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Abs t rac t .  Necessary and sufficient conditions are given for a quadratic 
polynomial to be a divisor of a nonzero harmonic polynomial in R '~. 

1 Formulat ion  of  the problem and main results 

Let Q be a polynomial in R" with real coefficients. We are concerned with the 

question: When does Q divide a nonzero harmonic polynomial? 

We call such a polynomial Q a harmonic divisor. For Q homogeneous, being 

a divisor of  a nonzero harmonic polynomial is equivalent to being a divisor of  a 
nonzero harmonic function in ]~n 

The problem of  characterizing harmonic divisors arises in the study of  the 

Cauchy problem in the category of formal power series (see the question in P. 

Ebenfelt, H. Shapiro [ES], 6.1, and question 3.24 in the problem list [BBH]), 

investigation of  stationary sets for the wave and heat equations ([AQ], [A]), injec- 

tivity of  the spherical Radon transform [AVZ] and other questions. One should 
also mention the paper [FNS], which contains many interesting observations about 

zeros of entire harmonic functions and, in particular, polynomials, in 11~ 2. For 

homogeneous Q, this problem can be viewed as describing nodal sets for the 

Laplace--Beltrami operator on the unit sphere in R n. 

In the general setting, the problem of  describing harmonic divisors seems very 

difficult, except for the case of  homogeneous polynomials Q in R~. Armitage [Ar] 

obtained the characterization of quadratic forms of  n real variables with only two 

distinct eigenvalues which divide a nonzero harmonic polynomial in R'* in terms 

of  zeros of  Gegenbauer polynomials. Note that the case n = 3 was studied long 

ago by F. Klein in [K]; see the remark in [Ho], p. 481. 

In this article, we give a complete characterization of all quadratic harmonic 
divisors in R '~, for arbitrary n. The characterization is given in terms of  polynomial 
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solvability of the initial value problem for a Fuchsian ordinary differential equation 

and, in equivalent terms, of  the solvability of  a system of  algebraic equations (Niven 

equations; cf. [KM]). 

Geometrically, we describe all quadratic cones in R n on which a nonzero 

harmonic function in II n can vanish. The obtained characterization includes the 

result of  [Ar] as a particular case. Our approach exploits separation of variables 

for the Laplace operator in n-dimensional ellipsoidal coordinates. 

Let us formulate the main result. Let Q be a polynomial in R" of degree 2, 

(1.1) Q(x) = a i j x i x j  -4- E b jx j  + c, aij = aj,i. 
/ , j = l  j = l  

Denote by A1,...,At, g >_ 2, the eigenvalues of  the symmetric matrix A = 
. .  n (a,3)id=l and by mi the multiplicity of Ai. We assume that all Ai are different 

from 0, since otherwise the problem reduces to a smaller number of  variables 

(Proposition 2.1), and set ai = 1/Ai, i = 1,...  ,L 

In the sequel we use notation deg f for the degree of  polynomial f .  

T h e o r e m  1.1. The quadratic polynomial Q in (1.1) is a harmonic divisor in 

R n i f  and only i f  there exist nonnegative integers ki, i = 1, . . . ,  ~ and a polynomial 

~b(s), degr  < g - 2, such that the Fuchsian ordinary differential equation 

(1.2) E " + ~  s - - a i  + t m 4(s -ad  +r E = 0  
,=1 1-I (8 - a , )  ~=1 

i = l  

has a nonzero solution o f  the form E(s) p~(s)w(s), pC(s) t = = I l j= l (S  - a J  '/2, 
where w is a polynomial satisfying w(O) = O. 

Here #i = - k i ( k i  + m i  -- 2); and ei = 0 i f k i  is even, ei = 1 ifki is odd. 

In this case, Q divides a nonzero harmonic polynomial o f  degree 2 deg w + I~1, 
IEI t = E i = I  8i. 

We refer to [AAR] for general information about Fuchsian differential 

equations. 
If all the eigenvalues Ai are simple, i.e., mi = 1, then (1.2) simplifies to the 

Helm equation (el. [E], p. 62) 

( ~ - ~ )  1 1 1 E ' + .  r  E = p e w ,  
"E" + ~ 8 - a i  " 

i=1 I I  ( s  - a d  
i=1 

deg r < n - 2, whose polynomial solutions w are known as Lam6 polynomials of  

order n (for n = 3, they coincide with the classical Lain6 polynomials; cf. [E]). 
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An equivalent characterization of quadratic divisors can be given in algebraic 

terms. For the case of  simple eigenvalues we have 

Theorem 1.2. Suppose that the matrix A in (1.1) has simple eigenvalues 

(different from zero) and ai = 1/~i, i = 1 , . . . ,  n. Then Q is a harmonic divisor i f  

and only i f for some N G N and e = (e l , . . . ,  en), ej = 0 or ej = 1, the system o f  N 

equations (Niven equations, c f  [Sz],6.81; [KM], IV]) 

N 

(1.3) 2_._eej+l+ Z 4 - 0 ,  s = l , . . . , N ,  
j = l  z s  - -  a j  zn  - -  Zq q = l , q ~ s  

has a solution ( z l , . . . ,  ZN) E R N wi th  z s = O for  some s. 

In this case, Q divides a harmonic polynomial of  degree 2N + lel. 

2 Pre l iminary  facts 

For two polynomials Q, h the notation QI h will mean Q divides h. 

We require the following observation of  H. Shapiro, which we give here in the 

(weaker) form we need. 

T h e o r e m  ([Sh]). Let Q be a quadratic polynomial in R". Then Qlh for  some 

harmonic polynomial h, deg h = m, i f  and only i f  Q:lh,n, where Q2 and hm are the 

leading homogeneous terms o f  Q and h respectively. 

(Of course, the nontrivial part is the "if" statement.) 

Therefore, it suffices to study only homogeneous Q, i.e., quadratic forms. Since 

the Laplace operator commutes with each linear transformation in the orthogonal 

group O(n), we can assume Q to be diagonalized: 

( 2 . 1 )  = 
i=1 

The eigenvalues Ai can be assumed nonzero, as follows from 

Proposition 2.1. I f  one o f  the )~ in (2.1) vanishes, then Q is a harmonic 

divisor in R n i f  and only i f  Q is a harmonic divisor in R n-x . 

Proof .  Suppose An = 0. Then Q can be regarded as a quadratic form in R n-1 . 

IfQIh, h = Qg, where g and h do not depend on x ,  and h is harmonic, then clearly 

h is harmonic in Xl , . . . ,  x ,  and therefore Q is a harmonic divisor in R". 
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Conversely, suppose QIh, Qg = h, A R , , h  = 0. Represent g and h as 

e ~ h  k 
g = h =  

k-----0 k=0 

where gk, h~ are polynomials in x l , . . . ,  Xn-1. Then we have for the leading terms 

Qgt = hm. The equation A ~ , h  = 0 implies AR,,-~hk = (k + 2)(k + 1)hk+2, and 

therefore h,,, is a harmonic polynomial in R n-1 . [] 

From now on, Q will be assumed to be of  the form (2.1) with A i r  0 for all i. 

We will call Q an m-divisor i f  Q divides some nonzero harmonic homogeneous 

polynomial of  degree m. Clearly, Q is a harmonic divisor i f  and only i f  Q is a 

harmonic m-divisor for some m. 

Proposition 2.2. The set o f  all points ( ~1, . . . , An), corresponding to harmonic 

m-divisors (2.1), constitutes an algebraic conic hypersurface in R n o f  degree 

P r o o f .  Let P,n be the space o f  all homogeneous polynomials in 1R n o f  degree 

m. The equation 

A(Q,f)  = O, f e Pro-2, 

can be regarded as a linear din-2 x d,n-2 system for the coefficients o f  the polynomial  

f .  Here 

Denote by B,,~(,~), A = (A1 , . . . ,  ,L~), the matrix o f  this linear system and set 

b,~(A) = det Bm(,~). The entries o f  the matrix Bm (,~) are linear forms in ,~1,. . . ,  A,~; 

therefore, the determinant b,~(A) is a homogeneous (symmetric) polynomial o f  

degree deg b m =  d,~-2. 
It remains to note that harmonic m-divisors are described by the equation 

bin(A) = 0. [] 

R e m a r k .  For small m and n, the determinants bm can be written down 

explicitly. For instance, 

b2(~l , . . .  ,~)~n) : ~1 q- ' ' "  q- )~n, 

In dimension n = 3, we have 

n 

b 3 ( ) ~ l , . . . ,  An )  = r I ( 2 c ~ j  -~ )~1 Jr- ~2  "Jl- " " " "q- "~n). 
j=l  

b4(,~1, .~2, .~3) ~-- (30"1 -- 2AI)(30"I -- 2/X2)(3o'I -- 2A3)(3o'I 3 -{- 12o"1o"2 -{- 560"3), 
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where ai are the basic symmetric polynomials, 

ffl = A1 + A2 + A3, if2 = A1A2 + AxA3 + A2A3, a3 = A1A2A3. 

Using the Mathematica package, we have computed, for n = 3, some further 

determinants bin, which turn out to have rather cumbersome expressions. 

Now we introduce the class of  e-odd polynomials. Given a vector e = 

(ex,...,e,~) with ej = 0 or ej = 1, denote by Pm,~ the space of  all poly- 

nomials in Pm of  the form 

X~I en 2 2 
�9 �9 �9 , �9 �9 ~ X n ) ~  x ,  P ( x  x, 

where P is a homogeneous polynomial. 

Invariance of  the Laplace operator and the quadratic form Q with respect to 

reflections xi ---} - x i ,  i : 1 , . . . ,  n, imply 

Proposition 2.3. If  Q is a harmonic m-divisor, then Q divides a nonzero 

harmonic polynomial  in P,,~,e f o r  some e. 

3 G e n e r i c  c a s e  ( s i m p l e  e i g e n v a l u e s )  

3.1 We start by characterizing quadratic divisors (2.1) with simple eigen- 

values Ai, i.e., )q # Aj for i # j. According to Proposition 1.1, all )~i can be assumed 

nonzero, so we write ai = 1 / ) q .  

The numbers ai cannot all be of  the same sign, since by the Brelot-Choquet 

theorem [BC] no nonnegative or nonpositive polynomial in R" can divide a nonzero 

harmonic polynomial. Therefore, after renumbering, we can assume 

by 

al  < a2 < . . . <  ano < 0  < ano+l < "'" < an. 

Now introduce ellipsoidal coordinates, associated with the quadratic form Q, 

I I  (tj - ad  
2 3=i Z---- I~...,71~ 

(3.1) xi = rI (ai - a j ) '  

ti E (a i , a i+ l ) ,  an+l  = O0 

(see, e.g., [E], [Ho], [Sz], [KM], [SW]). 

Formula (3.1) establishes a diffeomorphism between 

~ = {z = (x~,. . . ,  x , )  e R" :zi  > o} 
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and the domain lLn___ x (ai, ai+l). 
The ellipsoidal coordinates t l , . . .  , tn of  the point ( x l , . . .  ,xn) E ~'~ are the n 

(real) roots 0 = ti of  the equation 

n 2 

The coordinate section trio = 0 describes the hyperboloid Q + 1 = 0. 

The Riemannian metric has in t-coordinates the form 

1 + r' (ti) dr.? 
ds2 = - 4  ~.= q ( t i ) - - "  

where 

q(~) = 1-I(~-a~),  ,-(s)= l"I(~-tj);  

3.2 Let u be an e-odd polynomial, u E Pm,e. 

Then u can be represented in the ellipsoidal coordinates t = ( t l , . . . ,  t,~) in the 

form 
n 

(3.3) u(t) = I-[ p~(ti)w(t), 
i = l  

n where f ( s )  = l I j= l ( s  - aj) ~/2 and w is a polynomial,  m = 2 degw + lel. 

Suppose that w in (3.3) can be written as 

(3.4) w(t) = H wi(ti). 
i=1 

Then u(t) = I-[i~1 Ei(ti), where Ei(s) = f ( s )wi ( s ) ;  and, by (3.2), the equation 

Au = 0 takes the form 

--~D~E~(t~) 
r ,~ = r ' ( t , )  1-I ~ j ( t j )  = 0, 

i = l  j~ki 

w i t h  Di = V / ~  Or, ~ Ot,, o r  equivalently, 

n 1 DiEi(ti) 
(3.5) ~ r'(t,) E~Ct~) = o. 

i=1 

j = l  j = l  

and the Laplace operator is 

(3.2) A = r'(ti-----y- Or, -~i " 
i=1 
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Taking into account the explicit expression r'(t~) = yI~r - tj), we obtain 

D i E i ( t i )  = r i = 1,...  ,n, where r is a fixed polynomial of  degree 

< n - 2 .  

Conversely, if DiEi = CEi, deg r _< n - 2, then the residue theorem yields 

i=1 r'(ti) = i=t r e s t , -  = -res~--r = 0, 

and (3.5) holds. 

Thus, the equation Au = 0 for u as in (3.3), (3.4) is equivalent to the n ordinary 

differential equations 

D i / w i  = r  i =  l , . . . , n ,  d e g r  

In fact, we deal with the same differential equation 

(3.6) V ~ s  s v/~-~- s = r  E = p  i, 

which can be reduced, by introducing the hyperelliptic variable 

= f ds , s = 

to 
02E 

2 - 

Explicitly, equation (3.6) is the Fuchsian equation 

(3.7) E" + ~ s --aj E' = = 
j = l  [ I  (s  - 

j = l  

Note that after substituting E = / w  in (3.7) and differentiation, all the radicals 

cancel and we obtain for w a differential equation with polynomial coefficients. 

3.3 There is a finite set of  spectral polynomials r for which (3.7) admits 

a nontrivial polynomial solution w, called Lamd polynomials. The admissibility 
conditions for w are obtained by solving recurrence relations for the coefficients 

wk ofw. For instance, for ~ = 0 we have by substituting into (3.7) 
n 

( N ( N - 1  + 3) - C,-2)WN = 0, N = degw, 

n 
[(N - 1)(Y - 2 + 3)  - r 

- [(al + . . -  + a , ) N ( N  _ ---[-.__~l)n -[- • . - 8 ]WN = O, 
2 
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and so on. 

The equations for the coefficients r  r of  the polynomial r result from 

expressing all wk's through the leading coefficient WN (which can be assumed to 

equal 1) and then setting w_l . . . . .  w-I -N  = 0. Due to the recurrence, we then 

have wj = 0 for all j < 0, so w is a polynomial of  degree N. In particular, the 

leading coefficient is r = N ( N  - 1 + n/2) (for e = 0) and, more generally, 

r  = (N + lel)(N + lel - 1 + n/2). 

The n - 1 admissible parameters r  r satisfy n - 1 algebraic equations 

and constitute a finite set. These parameters become algebraic functions of  the 

singular values a 1, . . . ,  an (and therefore of  the eigenvalues A1,...,  An). 

Now we are ready to give necessary and sufficient conditions for the quadratic 

form Q to be a harmonic divisor. The following statement is a particular case of  

Theorem 1 for the case of  simple eigenvalues (m~ = i in (1.2)). 

T h e o r e m  3.1. The quadratic form Q(x) = ElL1 ~ix~, ~i ~ o, ~i ~ ~j for  

i ~ j, is a harmonic divisor i f  and only if, for somepolynomial r degr  < n - 2, 

the Heun equation (3.7) with ai = 1/Ai has a nonzero solution o f  the form 

n 
= 

j = l  

where w is a polynomial with w(0) = 0, and ej = 0 or e~ = 1. 

In this case, Q is a harmonic m-divisor with m = 2 deg w + [el. 

P roof .  By Proposition 2.3, it suffices to look for G-odd harmonic polynomials 

u E P,~,~ divisible by Q. Every such polynomial can be decomposed in the ellip- 

soidal coordinates t l , . .  �9  tn into a finite sum of separable solutions of the Laplace 

equation (of. [KM], [V]): 

(3.8) u(t) = E1 ( t l ) . . .  E ,  ( t , ) ,  
J 

where E/r = p ~  and w{ is a polynomial corresponding to an admissible spectral 

polynomial r in (3.7). 
Using the result of  H. Shapiro [Sh] mentioned in Section 1, we can replace Q 

by Q + 1. Divisibility of  the real harmonic polynomial by Q + 1 is equivalent to 

vanishing on the surface Q + 1 = 0 which is given in t-coordinates by the equation 

tno = O. 
Since the separable solutions in (3.8) are linearly independent, u(t) = 0 on 

tn0 = 0 is equivalent to E~o (0) = 0 for all j. Take E = Er ~ 0. Then E has the 
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form E = p~w, where w = W~o is a nonzero polynomial solution to (3.7) satisfying 

the initial condition w(0) = 0. [] 

R e m a r k .  The admissible parameters in (3.7) for polynomial solutions 

w, degw = N, are algebraic functions of  the eigenvalues )~i. Let 

r  A,, e l , . . . ,  e , ,  s) be a continuous branch of  this algebraic function and 

w i (ha, �9 �9 �9 A,, ex, �9 �9 �9 s , ,  s) the (unique) polynomial solution of(3.7), corresponding 

to the polynomial r and having leading coefficient I. 

By Theorem 3.1, the variety Vm, m = 2N + I 1, of  all harmonic m-divisors is 

determined by the condition 

F m ( ) q , . . . , A n ) =  ~ I I - I w i ( A l , . . . , A n , e l , . . . , e n , O )  =0, 
i e 

where the product is over all branches ~b i and all 2" vectors e = ( e t , . . . ,  e ,) ,  ej = 0 

or ej = 1. 

The function Fm is constructed from transcendental functions, while Vm is a 

real algebraic variety by Proposition 2.2. It would be interesting to understand 

relations between the functions F,,~()~) and bm(,~) defined in Section 2 having the 

same zero set V,n c R n. 

4 Characteristic (Niven) equations 

4.1 According to Section 3, the quadratic form Q + 1 is a harmonic divisor i f  

and only i fQ  divides a nonzero harmonic polynomial u separating in the ellipsoidal 

coordinates, u( t )  = p%x (tx).-.  u , ( t , ) .  

Each polynomial ui has only real roots, as otherwise ui has a divisor o f  the form 

( t i  --  z ) ( t i  --~), Imz # 0, which would contradict the Brelot-Choquet theorem [BC] 

about the nonexistence ofnonnegative harmonic divisors. Since the equation t i  = z 

is equivalent to 

--xi 1 = 0,  
i=1 Z - -  a i 

it follows that the polynomial u has in x-coordinates the form 

= 1-[ 1 , = 
s=l  i=1 Z s  - -  a i  

where z8 are roots o f  the polynomials u l , . . . ,  u , .  
We have that u = 0 on the hyperboloid Q + 1 = 0 i f  and only i f  z8 = 0 for some 

s, for instance, Zl = 0. Then the leading term o f u  divides Q. 

Thus, we have 
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C o r o l l a r y  4.1. I f  Q is a harmonic divisor, then Q divides a nonzero harmonic 

polynomial u representable as a product o f  quadratic forms 

(4.1) 

where Q1 = Q. 

N 
u(x)  = x e I ~  Qs,  

2 

Q s ( z )  = , 
i=1 ai -- Zs 

Note that the quadratic factors Qs are confocal with the original quadratic form 

Q. (Two quadratic forms )"]~$=1 Aix2 and E n = l  # i  x 2  are  c o n . f o c a l  if l/A, - 1/#i = 

1/Aj - 1/#j for all i , j  = 1,. . .  ,n.) 

4.2 P r o o f  o f  T h e o r e m  2. The condition of  harmonicity of  the product of  

quadratic forms (4.1) can be rewritten as the (Niven) system of  algebraic equations 

(cf. [Sz], 6.81, [KM], [V]): 

(4.2) ~ 2e_.j. + 1  + ~ _ _ 4  = 0, s = 1,. . .  ,N. 
j = l  zs -- a j  ~. Zs z i  

Divisibility of  (4. l) by Q is equivalent to the condition z~ = 0 for some s. [] 

Theorem 2 can be reworded as follows: Q is a harmonic divisor if  and only if 

the polynomial 

P 

, z o l  : r i  ez.  - i I ( z ,  - 
i = l  sin0 i ~ j  

has at least one critical point on a coordinate plane zs = 0. Indeed, the system (4.1) 

is equivalent to v r  = 0 (cf. [Sz], 6.82). 

5 Genera l  case (mult ip le  e igenvalues)  

In this section, we consider the general case of  multiple eigenvalues and prove 

Theorem 1. 

5.1 Suppose Q has multiple eigenvalues A1,... ,  At ~ 0 of  multiplicities 

m l , . . . ,  mr, ml + . . .  + m t  = n, respectively: 

O ( x , , . . . , z , )  = z , m o  = O. 

i = l  ~s----~mi- 1--]- 1 

Denote by S "~-1 the unit sphere in the space R 'm of  the variables 

x,~,_ ~ +1,. �9 �9 x,~_l +,~ �9 Decomposition into irreducible representations of  the group 
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O ( m l )  x . . .  x O(mt )  C O(n) yields that any polynomial h in IR n has a finite 

decomposition 

(5.1) h(x) = ~ F k ( r i ~ , .  . 2 , . , , .  _ , o . , , , , _  . o , , , (~ , " ' , ' t ) ' l  " " In  (F1 (,~1)" "Wt ~ ~) 
k 

where F~ are polynomials, k = (kl , . . .  ,k,~), ei = 0 for ki even and ei = 1 for ki 

odd, 
mi-l+mi 

= F_, s 
s = m i - l + l  

and ~b/k~ is a spherical harmonic of  degree ki o n  the sphere S m~-l. 

The functions ~i are eigenfunctions of  the Laplace-Beltrami operator As= ~-~ 

on the unit sphere S m'-I  : 

with the eigenvalues #i = - k i  ( k i  + m i  - 2). In the degenerate case mi = 1, we 

have #i = 0, ki = 0 or ki = 1, and kv k~ = 1. 

Decompose the Laplace operator A in R n into the sum of partial Laplacians Ai 

in R m~ , written in the spherical coordinates in R "~ : 

t 

i=1 

where A~ is the radial part of  Aim 

_ 0 
A T , -  rmli_l o~i rr~ ' - l  ori  �9 

If  h is harmonic, Ah = 0, then applying the Laplace operator to (5.1) we obtain 

the system of equations 

t 
(5.2, E (At ,  + #~) u~ = 0, f o r a l l k = ( k l , . . . , k , ) ,  

i=1 

where we have written 

(5.3) . . .~  . . . ~ - t ] ~ l  �9 

t 5.2 P r o o f  o f  T h e o r e m  1. Since Q = Y~i=l Air~, then h[Q if and only if  

FkIQ for all k, where Fk are the polynomials in (5.1). The harmunicity condition 
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for h is given by the system (5.2), so we conclude that Q is a harmonic divisor, 

Q lh, i f  and only i f  the differential equation 

t (O~r ~ m,-X 0 #~) 
(5.2') E + - -  + u = 0 

i= 1 r i O r i  

el...r~ttF(rl, .,r~), where F = Fk is a has a nonzero solution u = uk = r 1 .. 
t polynomial  vanishing on the quadric ~i=1 )qr~ = 0 ,  and ej = 0 or e~ = 1. 

The relation between the degrees is deg h = 2 (leg F + ]el. Thus, we arrive at 

the problem of  divisibility by quadratic form in the space o f  ~ variables r l , . . . ,  rt,  

with simple eigenvalues, and with the differential operator (5.2') instead o f  the 

Laplacian. 

We repeat the arguments from Section 3. First, we replace Q by Q + 1 in the 

condition of  divisibility. Then we introduce the eUipsoidal coordinates 

t 

l-I ( t j  - 
2 j = l  1 

(5.4) ri - r I ( a j - a i ) '  ai=-~ii, i=l , . . . ,L  

The surface Q + 1 = 0 is written now as t,~ o = 0, where 0 E (ano, a,~o+l). 

A solution u o f  (5.2') can be represented as a finite sum of  (nonzero) separated 

solutions o f  the form E1 |  | Et, and each E1 is represented, due to the form of  

u, as 
l 

Ej = p%, ,  p ' ( 8 )  = 1 ] ( 8  - %),,/2, 
3----1 

In addition, each E~ satisfies the separation equation where w is a polynomial. 

(cf. [SW], Prop. 1) 

( 5 . 5 )  

E "  + ~ s - -  ai + 
i = l  4 F I [ = l ( 8  - a i )  

, %) ] 
+r 

i=1 8 - -  a i 
E = 0 ,  

where r is a polynomial, deg r < g - 2. 

Computing degrees gives deg h = 2 deg w + l el. It remains to note that, according 

to (5.1) and (5.3), (Q + 1)[h is equivalent to (Q + 1)[u, which in turn means that 

the factor E,, o vanishes at s = 0, Eno (0) = 0, in each separated solution in the 

decomposition o f  u. Since u is nonzero, En0 also can be assumed nonzero. Then 

E = Eno is the needed solution o f  the Fuchsian equation (1.2). [] 
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5.3  P a r t i c u l a r  c a s e s .  Cons ide r  the case  o f  two e igenva lues  A1 ~ As, o f  

mul t ip l ic i t ies  m l ,  m2 respect ively.  T h e n  

2 (5.6) Q(Xl , . . . ,Xn)  = Al(x~-l-. . .-l-Xm,)-b.~s(X2 +l q-...-l-x2n). 

T h e n  (5.4) is the Fuchs ian  different ial  equa t ion  with three  s ingular i t ies  a l ,  a2 

a n d  ~ ,  ai = 1 /  Ai : 

(5.7) 
E " + ~  s - a 1  s - a 2  

1 I/A1 (_..a 1 -- as) 
+ 4 ( s - a l ) ( ~ - a 2 ) L  s - ~  + gs(aSs --asal) + ~] E = 0, 

where  #i = - k i ( k l  + m i  - 2), r = const .  

We  are l ook ing  for  a nonzero  solut ion  o f  the f o r m  

E ( s )  = (s - a l ) e ' / 2 ( s  - a s ) ~ 2 / 2 w ( s ) ,  

where  w is a p o l y n o m i a l  and ei as above .  The  condi t ion  o f  admiss ib i l i ty  is 

2 

whe re  N = deg w. 

The  change  o f  var iab les  z = (s  - a l ) / ( a 2  - a l )  in (5.7) and  c o n s e q u e n t  sub- 

st i tution E = zk~/2(1 - z ) k 2 / 2 v  lead to the hype rgeome t r i c  equa t ion  (cf. [AAR] ,  

2.3) 

v"  + [(a + b + 1)z - c]v' + abv  = 0 

with  p a r a m e t e r s  a = (71 + A1 + B1, b = C2 + A1 + B1, c = 1 - A1 - A2, w h e r e  A1 = 

k l / 2 ,  B1  = k 2 / 2 ,  A 2  = 1 - ( k l  + m l ) / 2 ,  B 2  = 1 - (k2 + m 2 ) / 2 ,  C1 = - N  - 1~1/2, 

C2 = N + (1~1 + n - 2) /2.  

The  solut ion  v is the  hype rgeome t r i c  func t ion  v ( z )  = 2Fl (a ,  b, c; z); s ince a = 

- N  + (kx + ks - 1~1)/2 is an integer,  it can  be  expressed  v ia  Jacob i  p o l y n o m i a l s  

(el.  [AA_R], p. 99): v ( z )  = const  P f f ' a ) ( 1  - 2z), whe re  M = N - (kl + ks - H)/2, 
a = c - 1 = kl + (ml  - 2)/2,  ~ = b - M - a - 1 = ks + (ms - 2) /2 .  

T h e  cond i t ion  o f  divis ibi l i ty  b y  Q is E(0)  = 0, wh ich  can  be  t rans la ted  as 

_-0  
V al  ~ as  \ a 2  - a l ]  

Thus ,  w e  have  
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C o r o l l a r y  5.1. The quadratic form Q in (5.6) with two multiple eigenvalues 
A1 and As is a harmonic divisor if  and only if there exist nonnegative integers 
kl, k2, N, such that 

(5.8) j = o, Iel = + + 

In this case, Q is a harmonic (2N + [e[)-divisor. 

Take, in particular, ml = n - 1, m2 = 1 and write A1 = 72, As = "72 - 1, so that 

Q has the form 

2 (5.9) Q(xl, . . . ,  x,)  = "72(x~ +. . .  + x~) - x,.  

Then k2 = 0 or k2 = 1, and (5.8) transforms to 

2 - = o 

The Jacobi polynomials p(~,+l/z) are related to the Gegenbauer polynomials 

([E], 10.9, formulas (2.1), (2.2)), so the last condition can be rewritten as 

c k a + ( n - 2 ) / 2 { . ~  
2N-kl+~t ~ - J = 0 ,  i f  k 2 = 0 ,  

C2k~+(,-2)/2 t_ x N-k~+,~+I~'Y) = 0, ifkz = I. 

Ifm = 2N + le[, both cases can be unified by the condition 

(5.10) k~+(,-2)/2 _ C=_k~ (r) = 0; 

and we obtain the result o f  [Ar]: the quadratic form (5.9) is a harmonic m-divisor 

i f  and only i f  7 is a root o f  the Gegenbauer polynomial,  C~+("-2)/2('7) = 0, for 

some integer k, 0 < k < m (in fact, k < m - 2). 

6 Harmonic divisors of higher degrees 

6.1 In this section, we discuss the problem for higher degree divisors and 

give some partial results. 

The following statement is presented in [A]. 

Let Q be a polynomial in R" that splits into a product of  T h e o r e m  6.1 ([AI). 
linear forms: 

p 

i=1 

Then Q is a harmonic divisor if  and only if  the group W generated by the reflections 

Gi : X --+ Z -- 2 (l/i, X) 

around the hyperplanes L~ = {(vi, x) = 0} isfinite. 
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Since the proof is quite simple and short, we repeat it here. 

Proof.  Let QI h, where h is harmonic. By the reflection principle, h is ~ri-odd, 
i.e., h o ai = - h ,  i = 1 , . . .  ,p. Therefore, h = 0 on each hyperplane w(Li) ,  w E W. 

If  W is infinite, then h = 0. 

Conversely, suppose that the group W is finite. Let L1, . . . ,  L,-,, m > p be all 

the mirrors of  the Coxeter group W. We can assume that the first p mirrors are just 

L1,. . . ,Lp.  
Define 

m 

h(x) = 1-I(v,, x), 
i=1 

where Lj = {(re,x) = 0}, j = 1 . . . .  ,m. Then Qlh, and h is harmonic. Indeed, 

h is aj-odd for any reflection trr around Lj,  h o a s = -h ,  j = 1 , . . . ,m ,  since 

crj interchanges the mirrors Lj and changes the orientation in R'*. The Laplace 

operator commutes with aj; hence (Ah) o ar = -Ah ,  and therefore AhlLr = O, 

j = 1 , . . . ,  m. This implies that hlAh, which is possible only if Ah = 0. [] 

6.2 Another class of harmonic divisors which it is possible to describe 

consists of  the products of  confocal quadratic forms: 

m 

(6.1) Q(x) = 1-~ Q,(x) ,  
tlmO 

whereQ,(x) n s ~ ~ # 0, = ~ = x  )~jx~, A~ 

The condition of  confocality means 

1 

do not depend on j = 1 , . . . ,  n. 

that the differences 

1 

Let a~ = 1/A~. I f  we fix some factors, say Q0 in (6.1), and denote a~ = a ~ 

oq = 0 ~ then for any q = 0, . . .  ,m we have a~ = a s - oq. 

Denote by rex, . . . ,  ml the (common) multiplicities of  the eigenvalues of  the 

forms Qs. 

T h e o r e m  6.2. The product (6.1) o f  confocal quadratic f o r m s  is a harmonic 

divisor i f  and only i f  the Fuchsian differential equation (1.2) has a nonzero 

polynomial  solution w with w(0) = w(0  x ) . . . . .  w(O m) = O. 

The proof follows from separation of  variables for the Laplace operator in 

sphero-ellipsoidal coordinates in a fashion similar to that of  Sections 3 and 4. The 

only difference is that now the separated solutions must have m + 1 prescribed 

zeros instead of  a single zero in the ease of  a single quadratic factor. 
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6.3 Open questions. We have described all polynomials Q in R '~ of  degree 

2 for which the equation 

(6.2) A(Qf)  : 0 

has a nontrivial mlution in R". If  Q is a quadratic form, then f can be taken to be 

a homogeneous polynomial. 

In applications to the wave equation (see [A]), it is important to know whether 

the dimension d of  the polynomial solutions of  (6.2) is finite or infinite. For 

instance, if  Q is a completely reducible polynomial (product of  linear forms) of  

any degree and d > 0 (Q is a harmonic divisor), then d = oo. 

1. We conjecture that for n > 2 there exists a polynomial Q (even a quadratic 

one) with 0 < d < oo. In view of Theorem 1 and the statements in 5.3, this 

question may be highly nontrivial, as it is related to the question of  common zeros 

of  orthogonal (Jacobi, Gegenbauer) polynomials. 

2. Let Q1,Q2 be two quadratic forms which are harmonic divisors. When is 

the product O, tQ2 also a harmonic divisor? 

When is the product LQ of  linear and quadratic forms a harmonic divisor? 

There are other natural questions concerning divisors of  harmonic polynomials 

and the related problem of studying zeros of  harmonic functions in R '~ . 
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