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0 I n t r o d u c t i o n  

In this paper, we consider a linear Schr6dinger equation of  the form 

(0ol) iut + Au  + V(x,  t)u = 0 

with periodic boundary conditions (i.e. x c ql'a). Here V is a real potential, smooth 

in x and t and periodic in x. Thus we do not specify any further structure with 

respect to the time dependence of  V. Denote by S(t) the flowmap of(0.1). Clearly, 

there is L2-conservation 

( o 2 )  IlS(t)~[12 = ll~l[2- 

If~b C Hs('U), s > 0, then S(t)~5 c H ~ for all time. The problem we are concerned 

with is the growth (if any) of  I I s( t )~l l  ~ for t ~ ee. Simple considerations permit 

us to bound IIS(t)~llHa by a power of t ;  thus 

(0.3) IlS(t)~ll~, _< Ut ~ for t --+ c~ 

(see Lemma 6.2 below). T. Spencer [S] observed that if  we assume further that V is 

periodic in time, a much better bound holds. More precisely, let V be real analytic 

and periodic in z and t (with arbitrary, fixed periods). Then, for ~b E H~('IU), 

[IS(t)r grows at most like a power of logt for t --* 0o. This fact holds in 

any dimension. In [B1], we essentially extended the preceding to the case of  a 

potential V = V(x,  t) with quasi-periodic time dependence. We also produced 

examples showing that those logarithmic estimates are necessary, even in the time 

periodic case. Let us mention that the problem of  growth of  higher Sobolev norms 

has also been considered in equations (0.1) where V = V ( x , t )  is assumed to have 

certain random behaviour in time. 

The main result of  this paper is the following rather general 
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316 J. BOURGAIN 

Proposition 1. Consider (0.1) in arbitrary dimension d (periodic b.c.), 

assuming V is bounded, smooth in x and t, and periodic in x. Then, f o r  all 

s < o o ,  e > 0  

(0.4) []S(t)r _< c~,SIIr f o r t - -+  co. 

This statement is surprising, since we do not make any specification on the time 

dependence of  V except smoothness. In fact, the proof is relatively simple and 

based on ideas very similar to the time-periodic case. Observe that if  we restrict t to 

a large time interval [0, T], one may always replace V by a potential 1/-1 = V1 (x, t) 

which is periodic in t, say with period 4T. This permits us to consider specific 

soiutions of  (0.1) (Bloch waves) of  the form 

0 .5)  u(x, t) = dE%(x,  t), 

where e 4iTE is all eigenvalue for the unitary operator $1 (4T) and r is periodic in 

x, 4T-periodic in t. Thus one may write 

(0.6) r t) = ~ r k) e i('~x+~t). 
n,kEX 

The main part of  the argument then consists (as in [B 1]) in estimating ~(n, k) and 

establishing a certain localization. It turns out that the methods as used in [B 1] are 

considerably less restrictive regarding certain specific properties of  the potential 

assumed in that paper. Proposition 1 leads to simpler proofs of  the results from 

[B 1] for quasi-periodic potentials in time, although the conclusion is a bit weaker. 

The proof of  Proposition 1 for d = 1 occupies Sections 1-7. In Section 8, we 

sketch the argument in arbitrary dimension d > 1. It turns out that the only basic 

ingredients are the separation properties of  the sequence of  squares {n z } and, in 

higher dimension, the "separated-cluster" structure of  the set {(n, In]2)ln 6 Za}. 

The second part of  this work consists in obtaining estimates from below on 

NS(t)r for t ~ oo in a model (0.1) where V = V ( x , t )  is analytic in x and has 

a random behaviour, with restricted smoothness, in time. More precisely, we take 

V of the form 

(0,7) V(x ,  t) = ~ [ g j ( w ) e  ix + gjw) e iX]'~(t) 

J 

where {93-} are independent, complex, normalized Gaussians and {-yj} are disjointly 

supported bump functions, satisfying 

(0.8) sup II' jll-- < 
J 

We prove the following. 
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Proposition 2. For an appropriate choice o f  {Tj} in (0.7), satisfying (0:8), 
one may ensure that 

llS(t)r 
(0.9) t--.oolim t l /2( l+s ) > 0, almost surely 

for  any data r E H 1, r ~ O. 

Again, the argument is simple. Letting u = S(t)r one has that 

) / (0.10) ~ [u~(t)12dx = 2 Im V~u~. 

Restricting t to a small interval [0, T], we may expand (0.10) as a power series in 

V. The key point in the analysis is then the structure of  the quadratic term. 

Acknowledgment 

As for [I31 ], these investigations were motivated by discussions with T. Spencer. 

I. Proof of Proposition 1 

1 R e d u c t i o n  to t h e  p e r i o d i c  c a s e  w i t h  l a r g e  p e r i o d  

Consider the equation 

(1.0) iut + u~x + V(x, t)u = 0 

with periodic bc. 
Assume that g is real and smooth in x and t, and that 

(1.1) [IV[[~ < 1. 

Fix T large and consider the evolution for 0 < t < T. 

Take smooth ~ such that 

/ '0 <~y <_ 1 

(1.2) ~o( t )= l  for I t [ < T  

L~( t )  = o for Itl > ZT 

and let 

(1.3) yl (x, t) = ~ v(x, t + 4Tj)~(t + 4T j ) .  
jEZ 
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Thus 

(1.4) 

(1.5) 

Vz(x,t)=V(x,t) fo r0  < t  < T ,  

V1 (x, t) = 171 (x, t + 4T). 

Since t71 is 2~r-periodic in x and 4T-periodic in t 

(1.6) Vl(x,t)= E ~(n'k)ei(~*+~rt)" 
nEZ,k6Z 

Also 

(1.7) Io2o~vll < cl<+l~l. 

Fix a large number  M1 = M1 (T) > log T and let 

(1.8) Y2(x,t) = E ~rl(n'k) ei(nx+~Tt)" 
In[<M1 

]kI<M1T 

From(1.7) ,  

(1.9) 11111 - V21[o~ < C~M~-a(logT) < C~M~ -~ 

Observe that from (1.4), (1.1) is equivalent to 

(1.1o) i ~  + , ~  + v l (x , t )~  = o 

for0< ~ <T. 

2 Bloeh waves 

Consider the equation 

(2.1) 

Fix no E Z, 

(2.2) 

with M2 to be specified. 

Fix Ma and define 

(2.3) 

iut+u~+V2(x,t)u=O. 

[no[ > M2 > (logT) 1~ 

B = { .  e z] b - ~ol < M~}, 

for all a.  
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(2.4) PB~b = ~ ~(n)e i~x. 
n6B 

Consider the IVP (ODE) 

l iwt q- w ~  + PB[V2.w] = O, 
(2.5) [ w(0) = e ir'~ 

Thus w = PBW. Also, since 

(2.6) 

(2.5) 
= 2Im <-wxx -PB[V2w] ,w)  

= 2 Im {(w~, w~) - (Vzw, w)} = 0, 

i~(n)(t)l~ ) 1/2 
n6B 

there is conservation of LZ-norm 

(2.7) [Iw(t)llz-- ( 
\ 

iwt + wx~ + PB[V2.w] = O, 

[ein'Xln E B] = C IBI. 

Denote by S(t) the flowmap corresponding to 

(2.8) 

acting on 

(2.9) 

Since V2 is 4T-periodic, we have 

(2.10) S(t)  = S( t  - 4T )S (4T)  

=1.  

for t _> 4T. 

319 

Thus, denoting (~ ,  E~) an orthonormal basis of  eigenvectors for the unitary map 

S(4T) 

(2.11) S(4T)~a = eiE"~,~, 

we have 

(2.12) S(t){~ = e' E~--~t~b~ (z, t), 

where ~b~ is 2~r-periodic in z and 4T-periodic in t. (E~ is specified up to a multiple 

of 21r.) 
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Hence, writing in particular e .  o = e i'~o~, 

(2.13) e,~o : ~--~,(e,~o, (,~)~,~, 

(2 .12) ,  (2 .13)  permit us to write 

(2.14) S(t)e= o = 

(2.15) 

.E..~ 

]Eo~-.l-4n~T 1 <~r 

where , r ~,~ are 2~-periodic in x, 4T-periodic in t, 

(2.16) 

and, by (2.7), for all t 

(2.17) 

i/)~ I= E~ +n~ < 4T 

3 F o u r i e r  t r a n s f o r m  e s t i m a t e s  

Fix ~ and denote r by r Thus ei(E~-n2o)tr t) satisfies (2.8). 

Our next purpose is to get more information on r  

(3.1) r t) = Z ~(n, k)e'~n~+~ ~. 
nCB 
kEZ  

Substituting (3.1) in (2.8) thus gives for n E B, k e Z 

( (3.2) n 2 - n~ + 2T + / ) ~  (n, k) - V2~(n, k) = 0. 

Let A, B satisfy (cfo (2.2)) 

(3.3) 2M, < A < B < �89 

Then, by (2.16), it follows that for 

(3.4) A T  < Ikl < B T ,  

(3.5) n 2 ~--~-k /),~ = l ~ r  k /)~ ~ r A - I > A  if  n =  
- n~ + 2T + 1 2T + > 2 

n o  
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and 

(3.6) 

Also, by (1.8) 

~-V-k 7rB - 2 > ]nol > 2B In 2 - ng + eT + E~I > 21nol - ~ 

1~2r 112 
nEB 

AT<tkI<BT 

--4 [ s -~  Jo IV212 
nC:13 

(A--Mx)T<IkI<(B+M1)T 

]1/2 
< IIV.~lloo ~ I~(n, k)l 2 

nCB 
(A-M1)T< IkI<(Bq-M~)T 

(x.1)+(1.9) ( 
(3.7) < C 

nEB,( A-- M1)T < I]r < ( B+ M1)T 

From (3.2), (3.5)+(3.6), (3.7), it follows that 

(3.8) ~ Ir k)] 2] 1/2 < 
rtEB AT<IkI<BT 

By q-fold iteration of (3.8), assuming say 

if n 7 ~ no. 

~b(n, k )e i('~+ ~~rt) 2dxdt] 1/2 

1r n, k)12 ) 1/2 

E 
nEl3 

(A--M1)T<]kI<(BA-M1)T 

I~(n, k)l ~] 1/2 

(3.9) lOqM1 < In01, 

we get 

[ 
2qM1T <lkl< �88 lr~olT 

(3 .1o)  

\ nEB,k 

- M l q [ s - ~  Jo jo Ir 

< M~-ql]r 

by L2-conservation (2.17). 
Next, we establish some decay estimates for n away from n0. One has again 

from (1.8) 

(3.11) 

nEB, In-noI>qM1 nEB, In--no[>(q-1)M1 
Ikl< �88 Ikl<(�88 
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hence, by (3.6), (3.11), 

(3.12) 

Z 
~eB,In-~ol>qml --< ~-~ ~eB, l~--ol>(q-1)ml 

Ikl<�88 Ikl<(�88 
Iteration of (3.12), taking (3.9) into account, then implies 

( E [~b(n'k)]2) 1/2 C q \1/2 

Ikl<�88 

(3.13) < Inol-q/2l]r 
Also, by (3.6), for n # no 

1 ( 1  f 4 T  \ 1 / 2  

Ikl<~l~olT 

< i-~0111r 

(3.14) < Inol-1/2[lr 

Assume 

(3.15) 100M3 < Ino] ~~ . 

Then, for n E B, by (2.3), 

1 1 
(3.16) ] n -  no] < M3 < 1-~lnolr~ 

and, ifq = rl~-~oll necessarily (3.9) holds. Thus, from (3.13), (3.14), for n # no 
k M1 l, 

(3.17) ( ~ ]~b(n,k)]2)l/2<[no[ �88162 
Ikl<�88 

It will also be useful to have a similar bound with respect to the L+-norm+ For 
n # no fixed and Ik] < �89 the sequence 

(3.18) 1 

has multiplier norm on L~176 bounded by c I--~T" 
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Also, for ]n - nol > qM1 

(3.19) Z 
Ikl< �88 

V2r Lr < 

F 
(3.20) (log In~176176 L ~|l~'-~olm~(qaXl)M~ E 

tk[<(�88 

Thus from (3.2), (3.20), we deduce that for In - nol > qM1 

Ikl<�88 -- ~~ (319) 

(3.21) < Inol-'/2 [ max 
L ln--nol>(q--1) M1 

Ikl<(~-+M1)T 

Iteration then again gives the bound 

(3.22) 

r k)d~* oo]" 

~(n, k)e i ~-~-rk t 1" 
c~ 

Ikl<�88 L~ 

4 L o c a l i z a t i o n  

With r = r as above, define (of. (3.1)) 

(4.1) ~d~(x,t) = ~ r i('~*+~t). 
neB,lkl<~]nolT 

Recall that r satisfies the equation 

(4.2) iet + r + (no 2 - / ) ~ ) r  + Ps[V2r = 0. 

Write by (1.8) 

neB, lkl<-~lnolT 

_< IPB[V=~"]I + �89 d ('~x+~t) 
nGB,[k[< glnolT 

with 

(4.4) 

(4.5) 

�9 " (x, t) = ~2 g(~, k)e *(-~ + ~*), 
,~cB, QInol-Ul)T<lkl< } I,~oIT 

�9 "'~x, t) = ~ ~(~,  kle~("~+~ *) 
nCB, ( ~ Inol--Ul)T< Ik] <(~ ]no I+M1)T 
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Thus 

(4.6) 

Take in (2.2) 

(4.7) 

Thus the factor in (4.6) is 

(4.8) 

and 

(4.9) 

] 1/2 
11(4.3)11oo -< ll3l~/2([noIT)~/= ~ ([V---~(n, k)[ 2 + IV"V-~'(n,k)[ 2) 

LnCB,k 

(2.3) ( ~. 2 < C(M~I~orT) 1/~ ~ ,  ( l~'(~,k)?+l  ~(,~,k)l ) )v~ 
nEB,k 

(4.4)+(4.5) { 
<_ C(M3InoIT) 1/2 ~_, 

nee 
({InoI--M1)T<IkI<({Ino[+M1)T 

(3.1o) _ •  
< C(M3lnolT) ~/2 11r M1 2 0  M 1 

I?(,-,, k)l~} v~ 

m2 = M~ + (logT) 1~ 

< ]no[T1/ee-91no[~/2 < e-Stnol ~/~ 

11(4.3)1100 < e-Sl'~~162 

From (4.2), (4.9), we see that ~ satisfies (4.2) approximately, in the sense that 

(4.10) i~o, + A~,~ + (n~ - E,~)'~,~ + PB[V2~,~] = O(e-Sl~~162 

where O( ) refers to the L00-norm. Recall (2.17) 

(4.11) 11r176 = I (e , ,o ,&) l -  

Define, cs (2.14), (2.15), 

(4.12) 

(4.13) 

Since 

= ~  %(=,t), ot 
f,o (=, 0 = ~-'"~'Lo(=, t). 

(4.14) ~ I(e,~o,&)l < l~ll/211eno[I < 2M~/2, 
it follows from (4.10), (4.1 I) and (4.12) that 

iO, Lo + ~xLo + n~Lo + P~[V~].o] = o(e-S~"o~"~MJ 2) 
(4.15) < O(e-rl-ol~/2). 
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io, f.o + zX /.o + P~[V2/.o] = o(~-71"~ 

(4.19) 

(4.20) 

(4o21) 

From (4.18), (4.20), 

Since, by (2.8) and the integral equation 

/o ' (4.17) e ~ t  (S(t)e,~o) = e,~ o + ie i~t e~(t-~-IApB[v2(T)S(7")e~o]dT, 

we have for It[ < c, c a sufficiently small constant, 

1 
(4.18) I1 - e~S(~e~o(nO)r < lleno -- e~'~t(S(t)e~o)ll2 <-- CN < -~. 

Consider a smooth bump function on II~ satisfying 

0 _< ~ <_ 1, supp ~ c I-c ,  el, 

o = 1, 

. 2  A ] 1 
(4.22) e~ot.S(t)e,o(no).~(-t)dt[ > ~. 

From (2.15), (4.1), (4.12), (4.21), the left side of  (4.22) gives 

(4.23) 

(4.24) 

(4.25) 

., " f ~'~~ ~ ~ ( ,~o ) �9 ~( - t)dt 

)~(~-TT 1 ~ )1 =   +o(no,k 
c~ k 

(421) f f~o(no)~(-t)dt + O(M3re -~t~~ 

<-IILo(~0)ll~%<o + o(~-J-og).  

Hence, from (4.22), (4.25), 

(4.26) 
1 

325 
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Next,  take n # no. From (4.12), (4.13), (4.1), (3.22), (4.11), (3.15), 

(4.27) 

il/.Z( )tl= _< E IIG(-),= 

o ,  I k l < ~ t n o ] T  ( X )  

< Ino1-�88176 > 11r 

(4.11) 
< I B l X / 2 l n o l - � 8 8 1 7 6  ) 

_ 1  
<[no] ~0+ ~ ). 

By  (4.16), (4.26), (4.27) and normalizing,  we may  then clearly get f rom f,~o an 
approximate  solution f~o of  (2.8), i.e., 

(4.28) ~Od;o + ~Yo + PB[�89 = o(~  -~l~~ 

satisfying, for some ]to] < c, 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

A 

/'~o(,~o)(to) = 1, 

]lf'o(tO)ll~ < 2, 
A 

f fno(n)=O i f l n - n o [  > M 3 ,  
1 t l +  Ir--~ak ~ 

IIf 'o(n)ll~ < 3lnol -~ '  ~-r-~ ) for n # no. 

Est imate 

(4.33) 

V~ t V, t ]IPB[ 2f~ o] - 2f~oll~ 

I n - n o  !> M3--M1 

Taking also (1.9) into account,  we  see that (4.28) implies  

(4.34) G ~ _ ~_ M__~. iOtf~o + Af~ o + l i fo  = 0( e-~l'~~ + no 6 M1 + C,~M~'~), 

where a > 0 is arbitrary. 
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Recall (2.2), (3.15), (4.7): 

/ M~ > log T, 

Inol > M2 > (]ogT) 10, 

100/1//3 < [no[ Ul~ 

M2 = M? + (log T) 1~ 

Hence, letting 

(4.35) 

we get 

(4.36) 

MI = T ~, M3 = M~, e = e ( s ) ,  

iOtf'~o + Afro + Vlf~o = O(T -'~) for all ~. 

Also no is assumed to satisfy 

(4.37) ]nol > T a, 

where 6 = 100e. The "O" in (4.36) depends on e, a 

Let S(t) denote the flowmap for the equation 

iut + A u  + V l u  = O. 

Then (4.35) and the integral equation imply for 0 < t < T 

fo ~ S(t )S( T)-I  [O(T-'~)IdT = 2 (4.38) []f'~o(t) - S(t)~,~o[IL~L ~ < < C~T -'~, 
L t L:  

where 

(4.39) ~o (x) _= f~o (x, 0). 

It follows in particular from (4.18), (4.29), (4.30) and (4.38) that 

1 =  I(f~o(to),eno)] > I(f~o(to),S(to)e~o) [ - > J(S(t~176176176 10 

3 
----{(~'n~ en~ 10" 

Thus, taking (4.31), (4.32) into account, we may ensure 

(4.40) 
(4.41) 
(4.42) 

(4.43) 

~'.o(nO) = 1, 

II~.olJoo < 2, 

~'~o(~) = o  f o r l n - , ~ o l  > M 3 ,  
1 (1+ fn-nol ,  

I&o(n)l < 5l~oV ~ - w < ,  for n r no. 
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5 H ~ - b o u n d s  (1 )  

Take r such that 

(5.1) r  i f [n  I < T  z 6 o r l n ] > T  A, 

where A is a fixed large constant. 

Define 

(5.2) ~1 = ~ ~(~)r 
n 

where {(n I ]n I > T e } are obtained above. 
From (4.40), (4.43), we have the approximation 

= ( ~  Im128 I~(~)t I~o('~)1 
m \ n g k m  

(~.i) 
(5.3) < Cs,~T-~ ]Ir 

Also, from (5.1), (4.42), (4.35), 

(5.4) r = o iflnl < T z~ - T ~ "  or Inl > TA + T2e, 

which permits us to iterate approximation (5.2), (5.3). 
Assume T sufficiently large (depending on ~, s, A). 

Fix No to be specified. 

Estimate for 0 < t < T 
1/2 

I Iml2S ~ r (4.3s),(5.1) 

(5.5) 

Recalling (4.31), (4.35), we have 

(5.6) f~(t)(rn) = 0 if Im - nl > M3 = T 2~. 
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Thus, by (4.35), (5.4), 

(5.7) 

Define for / _> 1 

(5.8) 

Inl<4M~ 

2e-lMz<[nl<2l+2M3 

Estimate, taking (5.6) and (5.7) into account, 

(5.9) (5.5) < (2M3)S( ~ ~ r ) 
I m l < 2 M 3  n 

e > l  2 e M 3 < l m [ < 2 1 + l  M3 

(5.11) +O(NjT-'~[ICI[2) 
< 

(5.12) Z(2'+lM3) ~ Z ~,(n)f'~(t) 
~_>1 n 2 

(5.13) + O(Nf~T-'~I]r 
(4.38)  

< 

(5.14) ~ (2e+lM3)S n ~  Ce(n)S(t)~n 2 

(5.15) + o(ggT-~]lr 
< 

(5.16) e>~l (2'+1M3) s n~ ~,(n)~n 2 

(5.17) + O(N~T-~[]r 

Taking in (5.3) s = 0, it follows in particular that 

~p(n)~n _< 211r 
n 2 

(5.18) 

Thus 

(5.19) 

(5.16) < Z(21+lM3) s []r 
l_>l 

(5.8) 
< 48 Z Ir 

l_>l 
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Since the range of g < A log T, by (5.1), it follows from the preceding that 

(5.20) 

(5.21) 

Next estimate 

(5.5) < (Ca,, logT)]Jr + 0(NgT-~IIr 
(s.a) 
< (CA, , logT  + NgT-'~)IIr ,. 

(5.22) (i.q >~No [m[28[S(t)r 2) 

Denote by Q the (Fourier multiplier) operator 

(5,23) Qr = ~ ~o~(n)~ ~=, 

where % is the multiplier 

~/2 

(5.24) [ - ~  

- N o  
2 

Coming back to the equation 

(5.25) 

and denoting 

(5.26) 

we get (assuming s >_ 2 even) 

, / , ,_ 
0 ~ No 

iut + Au + Vlu = 0 

zs(t) = J(Qu)r 

2 r  

d 
L = ~tl[(Qu)(t)ll2H~ = 2 Re ((-A)~Qu, Qut) 

= - 2  ~m ( ( -a ) 'Q~,  @(y~))  
= 2 Im ((-A)~I2Qu, (-A)St2Q(Vlu)) 

(5.27) <_ IiQu(t)llH. I I ( - A ) s / 2 Q ( v 1  u) - V l ( -g~)S /2Qul l2  . 

From definition (5.24) of % one clearly has 

-v , ( -zx)8/~Q~ll ,  < II[Q, v,]ll II**(t)ll-. +-~ll~(t)ll~- l l ( -~  )s/~Q(Vl **) 

(5.28) < ~llu(t)l{~.. 
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0 < t < T ,  

(5.30) 

Hence 

(5.31) 

and from (5.29) 

(5.32) 

Thus, for 0 < t < T, 

(5.33) 

II(u - Qu)(t)lrH, < [ClogT + N~T-~]II~IIH~. 

[[~(t)llH~ ~ Is(t) 1/2 + [ClogT + N~T-~]IIr 

ILl _< N~[Is +(  Te §162 

C s T  6es 
z~(t) < --~-o (T + N0~ST-~)[lr 

provided No > C,T. Take 

(5.34) No = T :. 

From (5.33), we get in particular 

(5.35) IlQu)(t)]lH~ < 11r for 0 < t < T, 

which, combined with (5.30), yields 

(5.36) IIS(t)r _< C(logT)IICXIIH, for0 < t < T. 

Invoking the approximation procedure (5.2), (5.3), (5.4), one may also derive 

(using an iterative argument) that 

(5.37) IlS(t)r _ C(lONT)IIr for 0 < t < T, 

provided r satisfies (5.1). 

6 H ' - b o u n d s  (2) 

In this section, we estimate 

IIs(t)r (0 < t < T), 

Substitute (5.28) in (5.27); it follows that 

< -~oI2/z Ilu(t)llH.. (5.29) ILl 

With u = S(~)r estimate (5.21) and the definition of  -~ in (5.24) show that, for 
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assuming that r E H" satisfies 

(6.1) r = 0 for In I < T A. 

The following bound holds for r C H ~ without further assumptions. 

Lemma 6.2. 

(6.2) IlS(t)r < c8(1 + [tl) ~ [ICHH-- 

P r o o f .  Assume that s is an even integer and define 

(6.3) /~(t) = IIS(t)r 

Then, again writing u(t) = S(t)r  we  have from the equation 

ILl = 211m ( ( - A ) % ,  Vlu}] 
= 211m ((--A)~/2u, (-A)~/2VlU)l 

<_ C~llu(t)lrH, Ilu(t)lJH~-~. (6.4) 

B y  interpolation, we  have 

(6.5) 

Substituting (6.5) in (6.4), we get 

(6.6) 
(6.7) 

Ilu(~)llH--1 _< Ilu(t)ll~: -1)/~ Ilu(t)llH/~ = 11r II~(t)llH-; ~/~. 

.4. 1/sT1--1/2s 
1 4 1  < ~ s  w 2 ~ s  

5(t )  1/28 -< IIr + C~llr 

and hence (6.2). 

For N1 to be specified, let 

(6 .8)  Q r  = 

with 7 = (7.)  the Fourier multiplier (cf. (5.14)) 

(6.9) - - ~  1 j I / i  
-- N1 -- N1 0 N1 2N1 

Let 

"/~---= 1 

(6.10) L(t)  = H(Qu)(t)ll~s. 
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(6.12) 

Choose 

(6.13) 

From (5.29), (6.2), we get 

~1 t ~sI1/2" (6.11) ILl < IIr , 

hence, for 0 < t < T, 

TS+l 
JlOu(t)[ l~ = I~(t)~/~ <- rJr + CslJCtrH~ N~ " 

N1 > CsT s+l ; 

it follows from (6.12) that, for 0 < t < T, 

(6.14) 

Finally, estimate 

(6.15) 

Since 

(6.16) 

IIQS(t)r ~ 21]r 

II[Q, S(t)]IIH,~H,. 

(lOt + O~ + V~)Qu = [V~, QJu, 

we get from the integral equation 

Qu(t) = S(t)[Qu(O)] + i S(t)S(~-)-I[VI(T), O]u(T)d% 

fo' (6.17) II[Q,S(t)]r <_ [[S(t)S(T)-I[VI(T),Q]u(T)[IH"dT. 

Thus, by (6.2) and a commutator estimate, 

(6.18) 

Thus 

(6.19) 

Take 

(6~ 

f0 t s 1 (6.17) < C, (1 + t)s(1 + ~-) ~11 Ilu(r)JIH'd~ 

< c , (1  + t)3S+lNi-lJfCJJ,o. 

(6.15) < cs  (1 + t)3"+ 1 
N1 

A = lOs 
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in (6.1) and 

(6.21) N~ = T ~". 

Collecting estimates (6.t4),  (6.19), we obtain for 0 < t < T 

(6.22) 

provided 

(6.23) 

[[S(V)r = [[S(t)Qr < 211r + [I[Q, S(t)]r _< 311r 

r E H s and r = 0 for [hi < T ~~ 

7 H ~ - b o u n d s  (3)  

From (5.37), (6.22), it follows that, i f  

(7.1) t e l l ' ,  r  = 0 

then, for O < t < T, 

(7.2) 

We now conclude the proof. 

Denote by S (h ,  t2) the flowmap from t~ to t2. 

Let N = IT 2e] and 

(7.3) 

the restriction operator. 

Write, for 0 < t < T, 

(7.4) 

(7.5) 

(7.6) 

IIS(t)r ~ C(logT)l[r 

IIS(0, t)r < I IS(0 , t ) ( r  P~Nr + ]IS(0, t)(P~r 
(7.2) 

_< T~IIr , + IIS(o,t)P--~r 

IlS(o, t)P-~Nr <_IIS(1, t ) g  -- P-~N)S(0, 1)P-~r 

+ IIS(1, ~)P-gS(0, 1)P-~NClIH,. 

Again from (7.2), (6.2), 

(7.7) (7.5) < TellS(0, 1)P~ClIH. < CsT~NS[ICII2. 

for In I < T 26, 

],qe~ 
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Iterating, we get an expression (r < t) 

(7.8) I ] S ( ( r , t ) P - ~ S ( r  - 1, v ) P - R S ( r  - 2, r - 1) --.P-RS(O, 1)P~r < 

(7.9) [1S(r + 1, t ) ( I  - P - R ) S ( v ,  r + 1 ) P - R S ( r  - 1, r ) . . .  Pgr 

(7.10) + IIS(r + 1, t ) P - R S ( r  , r + 1)PN---- P-~r H= ; 

and, by (7.2), (6.2) and L2-conservation, 

(7.11) 

Collecting previous estimates, we see that for 0 < t < T 

IlS(t)r _< T~IIr + c Y + ~ = l l r  
-< T~+=+~=llr 

(7.12) < T = 11r 

taking e = e ( s )  sufficiently small (5 = 100e). 
Interpolating with the L 2-conservation 

IlS(t)r = 11r (7.13) 

one concludes that, for 

(7.14) 

(7.15) 

(7.9) < T ~ l l S ( r ,  r + 1 ) P - ~ S ( r  - 1, r )  . . . .  P-~Nr 
E--8 

< C=T N [[P~S(r - 1, r ) - - .  P~r 
< C=T N IlCrl~. 

335 

0 < 81 < 8~ 

IIS(t)r <_ T2'~IIr 
for 0 < t < T and T sufficiently large (depending on s). 

By (1.4), the same statement holds for the flowmap of  t h e  original equation 

(1.0). Consequently, 

(7.16) I IS( t )r  <_ c~,,~(1 + Itl)~llr 

for all sl and s; > 0. 

8 D i m e n s i o n  d >  1 

The same result may be obtained in arbitrary dimension d _> 1 using a similar 

approach. The main ingredient is the following well-known fact on separations in 

the set {n, [n]~}, due to A. Granville and T. Spencer (cf. [B1]). 
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L e m m a  8.1. Fix 

(8.1) 0 < p < 1 .  

Then there is a partition o f  Z a 

(8,2) Z a =Ua,~ 
such that the fo l lowing properties hold with 

(8.3) 

I f  n E f~ ,  then 

(8.4) diam ~ < Inf. 

I f  nl E ~2~, n2 C f ~  and ~ # fl, then 

(8.5) Ina -n21 + [ In ? -In21=l > In~l"' 

f o r  some 0 < pl = px (p, d) < p. 

Consider f = f ( x )  on "It e such that 

supp f C B(0, 2N)\B(0, N) - D; N > N -- T 2e. (8.6) 

Denote 

(8.7) B = U {n E zd :  dist(f~a,n) < N1/2}, 

and let S(t) be the flowmap of 

(8.8) Jut + Uzz + Pt3[uV2] = O, 

where V2 is defined as above, el. (1.8), 

(8.9) Vz(x,t) = E ~ ' l (n ' k )e i (~+~) t ;  M1 ==-T ~. 
Inl<M1 

Ik[<M1T 

One may then write 

(8.10) f = ~-'~(f,~c~)~a, 

where {~}  is the orthonormal eigenvector basis for S(4T) acting on CI•I; 

(2.11), (2.12). 

cf. 
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Thus 

(8.11) 

with 

(8.12) 

S(t)f ~ ,  ik.t-, ,  t) : e ~ a ( x ,  

Ot 

71" 

(8.13) ik=t-, e W~ satisfies (8.8); 

hence, from L2-conservation, 

(8.14) IlWL(t)ll2 = I(f ,~)l  for all t; 

(8.15) r is 27r-periodic in x and 4T-periodic in t. 

Fix o~ and denote r by r Thus, cf. (3.1), 

(8.16) r t) = ~ r k)e i(n~+ ~t)  
hEN 
kcZ 

satisfies, by (8.8), 

(8.17) 

Define 

(1~1 ~ + ~Tk + ~)~(~, k)-  V~(~, k) :o .  

(8.20) 

Denote 

(8.21) 

(8.18) ~ = {(n,k) E Z d+l : n E f~and I n2 + ~kl  < x-i-bS- J 
By (8.4), (8.5), 

and for (nl, kl)  E h a ,  (n2, k2) E fiB, oL r fl, 

A((nl,kl),(n2,k2)) =-In1-n2l+ - ~ -  ~___2 > llnl,pl" 
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and 

(8.22) 

so that 

(8.23) D1 c 792 C B x Z. 

From (8.18), (8.20), (8.21), it follows that if  (n, k) ~ 79~ and 

(8.24) 

then 

(8.25) 

and thus, cf. (8.12), 

(8.26) 

D2 = {(n,k) : A - dist((n, k),D1) < !Nm}20 

A ;  l f l "~ 1 ]VP~ A - , , , s t \ , n ,  kj,79,/ < ~-.. , 

1~1~ + 2-~k > !N"~200 

+ 2T + > - ~  Npl" 

From (8.17), (8.26), one deduces easily that 
10--3ht.ol 

I~(n,k)? < 

(n,k)E'/)2 
Taking (8.22), (8.27) into account, we see that each ~ = ~a satisfies 

(8.29) i~ t  + ~ - E , , ~  + PB[qJV2] = O(e -10-~lz 11r 

Thus, returning to (8.11) and denoting 

(8.30) r V" e~#~,I, rx t), 

we obtain an approximate solution of (8.8), i.e., 

= o (e-'~ ..~-~'~ ( ~  1,r 

(8.14)< O(NC(d)e--10"~-l~ Hf]])2 
N P l  

_< o(~ -~-m-' IlYIl~) 

(8.31) <- o(~ -T"' IlYll~). 

Z 
10--2Nm <A-dist((n,k),T}l)<lO-1NPx 

(8.27) 

Define 

(8.28) ~(x, t )  = 

NPl 
< ~ -~~ II~(o)l]=. 
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(8.32) 

Hence 

(8.33) 

Next, we need an estimate on II~(t)ll2. Write for 0 _< t , t '  <_ 4T  

(8.35) 
(8.36) 

(8.37) 

(8.38) 

By (8.11) 

(8.39) 

< 1 fo 'T II'I'(t)ll~ - 4 T  Ir~(~)lt~d~- 

(8.34) + 9s 4T dll~(~-)ll~ d-r. 

Let ~ be a smooth bump function such that 

0<~<I, 

= 0 outside [-2, 2], 

I~(~)1 < Ce -ex- 

4-T IIs(~)Ylf~ ~ d t = ~  ~ r 2 4 7  ~ ~ d~. 
k ot , x / 

Write in (8.39) 

E + E ,  
k k E 9 2 ( n )  k r  

2 2 

To estimate the contribution of  the last term in (8.40), denote 

792(n) D :D~(n) {k: A - dist((n, k),~D1) < 10-2N m } (8.41) 

and write 

(8.42) 

(8.43) 
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Observe that by (8.22), (8.41), i fk C :D~(n), k' fL :D2(n), then 

1 
(20 100] 1 (8.44) ~]k - k' I > 5-6N o'. 

Thus, from (8.38), the following bound on the contribution of (8.42) is obtained: 

(8.45) 

1 / [  E ~ ] [  E E~(n'k')ei(~-~+E~ 
4 T  k e ~ ( n )  a k'f~:Dz(n) a' 

bounded by 

(8.46) 
A A ~ 

t n Ir ,k)l Ir -lj~-~'J+~(l~j+l~o'l)j'~ 
c~oJ Ik--k'I>~TXP~ 

< c~-~ (~ml)1/2 ~ i~(~, k)12) 1/5 Ir (n, k)l 2 

k a 

Summing (8.47) over n gives by (8.14) the following bound on the (8.42)- 
contribution: 

(8.48) NC e--~(TN~ ( ~ ],r < e-~(TN~ 

For (8.43), estimate by (8.37) and Cauchy-Schwarz 

(8.49) ~-~ E r r t ~o 
, kev~(,~)\z)~(~) k~ 2(,~) 

(8.50) _< I o( ,k)l 2 k)?)  

Summing (8.50) over n and applying estimate (8.27) to the first factor (taking 
definitions (8.22), (8.41) into account) gives the following bound on the (8.43)- 
contribution: 

(8.51) C ~ e-l~ 1lr162 < e-NO~/~llfl]~. 
~ 1 3 t  t 

From (8.48), (8.51), it follows that the contribution of (8.40) in (8.39) is at most 

(8.52) [ e-~(TN"~ )~/' + e-N~ [[f[]~ < IIfll~. 
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From (8.36), (8.52) and definitions (8.28), (8.30), we may conclude that 

1 t E 

< - -  ~ IlS(t)fll~ + l l f l h  2 
- -  4T 4-T 
(8.ar) 

(8.53) < 1011fl[22 

Next, consider (8.34). Writing 

d 2 ~l l~( t ) lh  = 2 Re (q~(t), ~(t)) 

and substituting (8.31) gives an estimate 

(8.54) C[[~(t)ll2 e-T '" '  Ilfll2- 

Thus 

(8.34) _< CTe  -T'px IlSll2(o<t<4Tsup II~(t)l12) 
(8.55) < ,isl,~ (oSUa i,~(t)l,~ ) 

Finally, from (8.33), (8.34), (8.53), (8.55), 

(8.56) 0<t<4Tsup II~(t)ll~ < lOllfll~ + ]tSll2(o<t<4Tsup II~(t)]12); 

hence 

(8.57) sup II~(t)l12 ~ 511f112, 
0<t<4T 

From the integral equation and L2-conservation, 

/o l l s ( t ) f  - ~"~Yl12 = ~(~-')"[S(r)y.V~(~-)]d~-112 

1 
(8.58) < y-~llfl[2 

for It] < c, c some constant. 
Take ~o satisfying (4.19)-(4.21). Thus 

(8.59) Id]f(S(t)f' eithf)~o(--t)dt > ~llflh-1 2 
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Since 

(8.60) ~"~'s = ~ ](n)e("'-~":'), 
nC:D 

we have 

(8.61) 

f (s( t ) f ,  eitZxf)~o(-t)dt (8.__11) 

a nEB 
k ~ Z  

ot n ~ l e  

e 4T- -  2~ - :v,,- j 

2 I rk  1 P l  in + ~-~- I > 2--~ N 

(8.3o) / (~(t), eit~x f)~(-t)dt + O(Te -N"~/s )11:11~- 

From (8.57), (8.58), (8.59), (8.61), 

t f(s(t)-~(t),f)~~ - ' ) ' t> (~ 21o 
1 2 

> ~llfll~. (8.62) 

Thus, for some Itol < c, 

(8.63) 

- - - -  + O( Te--~'l/a )) Ilfll~ 

1 2 I(S(to)-l~(to), f)[ >- ~llfllz- 

From (8.31) and the integral equation, it follows that, for 0 < t < T, 

(8.64) 

Jib(t) - s(t)r < O(Te -T'"a IlflP.) 

< _�89 Ilfl12. 

In particular, letting t = to, we have 

(8.65) [IS(~o)-l~(to) - ~(O)lJ2 < e -~T'"' [Ifll=; 

and (8.63), (8.65) imply 

( 8 . 6 6 )  ] ( ~ ( O ) , f ) l  > a 2 - gJtf l l2 .  
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Moreover,  by  (8.57), 

(8.67) 

and by (8.23), (8.28), (8.30), 

(8.68) 

Observe that by (8.4), (8.7), 

[J~(0)[12 ~ 5[If112; 

~(n)  = 0 i f  n ~ B. 

(8.69) n 6 13 ~ N - 2 N  1/2 < ]n[ < 2 N  + 2 N  1/2. 

Also, f rom (8.66), (8.67) and an appropriate choice o fT ,  [7[ = 1 we get ]-fig, 

[If -- 70(0)1] 2 -< Hfl[~ + 2572][f1] 2 - 2 R e ~ ( f ,  ~(0)) 

1 2 
(8.70) < (1 l~-OO)[Ifl[ 2. 

A straightforward approximat ion procedure allows us to produce F = F ( x ,  t) 

satisfying (8.64), 

(8.71) Ill - F(o)[12 < e-Nl/l~ 

and 

(8.72) i f (n)  = 0 unless �89 < [n[ < 4N. 

Thus, by  (8.64), (8.71), 

] I F ( t ) -  S(t)fll2 _< (e -�89 + e-N1/'~ 

(8.73) < (e-�89 

I f  we replace V2 by V1 and redefine S(t) as the f lowmap for the equat ion 

iut + u~: + V u  = O, 

it follows from (1.9) and the integral equation that also 

(8.7'4) I IF(t )  - S(t)f]]2 <_ (e -~T'"I  + TIIV1 - V211o~)lJfJl2 < C~T -~ 

for 0 < t < T and all a > 0. 

Assume as in (5.1) that 

(8.75) f'(n) = 0 unless T 2a < InJ _< TA.  
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Take No = T 2. Write 

(8.76) fe = ~ f(n)e i'~ (T 2e < 2 e < T A) 
Inl~2~ 

and denote Ft = F~(x,t) the approximate solution obtained above in (8.74), 
replacing f by fe and N by 2 e. 

Thus, for 0 < t < T, 

Z 1' 12s IsSi (m)12) 1/2< 
Im[<No 

~ ~ 1 /2  

E [ml2SlS(t)fdm)[2) < 
[ml<N 0 

~ iml2SlFe(m)(t)[ 2 + N~ ~ ][S(t)fe - n(t)l[2 
g ] m [ < N  o t 

(8.72) ,(8.74) 
< 

C E 2es IIF~(t)[12 + CaA(I~ <- 
g 

(s.76) 
C E 2ts[lS(t)ft[12 + C'~AT2~(I~ <- 

s 

CA(logT)NfHH. + CaT-C*Hf][2 < 

(8.77) CA(logT)[[f][g,. 

This gives inequality (5.21). 
Since the remaining ingredients in Sections 5, 6 and 7 do not depend on the 

dimension, we may again conclude inequality (7.16). 

II. Construction o f  examples  with random potential  

In this section, we consider the linear Schr6dinger equation (1D with periodic 
bc) 

(o.1) iut + u~. + Vu = O, 

with V a random potential of  the form 

(0.2) V(x, t) = E[gj(w)e~: + 9j(w)e-i~]Tj(t), 
J 

where the {gj } are independent normalized complex Gaussian random variables 
and the {%.} are appropriately chosen disjointly supported bump functions 
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satisfying (s _> 0), 

(0.3) sup [[TjIIH ~ < 1. 
J 

(As will be clear from the considerations below, there are many variants on this 

construction.) We show that for any initial data r E H 1, r r 0, 

IIS(t)r 
(0.4) t~lim tl/20+s) >0 ,  almost surely. 

The main point of  the argument is a simple local analysis in time of  the increment 

of  []S(t)r and, more specifically, of  the quadratic term in V when considering 

the multilinear expansion of  [[S(t +T)r - [[S(t)r (T = At < 1) as a power 

series in V. 

w Denote by S(t) the flowmap corresponding to (0.1) and write u(x, t) = 
(S(t)r Then 

/ / / d-t [u~[2dx = 2Re u~t~ = - 2 R e  u t ~  = - 2 I m  ( -u~  - V u ) ~  

w From the integral equation, 

(2) fo ~ ( )) 
u -= e i tAr  + i e i ( t - r ) A  V u ( 7  dT. 

Set 

(3) 

(4) 

Thus 

(5) 

(6) 

(7) 

(8) 

UO ~ e i t A ~  

~uo = ~ f ~  ~'(~-~)~ (V~o(~)). 
./o 

(1) =2 Im f V~ go(uo), + 

2Im f V~go(SUo)~. + 

2Ira f VxFuo(uo), + 

o(Ifvll~). 
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Write  

(9) 

(m) 

w 

(6) = - 2  Im f (vx~ ~o + V~(go)~)Suo, 

(6) + (7) = 2 Im / Vx[~uuo(uo)x - 5uo(~-ff)~] - 2 Im / V~ go(Suo) 

= 4 I r a / V ~ ( u o ) ~ U o - 2 I m / V , ~ g o ( S u o )  

/o' = - 4  Re (V~eitar e i(t-~)A (Vei~'Ar -} 

/o' 
= - 4  Re fot(e-itAvxeitAcx, r -irA Vei~Ar 

- 2 Re fot{e -i~'zx Vei'Ar e -ira Vx~eit~r 

r  = ~ r ikx, r e H 1 and 11r = 1, 
k 

Take 

V(x,t) = [ ~ ~d(n)ei~lT(t ) where V ( n ) =  V ( - n ) a r e  independent Gaussians. 
h e 0  
n odd 

Average over the Gaussians. We get 

Z' (11) = 4 ~ n k E [ I P ( n ) ] 2 ] ] ~ ( ~ ) l  e cos (2k~+n2) ( t -~ )~(r ) ' r ( t )d~ ,  
n,k 

I' (12) = 2 ~ n 2 E[l#(n)l 2] [~(k)l 2 cos(2kn + n2) ( t  - r ) e ( ~ l ~ ( t ) d ~ .  
n,k 

Thus 

(9) + (lo) = (11) + (12) 

(13) = 2 ~(2nk + n 2) E[f/(n)12llr 2 eos(2kn + n2)(t - "r)3'(T)7(t)dv. 
n,k 
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w The contribution to Ilu~(T)l]~ -Ilu~(0)N is obtained by integration of(13) 
in t. IfT(t) = 0 for t ~ [0,T], this clearly yields 

(14) E(2kn  + n 2) Nl~(n)l z] Ir + n2)[ 2. 
n , k  

Take 

J'a (1)l = 1 = 
(15) ~ A  

(V(n) = 0 for Inl r 1. 

Fix M and take 7 satisfying 

(16) s u p p T C  [0, M ] ,  

(17) I~(m)l = I~(-m)l  = M -*-�89 

(18) = 0 for Iml > 3M; 

(19) IOm(l (m)l)l < M -~-~. 

for Iml < 2M + 1, 

From the definition of  V and 7, it follows that V(x, t) is analytic in x and H s in 

t E [0, T]. From (14) and (15)-{19), we get, for T = l/M, 

(14) ,-~ E [r + 1)]~(2k + 1)] 2 - (2k - 1)1~(2k - 1)l 2] 
k 

(20) ~ M -2s-1 + O(M-="-3[[r 

Accordingly, take M > IIr This gives 

(21) (14) ~ M -2~-1. 

The contribution of  the higher orders in V (hence order _> 4) coming from (8) may 

easily be estimated by ( )4 
I1r I1r ( f  ~ < IICIIH1 M-8-�89 < M-4~-I. (22) 

Assume s > 0. From (14), (21), (22), it follows that one may ensure 

(23) Ilu~(T)ll~ -Ilu~(0)ll~ > aM -2"-1 ~ T 2s+a. 

Now (23) corresponds to the inequality 

(24) i > cI -~, 
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implying, for t --* c~, 

(25) I( t )  > t 1/(1+"), ][u(t)llH1 > p / a ~ + , ) .  

Thus, coming back to (0.2), define 

(26) tj+~ = t 5 + Ate,  

(27) Atj -- t~ 1/2(1+s), 

and let 7j = 7 be as above (taldng T = 1 / M  N Atj),  supp 7j C [tj, tj+l]. 

The preceding then allows us easily to conclude (0.4). 

REFERENCES 

[B1] J. Bourgain, Growth of  Sobolev norms in linear Schr6dinger equations with quasi-periodic 
potential, Comm. Math. Phys., to appear. 

[S] T. Spencer, private communications. 

J. Bourgain 
SCHOOL OF MATHEMATICS 

INSTITUTE FOR ADVANCED STUDY 
PRINCETON, N3 08540, USA 

email: bourgaln~mathAas.edu 

(Received November 8, 1998) 


