66), (8.67) and an appropriate choice of v, |7| = 155, We get

1f = 72O < 1713 + 2591113 — 2Re (£, B(0))

1
®.70) < (1= 1055 ) 1418

A straightforward approximation procedure allows us to produce F = F(z,t)
satisfying (8.64),

(8.71) 17 = FO)llz < e |Ifll2
and
(8.72) F(n)=0 unless IN < |n] < 4N.

Thus, by (8.64), (8.71),

IF() = SOl < (737 + V)| 72
(8.73) < (€ ¥ £]l2-

If we replace V5 by V; and redefine S(¢) as the flowmap for the equation
iUy + Uge + Vu =0,

it follows from (1.9) and the integral equation that also

(8.74) 1FE) = S@)fll2 < (73" + T||Vi = Valloo)l| flla < CaT™®

for0<t<Tandall o > 0.
Assume as in (5.1) that

o~

(8.75) f(n) =0 unless T% < |n| < T4.
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Take Ny = T2. Write

(8.76) fe=Y fln)e™ (T < 2 < T4)
|n|~2¢

and denote Fy = Fy(z,t) the approximate solution obtained above in (8.74),
replacing f by f; and N by 2¢.
Thus, for0 <t < 7T,

(%

|m|<No

>( 2

f2 |mj<Ng

- 1/2
Z( ) iml2SIFe(m)(t)12> + N SIS0 fe — F)ll
£

£ Mim|<N,

o 1/2
m* BOImP) <

o 1/2
jm|?* IS(t)fz(m)F) <

(8.72),(8.74)
<

C " 2% Fy(t) |2 + CaA(log T)NST || f|l2 <
£
76)

(8.
C Y 2*(IS(@)fellz + CaAT* (log TYT | fll2~ <
¢
CAQog T)| fllme + CaT™ | fll2 <
@717 CAQog D\l
This gives inequality (5.21).
Since the remaining ingredients in Sections 5, 6 and 7 do not depend on the
dimension, we may again conclude inequality (7.16).

I1. Construction of examples with random potential

In this section, we consider the linear Schrodinger equation (1D with periodic
bc)

(0.1) U + Uy + Vu =70,
with V' a random potential of the form

(0.2) V(z,t) =Y [g5(w)e™ + g;{w)e = ]y;(t),

J
where the {g,;} are independent normalized complex Gaussian random variables
and the {v;} are appropriately chosen disjointly supported bump functions
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satisfying (s > 0),
(0.3) sup ||y ]lme < 1.
J

(As will be clear from the considerations below, there are many variants on this
construction.) We show that for any initial data ¢ € H?, ¢ # 0,

— ||S ()]l 2
(04) A s

>0, almost surely.

The main point of the argument is a simple local analysis in time of the increment
of ||S(t)¢||3: and, more specifically, of the quadratic term in V when considering
the multilinear expansion of [[S(t+T)¢||%. — [|S(t)¢|%: (T = At < 1) as a power
series in V.

§1. Denote by S(¢) the flowmap corresponding to (0.1) and write u(x,t) =
(S(t)¢)(z). Then

%[/[uzlzdw] = 2Re /uﬂ’ﬁz = —2Re /ut Upr = —2Im /(—um — Vu)Uys

) =21m/Vuﬁwz=—21m/Vzuﬁz=2Im/Vw'ﬂum.

§2. From the integral equation,

) uw=ep+i /(; t et=IA(Vu(r))dr.
Set

3 ug = €49,

“) Sug =1 j/o =2 (Vuo(r)).
Thus

®) (1) =2Tm / Vi Toluo)e +

(6) 2Im / V,, To(6uo)s +

Q) | 2Im / Ve buo(uo)s +

®) O(IVII*).
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Write
(6) = =21 [ (Vao o + Vo (o)e e,
(6)+ (1) =21 [ V.[Fia(uo)s  6u0(@).] - 2Im [ VaxTo(6ua)
= 4Im f Vi (10)e 550 — 2Tm / Vi To (610)
= —4Re (Ve ¢, /: A (VTR g)dr)
—2Re(Vyy /: ei(t“T)A(Vei"'A@dT, et ¢)
Q) = —4Re jﬁ t<e~“AVmeim¢m, e" A Vel A dr
(10) —2Re /ﬁ vt(e—iTA Vel ¢, e AV, et ¢V dr.
§3. Take
$(z) =Y pk)e**, ¢cH' and |g|2=1,
k

Viz,t)= [ Z V(n) ei"”“] 4(t) where V{(n) = V(—n) are independent Gaussians.

n#0
n odd

Average over the Gaussians. We get
©) =4Re [ | S nEIT@PA( T HAR? 40 |y eydr
o, [Zrmrer(E )]
(A1) =4 nkE[V ()] 6(k)? jﬁ cos(2kn +n?)(t — 1)y (T)v(2)dr,
n.k
10)=2Re [ [ n2BIP )2 31802 €+ -0y (r)y(t)dr
(10) = 2Re [ [Z 7 (Z )]
(12) =2 Z n? E[!T?(n)]2] [a(k)lz/ cos(2kn + n?)(t — T)y(T)y(t)dr.
n,k 0

Thus
(9) +(10) = (11) + (12)

(13) =2 Z(2nk + n?) E[|V (n)|?)| (k)| j/ cos(2kn + n?)(t — 7)v(T)v(t)dr.
n,k o
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§4. The contribution to |lu,(T)||2 — ||u.(0)2 is obtained by integration of (13)
int. If y(t) = 0 for ¢ ¢ [0, T, this clearly yields

a4 3 (2kn + n?) B[V ()71 |6() P (2kn + n?) |2,

n,k
Take
) {Igwml = 1=E7(-D),

V(n)=0 for|n|# 1.

Fix M and take «y satisfying
(16) supp 7 < [0 7,
(17) F(m)| = [f(~m)| = M~*~%  for |m] < 2M +1,
(18) = 0 for |m| > 3M;
(19) |Bm (F(m)))| S M5

From the definition of V and v, it follows that V (z, ¢) is analytic in z and H® in
t € [0,T)]. From (14) and (15)+(19), we get, for T = 1/M,

(14) ~ D [@(k)*[(2K + L)F(2k + 1I* — (2k - 1)IF(2k — 1)[7]
k

=2 3 @wr )oY jameai)

|kl<M k(=M
(20) ~ M7+ O(M 23 gl 3n)-

Accordingly, take M 2 {|¢}|g:. This gives
1) (14) ~ M~271,

The contribution of the higher orders in V' (hence order > 4) coming from (8) may
easily be estimated by

4

@2) lolls gl [ 7)4 <16l (3r7o-) " <o
Assume s > 0. From (14), (21), (22), it follows that one may ensure
@3) (T3 ~ lluc(O)l7 > cM ™27 ~ T2,

Now (23) corresponds to the inequality

(24) I>cl™s,
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implying, for ¢ — oo,
(25) I(t) 2 049 (@) 2 £1/20+9),
Thus, coming back to (0.2), define

(26) ti+1 =1t + Aty,
Q@7 Aty =20,

and let y; = v be as above (taking T' = 1/M ~ At;), supp v; C [t;,t541].
The preceding then allows us easily to conclude (0.4).
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